• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solvent-Controlled Morphology of Ni-BTC and Ni-BDC Metal-Organic Frameworks for Supercapacitors

    2022-08-09 03:50:12NIUBaiTongXIAWangNanLAIZhaoQinGUOHongXuCHENZhangXu

    NIU Bai-TongXIA Wang-NanLAI Zhao-QinGUO Hong-Xu*,,CHEN Zhang-Xu

    (1College of Chemistry,Chemical Engineering,and Environment,Minnan Normal University,Zhangzhou,Fujian 363000,China)(2Fujian Provincial University Key Laboratory of Ecological Environment and Information Atlas,Putian University,Putian,Fujian 351100,China)

    Abstract:The performance of energy storage materials is substantially dependent on their nanostructures.Herein,Ni-1,3,5-benzenetricarboxylate(Ni-BTC)and Ni-1,4-benzoate(Ni-BDC)metal-organic frameworks with different morphologies were controllably synthesized using a facile solvothermal method by simply adjusting the solvent,including Ni-BTC blocks,nanospheres,and double-pyramid structures and Ni-BDC nanosheets,nanoflowers and blocks structures,and their electrochemical performance as supercapacitors was thoroughly investigated.Moreover,our study showed that the supercapacitor performance of the electrode materials obtained for Ni-BTC and Ni-BDC electrodes in pure N,N-dimethylformamide(DMF)solvent was better than those prepared with pure ethanol(EtOH)and DMF/EtOH(50∶50,V/V)as solvent.

    Keywords:supercapacitor;morphology tuning;solvothermal method;metal-organic frameworks

    0 Introduction

    Nowadays,the shortage of nonrenewable energy and increased environmental problems caused by developing the economy have aroused massive researchers devoted to new energy storage devices exploration,particularly rechargeable ion batteries,electrochemical water splitting,and supercapacitors(SCs)[1].SCs,a novel form of energy storage device between capacitors and batteries,provide the benefits of extended cycle life,rapid charge and discharge,high power density,and minimal environmental impact[2].As a result,they are widely used in a variety of sectors,such as backup power systems,hybrid electric vehicles,portable electronic equipment,and information technology.

    In recent years,metal-organic frameworks(MOFs)have been extensively developed as electrode materials for SCs[3-9].MOFs are composed of organic linkers and metal ions by strong chemical bonds[10].Owing to the diverse structure with large specific surface area and rich pore structure,MOFs are hot topics in novel functional materials,and they have aroused more and more concentration among plentiful researchers[11-15].Nevertheless,a large number of experiments indicate that the electrode materials can reach a high energy density depending not only on the composition but also on the shape and size[16].Various strategies have been discovered to control the morphologies of MOFs,such as altering the reaction temperature and time[17],tuning the proportion of metal ions[18],and adjusting the pH value[19].Then,the solvent-controlled morphology of MOFs with uniform shape and adjustable size is a convenient and feasible method to improve their electrochemical performance for supercapacitors[20].

    Herein,three kinds of Ni-BTC materials with different shapes and stable configurations were synthesized from the 1,3,5-benzenetricarboxylate(BTC3-)ligand,namely,Ni-BTC blocks,nanospheres,and double-pyramid structures.Furthermore,three kinds of Ni-BDC materials with different shapes and stable configurations were synthesized from the 1,4-benzoate(BDC2-)ligand,namely,Ni-BDC nanosheets,nanoflowers,and block structures.This solvent-adjustment method by changing the solvent is simple and controllable.Experiments revealed that the solvent-controlled morphology of MOFs is a convenient and feasible method to improve the electrochemical performance of supercapacitors.

    1 Experimental

    1.1 Reagent and characterization

    Unless otherwise specified,all chemical reagents used were of analytical grade and can be used without further purification.1,3,5-benzenetricarboxylic acid(H3BTC)and 1,4-dicarboxybenzene(H2BDC)were procured from Aladdin Chemistry Co.,Ltd(Shanghai,China).Ni(NO3)2·6H2O,ethanol(EtOH),andN,N-dimethylformamide(DMF)were procured from Xilong Chemical Reagent Co.Ltd(China).

    The powder X-ray diffraction(XRD)was performed on a Rigaku D/MAX-RB X-ray Diffractometer(Japan)using CuKαradiation(λ=0.154 06 nm)at 40 kV and 40 mA,and the XRD patterns were recorded in a 2θrange from 5°to 60°.FT-IR was measured on a NICOLET iS 10IR(USA)Fourier transform infrared spectrometer.The morphologies of the MOFs were characterized on a Hitachi SU8010 field-emission scanning electron microscopy(SEM,Japan)and the operating voltage was 5 kV.A Belsorp-MAX(USA)fully automatic multi-station specific surface,micro,and mesoporous porosity analyzer was used to conduct the nitrogen adsorption-desorption isotherms.

    1.2 Preparation of Ni-BTC MOF and Ni-BDC MOF materials

    Briefly,the Ni-BTC MOFs were prepared through a simple solvothermal method.For the synthesis of Ni-BTCEtOH,Ni(NO3)2·6H2O(0.436 g,1.5 mmol)was added to 60 mL of absolute ethanol,followed by the addition of H3BTC(0.294 g,1.4 mmol).After being stirred for 30 min,the obtained homogeneous solution was transferred into a 100 mL autoclave with a Teflon lining and heated at 180℃for 12 h.After cooling to room temperature,the resultant green precipitate was collected by centrifugation,washed with DMF,ethanol,and deionized water several times,and then dried at 80℃for 12 h.Similarly,Ni-BTCDMFand Ni-BTCDMF/EtOHwere synthesized following the same procedures by using DMF and DMF/EtOH(50∶50,V/V)as the solvent,respectively.

    The Ni-BDC MOFs were prepared through a simple solvothermal method.For the synthesis of Ni-BDCEtOH,Ni(NO3)2·6H2O(0.436 g,1.5 mmol)was added to 60 mL of absolute ethanol,followed by the addition of H2BDC(0.166 g,1.0 mmol).The same steps were taken to prepare Ni-BDCEtOH.Similarly,the Ni-BDCDMFand Ni-BDCDMF/EtOHwere synthesized following the same procedures by using DMF and DMF/EtOH(50∶50,V/V)as the solvent,respectively(Scheme 1).

    Scheme 1 Schematic illustration describing the synthesis of Ni-BTC and Ni-BDC MOFs with various morphologies through a simple solvothermal method with DMF,DMF/EtOH(50:50,V/V),and EtOH as the solvent,respectively

    1.3 Preparation of working electrode

    The production of a working electrode was done utilizing a slurry-forging technique by smearing the sample over the nickel foam(NF,1 cm×1 cm).In this regard,active material(Ni-BTC or Ni-BDC),polyvinylidene fluoride(PVDF),as well as acetylene black were ground together in a mass ratio of 8∶1∶1,followed by the addition of ethanol into the powder to create slurry conditions.Subsequently,the slurry was evenly smeared over the NF and dried for 12 h at 60℃.Before being used in the electrochemical analysis,the dried NF was subjected to 10 MPa stress testing for about 30 s.

    1.4 Electrochemical measurements

    The electrochemical tests were performed at room temperature.The detection of all electrochemical performances was performed on a CS2350H electrochemical workstation(CorrTest Instruments,Wuhan,China).

    In the supercapacitor test,the measurements were carried out in a standard three-electrode configuration by utilizing 3 mol·L-1KOH as the electrolyte,saturated calomel electrode(SCE)as the reference electrode,and platinum wire as the counter electrode.Electrochemical impedance spectroscopy(EIS)measurement was recorded in a range of 105to 0.01 Hz at opencircuit potential(OCP)by applying a perturbation signal of 10 mV.The specific capacitance of the supercapacitor was obtained by the following equation:Cs=IΔt/(mΔV),whereCs(F·g-1)denotes the specific capacitance,I(A)denotes the discharge current,Δt(s)denotes the discharge time,m(g)denotes the mass of active material,which is weighted separately,and ΔVdenotes the potential window.

    2 Results and discussion

    2.1 Structure and morphology analysis of Ni-BTC

    The XRD patterns of Ni-BTCDMF,Ni-BTCDMF/EtOH,Ni-BTCEtOH,and the corresponding simulation,as shown in Fig.1a.The XRD pattern of Ni-BTCDMF/EtOHhad a large and wide characteristic peak at 8.9°,15.1°,17.5°,18.6°,and 27.1°,which confirms that it is an amorphous structure.From the XRD patterns of Ni-BTCDMFand Ni-BTCEtOH,it can be seen that the main sharp peaks at 15.1°,17.5°,18.6°,22.0°,27.1°,28.5°,and 35.8°,corresponding to the(202),(23),(301),(41),(35),(51),and(108)crystal planes,respectively,are similar to the standard diffraction pattern of Ni3(BTC)2(CCDC:274177)[21].The FT-IR spectra of Ni-BTCEtOHand H3BTC are illustrated in Fig.1b to thoroughly examine the as-synthesized Ni-BTCEtOHchemical structure.According to the comparison results,nearly all the FT-IR bands were in close agreement with those of Ni-BTC earlier reported[22].The typical bands associated with the non-ionized carboxyl groups in BTC3-(i.e.,νOH=3 088 cm-1,νC=O=1 716 cm-1,andδC=O=536 cm-1)were not observed in Ni-BTCEtOH[23].Furthermore,the peaks at 1 622 and 1 556 cm-1are attributed to the asymmetric stretching vibrations of—COO-coordinated to the Ni2+ion in a bidentate mode,while the peaks at 1 435 and 1 368 cm-1are due to symmetric stretching vibrations[24].Meanwhile,the peaks between 880 and 680 cm-1indicate that H3BTC is experiencing bending vibrations from the benzene plane[25].Moreover,the 3 500-3 200 cm-1band corresponds to hydrogen bond H2O molecules.A stable Ni-BTC structure is formed by fixing scattered Ni active sites via covalent bonds in these chemical structures[26].

    Fig.1 (a)XRD patterns of Ni-BTCDMF,Ni-BTCDMF/EtOH,Ni-BTCEtOHand the corresponding simulation;(b)FT-IR spectra of Ni-BTCEtOHand H3BTC

    The SEM images of three Ni-BTC indicate that they were completely different in morphology and size.When only DMF was used as the solvent,Ni-BTCDMFdisplayed a block morphology with a particle size of 700-800 μm(Fig.2a,2b).After adding EtOH into DMF(50∶50,V/V),Ni-BTCDMF/EtOHdisplayed a spherical morphology with a particle size of 3-5 μm(Fig.2c,2d).Besides,the surface of Ni-BTCDMF/EtOHspheres was smooth.Interestingly,when EtOH completely replaced DMF as the solvent,the obtained Ni-BTCEtOHshowed a double-pyramid structure(Fig.2e,2f)with a particle size of 300-400 μm.

    Fig.2 (a)SEM images of(a,b)Ni-BTCDMF,(c,d)Ni-BTCDMF/EtOH,and(e,f)Ni-BTCEtOH

    Fig.3a shows the nitrogen adsorption-desorption isotherms of Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOHmeasured at 77 K.The N2adsorption-desorption isotherm of Ni-BTC was type Ⅰ(H2)hysteresis loop,which is the principal characteristic of solids with micropores[27-28].The Brunauer-Emmett-Teller(BET)specific surface areas(SBET)of Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOHwere determined to be 596,694,and 736 m2·g-1,respectively.From the pore size distribution curve in Fig.3b,it can be seen that the pore sizes of Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOHwere mostly smaller than 5 nm.This indicates that it mainly has two kinds of pore sizes,micropores,and mesopores,which provide a channel for the transport of ions.

    Fig.3 Nitrogen adsorption-desorption isotherms and(b)pore size distribution curves of Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOH

    2.2 Structure and morphology analysis of Ni-BDC

    Fig.4a shows the XRD patterns of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOH,which revealed good correspondence with[Ni3(OH)2(C8H4O4)2(H2O)4]·2H2O(CCDC:638866)reported in a previous article[29].From the XRD patterns of Ni-BDC,it can be seen that the major diffraction peaks were at 9.3°,11.9°,12.2°,15.6°,18.4°,18.7°,23.8°,28.1°,and 29.3°,corresponding to the(100),(010),(10),(10),(20),(200),(020),(21),and(01)crystal planes,respectively.XRD results show that the synthesized products had a good crystal structure and similar structural characteristics.The FT-IR spectra of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHare shown in Fig.4b.The peaks at 550 cm-1are attributed to O—Ni—O vibrations[30].The peaks at 820 and 740 cm-1are characteristic of the paraaromatic C—H stretching bands.The strong bands at 1 560 and 1 370 cm-1are attributed to the asymmetric and symmetric stretching modes of the coordinated—COO-groups,respectively[31].Meanwhile,the peaks at 3 418 cm-1is corresponding to stretching vibrations of the H2O molecules[32].These results all are in good agreement with the XRD result,and further confirm that the synthesized Ni-BDC MOF is a kind of nickel hydroxyl-terephthalate-based compound[33].

    Fig.4 (a)XRD patterns of Ni-BDCDMF,Ni-BDCDMF/EtOH,Ni-BDCEtOHand the corresponding simulation;(b)FT-IR spectra of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOH

    The morphologies of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHwere investigated by SEM.When only DMF was used as the solvent,Ni-BDCDMFdisplayed a nanosheet morphology with a particle size of 100-150 μm(Fig.5a,5b).After adding EtOH into DMF(50∶50,V/V),Ni-BDCDMF/EtOHdisplayed a nanoflowers morphology with a particle size of 50-80 μm(Fig.5c,5d).The flower-like structure was composed of 2D nanosheets assembled by disordered alignment[34].Interestingly,when EtOH completely replaced DMF as the solvent,the obtained Ni-BDCEtOHshowed an irregular bulk structure(Fig.5e,5f).

    Fig.5 SEM images of(a,b)Ni-BDCDMF,(c,d)Ni-BDCDMF/EtOH,and(e,f)Ni-BDCEtOH

    Fig.6a shows the nitrogen adsorption-desorption isotherms of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHmeasured at 77 K.The nitrogen adsorption-desorption isotherm of Ni-BDC is type Ⅱ(H2)hysteresis loop,which is the principal characteristic of solids with micropores.TheSBETvalues of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHwere determined to be 682,565,and 750 m2·g-1,respectively.From the pore size distribution curves in Fig.6b,it can be seen that the pore sizes of the samples were in a range of 1.6-2.5 nm,which shows that it has a uniform mesoporosity providing a channel for ion transmission.

    Fig.6 (a)Nitrogen adsorption-desorption isotherms and(b)pore size distribution curves of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOH

    2.3 Supercapacitor performance of Ni-BTC

    To investigate the electrochemical performance for capacitive energy storage,as-prepared Ni-BTC samples were tested in a three-electrode configuration in a 3 mol·L-1KOH aqueous electrolyte.The typical cyclic voltammetry(CV)curves of Ni-BTCDMFare shown in Fig.7a.The CV behavior of Ni-BTC is similar to that of the reported Ni-based MOF material tested in alkaline electrolytes.The charge-storage mechanism may be probably explained by the following redox reactions[35-36]:

    Fig.7 (a)CV curves of the Ni-BTCDMFelectrode at different scan rates;(b)CV curves of as-prepared Ni-BTC electrodes at a scan rate of 5 mV·s-1;(c)GCD curves of the Ni-BTCDMFelectrode at different current densities;(d)Specific capacitances of as-prepared Ni-BTC electrodes at different current densities

    The CV curves of the Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOHelectrodes at a constant scan rate of 5 mV·s-1are shown in Fig.7b.All the electrodes exhibited a nonstandard rectangular shape with obvious redox peaks,suggesting typical pseudocapacitance performance.Fig.7c shows the galvanostatic charge-discharge(GCD)curves of Ni-BTCDMFcomposites at current densities of 1,2,4,6,8,and 10 A·g-1.The specific capacitances were 661.0,593.7,490.1,427.0,381.8,and 347.4 F·g-1,respectively.The specific capacitances calculated from the discharge curves are plotted in Fig.7d.The Ni-BTCDMFelectrode still retained a high specific capacitance of 347.4 F·g-1at 10 A·g-1,which was about 52.5%of the value of capacitance at 1 A·g-1,indicating the excellent rate capability.

    EIS was used to investigate the different materials' electroconductivity.The circle radius corresponding to Ni-BTCEtOHand Ni-BTCDMFin the high-frequency region was smaller,which means that they have a smaller charge transfer impedance,as illustrated in Fig.8a(the inset is an enlarged version of the highfrequency region).Table S1(Supporting information)lists the fitting values of equivalent circuit elements.It is noteworthy that Ni-BTCDMFrevealed a lower internal resistance than that of Ni-BTCDMF/EtOH(0.50 Ω)and Ni-BTCEtOH(0.47 Ω)obtained from the intercept of the Nyquist plots with the real axis,manifesting optimized electrode structures and interfacial connections within Ni-BTCEtOHelectrode.The corresponding equivalent electrical circuit for the Ni-BTCDMFelectrode is displayed in Fig.8b.In the equivalent circuit,Rsrepresents the internal resistance(ca.0.45 Ω),including the solution resistance,the active material(Ni-BDCDMF)intrinsic resistance,and the contact resistance between the active material and the current collector[37];Rctis the charge transfer resistance(ca.0.87 Ω),CPE is the constant phase element andWois the Warburg resistance[38].

    Fig.8 (a)Nyquist plots of as-prepared Ni-BTC electrodes in 3 mol·L-1KOH electrolyte;(b)Equivalent electrical circuit for the Ni-BTCDMFelectrode

    The cycling stability of the Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOHelectrodes was tested by GCD at 4 A·g-1,as shown in Fig.9.When the solvent was pure DMF,the specific capacitance of the Ni-BTCDMFelectrode decreased from the initial 386.0 to 273.7 F·g-1after 2 000 cycles,and the capacitance retention rate was 70.9%.The specific capacitance of the Ni-BTCDMF/EtOHelectrode decreased from the initial 371.9 to 161.4 F·g-1,and the capacitance retention rate was only 43.4%.This may be related to the changes in the microstructure of the nickel-based MOF during charging and discharging,such as structural collapse.When the solvent was pure EtOH,the specific capacitance of the Ni-BTCEtOHelectrode decreased from the initial 301.8 to 280.7 F·g-1,and the capacitance retention rate was 93.0%.Although the specific capacitance of the Ni-BTCEtOHelectrode was smaller than that of the Ni-BTCDMFelectrode,its cycle performance was better than that of the Ni-BTCDMFelectrode.

    Fig.9 Cycling stability of as-prepared Ni-BTC electrodes at 4 A·g-1

    2.4 Supercapacitor performance of Ni-BDC

    To study the electrochemical property,the CV behaviors of as-prepared MOF electrodes were investigated at different scan rates(5,10,20,50,100 mV·s-1)in 3 mol·L-1KOH electrolytes using a three-electrodes test system.Fig.10a presents the CV curves of the Ni-BDCDMFelectrode at different scan rates in a potential range of 0-0.65 V(vs SCE).The CV behavior of Ni-BDC is similar to that of the reported Ni-based MOF material tested in alkaline electrolytes.This process might be represented by the following electrontransfer equation[33,39]:

    Fig.10 (a)CV curves of the Ni-BDCDMFelectrode at different scan rates;(b)CV curves of as-prepared Ni-BDC electrodes at a scan rate of 5 mV·s-1;(c)GCD curves of the Ni-BDCDMFelectrode at different current densities;(d)Specific capacitances of as-prepared Ni-BDC electrodes at different current densities

    The CV curves of the Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHelectrodes at a constant scan rate of 5 mV·s-1are exhibited in Fig.10b.A couple of distinct redox peaks were observable,indicating that the typical pseudo-capacitive behavior caused by surface Faradic redox reactions corresponds to the reversible intercalation and deintercalation of OH-ions.Fig.10c shows the GCD curves of the Ni-BDCDMFelectrode within a potential window of 0-0.46 V(vs SCE)at different current densities.The corresponding specific capacitance of the Ni-BDCDMFelectrode at 1 A·g-1was calculated to be 1 044.9 F·g-1.Fig.10d shows the specific capacitance as a function of discharge current density for the Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHelectrodes.The Ni-BDCDMFelectrode still retained a high specific capacitance of 509.4 F·g-1at 10 A·g-1,which was about 48.8%of the capacitance at 1 A·g-1,indicating the excellent rate capability.

    The electroconductivity of the Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHelectrodes was also investigated by EIS.As shown in Fig.11(the bottom inset shows an enlarged version of the high-frequency region),the radius of the circle corresponding to Ni-BDCDMFin the high-frequency region was smaller,which means that it has a smaller charge transfer impedance.The corresponding equivalent electrical circuit is displayed in the top inset of Fig.11.In the equivalent circuit for Ni-BDCDMF,Rswasca.0.36 Ω andRctwasca.0.71 Ω(Table S2).At the same time,it also shows that the Ni-BDCDMFelectrode is a host material for high electrolyte access,penetration,and ion diffusion,which is conducive to the rapid storage and release of energy and has good electrical conductivity.

    The cycling stability of the Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHelectrodes was tested by GCD at 4 A·g-1,as shown in Fig.12.The specific capacitance of the Ni-BDCDMFelectrode decreased from the initial 713.0 to 617.4 F·g-1after 2 000 cycles,and the capacitance retention rate was 85.9%.The specific capacitance of the Ni-BDCDMF/EtOHelectrode decreased from the initial 765.2 to 69.6 F·g-1,and the capacitance retention rate was only 9.1%.It shows that the stability of Ni-BDCDMF/EtOHwas very poor,which may be due to the collapse of the structure of Ni-based MOF during charging and discharging.In addition,the FT-IR spectrum after cycling is shown in Fig.S1,which further proves that poor cycling is caused by the structural collapse.The specific capacitance of the Ni-BDCEtOHelectrode decreased from the initial 434.8 to 356.5 F·g-1,and the capacitance retention rate was 82.0%.

    Fig.12 Cycling stability of as-prepared Ni-BDC electrodes at 4 A·g-1

    From the above results and discussion,the solvent has a significant effect on the electrochemical properties of the materials.The possible formation mechanism of Ni-BTCDMFor Ni-BDCDMFcan be narrated in terms as follows:DMF and EtOH have different viscosities,saturated vapor pressures,and polarities,which can affect the diffusion rate,supersaturation,nucleation,and crystal growth to some extent[40].When using DMF alone as the solvent,the deprotonation of H3BTC was fast and produced a crystal aggregate.H2BDC,which was stripped of protons,coordinated with free metal cations(Ni2+).The lamellar MOF structure was formed by confining the growth of the lamellar material to a 2D space because the proton and the metal cation leave simultaneously in the ion domain[34].Ni-BDCDMFis made up of many-layered micro-sheets,which means that there are thousands of nanochannels in the hierarchical architecture.What is more,thousands of nanochannels might largely improve the diffusion of ions and electrolytes,and the microbundle might offer a stable skeleton for ion intercalation-extraction.In short,the solvent effect leads to different morphologies of the products,which in turn affects the stability of their electrical storage properties.Moreover,the comparison with the reports in the literature is shown in Table 1.

    Table 1 Specific capacitances of some MOF-based materials

    3 Conclusions

    In conclusion,three kinds of Ni-BTC materials with different shapes and stable configurations were synthesized from the 1,3,5-benzenetricarboxylate ligand,namely Ni-BTC blocks,nanospheres,and double-pyramid structures.Furthermore,three kinds of Ni-BDC materials with different shapes and stable configurations were synthesized from the 1,4-benzoate ligand,namely Ni-BDC nanosheets,nanoflowers,and block structures.This solvent-adjustment method by changing the solvent is simple and controllable.The experimental results reveal that controlling the morphology of MOFs by the solvent is a convenient and feasible method to improve the electrochemical performance of supercapacitors.

    Supporting information is available at http://www.wjhxxb.cn

    2018国产大陆天天弄谢| 极品人妻少妇av视频| 国产成人一区二区三区免费视频网站 | 制服人妻中文乱码| 18禁黄网站禁片午夜丰满| 丝袜美腿诱惑在线| 国产精品九九99| 考比视频在线观看| 少妇粗大呻吟视频| 性色av一级| 国产成人免费无遮挡视频| 中文字幕高清在线视频| 国产黄色视频一区二区在线观看| 日韩 亚洲 欧美在线| 国产精品国产三级国产专区5o| 一二三四在线观看免费中文在| 秋霞在线观看毛片| videos熟女内射| 国产伦理片在线播放av一区| 国产精品二区激情视频| 高清黄色对白视频在线免费看| 美女大奶头黄色视频| 99香蕉大伊视频| 自拍欧美九色日韩亚洲蝌蚪91| 波多野结衣一区麻豆| e午夜精品久久久久久久| 精品欧美一区二区三区在线| 99热网站在线观看| 久久精品久久久久久噜噜老黄| 国产一区二区激情短视频 | 少妇 在线观看| 老司机深夜福利视频在线观看 | 99九九在线精品视频| 一级黄色大片毛片| 国产精品人妻久久久影院| 18在线观看网站| 日韩一卡2卡3卡4卡2021年| 欧美精品av麻豆av| 91精品国产国语对白视频| 中国国产av一级| 黄色毛片三级朝国网站| 午夜两性在线视频| 中文字幕亚洲精品专区| 国产又色又爽无遮挡免| 你懂的网址亚洲精品在线观看| 人成视频在线观看免费观看| 国产精品一国产av| av一本久久久久| 啦啦啦中文免费视频观看日本| 高清欧美精品videossex| 免费看av在线观看网站| 精品国产一区二区三区四区第35| 亚洲av美国av| 午夜福利免费观看在线| 日本色播在线视频| 激情五月婷婷亚洲| 高清欧美精品videossex| 晚上一个人看的免费电影| 考比视频在线观看| 亚洲七黄色美女视频| 国产国语露脸激情在线看| 久久久久精品国产欧美久久久 | 久9热在线精品视频| 性少妇av在线| 久久99热这里只频精品6学生| 天天躁日日躁夜夜躁夜夜| 丰满饥渴人妻一区二区三| 少妇精品久久久久久久| 99re6热这里在线精品视频| 99国产精品一区二区蜜桃av | 香蕉国产在线看| 可以免费在线观看a视频的电影网站| 久久ye,这里只有精品| 不卡av一区二区三区| 天天躁夜夜躁狠狠躁躁| 91精品三级在线观看| a级毛片在线看网站| 国产97色在线日韩免费| av国产久精品久网站免费入址| av国产久精品久网站免费入址| 亚洲午夜精品一区,二区,三区| 老司机靠b影院| 免费看不卡的av| 狠狠婷婷综合久久久久久88av| 久久性视频一级片| 精品一区在线观看国产| a 毛片基地| 亚洲少妇的诱惑av| 最近中文字幕2019免费版| 男人操女人黄网站| 久久国产精品人妻蜜桃| 少妇 在线观看| 久久狼人影院| 午夜福利乱码中文字幕| 高清黄色对白视频在线免费看| 久久精品久久久久久噜噜老黄| 久久久国产一区二区| 国产人伦9x9x在线观看| 777久久人妻少妇嫩草av网站| av不卡在线播放| 欧美亚洲日本最大视频资源| 亚洲成人国产一区在线观看 | 五月天丁香电影| 纯流量卡能插随身wifi吗| 91麻豆精品激情在线观看国产 | 91国产中文字幕| 高清av免费在线| 最近手机中文字幕大全| 精品亚洲成a人片在线观看| 国产精品.久久久| 女警被强在线播放| 好男人视频免费观看在线| 免费在线观看影片大全网站 | cao死你这个sao货| 99热网站在线观看| 在线 av 中文字幕| 国产精品久久久av美女十八| 亚洲欧美一区二区三区黑人| 免费不卡黄色视频| 午夜福利视频精品| 亚洲精品国产av蜜桃| 夫妻性生交免费视频一级片| 色婷婷av一区二区三区视频| 亚洲中文日韩欧美视频| 中文字幕制服av| 亚洲成人国产一区在线观看 | 亚洲中文日韩欧美视频| 亚洲av在线观看美女高潮| 黄色一级大片看看| 视频区图区小说| 精品少妇久久久久久888优播| 欧美日韩av久久| 国产一区有黄有色的免费视频| 岛国毛片在线播放| 别揉我奶头~嗯~啊~动态视频 | e午夜精品久久久久久久| 亚洲中文日韩欧美视频| 极品少妇高潮喷水抽搐| 欧美日韩亚洲综合一区二区三区_| 日本av免费视频播放| 久久ye,这里只有精品| 久热爱精品视频在线9| 日韩中文字幕视频在线看片| 国产精品熟女久久久久浪| 91字幕亚洲| 免费在线观看完整版高清| 亚洲精品日韩在线中文字幕| 男女高潮啪啪啪动态图| 一边摸一边做爽爽视频免费| 欧美老熟妇乱子伦牲交| 亚洲欧美一区二区三区黑人| 亚洲精品国产一区二区精华液| 久久国产亚洲av麻豆专区| 国产成人欧美| 国产精品九九99| 久久精品久久久久久噜噜老黄| 欧美大码av| 一级a爱视频在线免费观看| 久久精品aⅴ一区二区三区四区| 久久人妻熟女aⅴ| 极品人妻少妇av视频| 国产免费视频播放在线视频| 成年av动漫网址| 19禁男女啪啪无遮挡网站| 两性夫妻黄色片| 日本av手机在线免费观看| 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 婷婷色综合大香蕉| 一区二区三区四区激情视频| 晚上一个人看的免费电影| 九草在线视频观看| 欧美日韩福利视频一区二区| 真人做人爱边吃奶动态| 97在线人人人人妻| 久久鲁丝午夜福利片| 欧美黄色淫秽网站| 久久久久网色| 考比视频在线观看| 天天躁夜夜躁狠狠久久av| 欧美精品一区二区大全| 大香蕉久久网| 欧美av亚洲av综合av国产av| 狠狠精品人妻久久久久久综合| 日韩 亚洲 欧美在线| 99热全是精品| 日韩 欧美 亚洲 中文字幕| 久久中文字幕一级| 免费看十八禁软件| 操美女的视频在线观看| 国产人伦9x9x在线观看| 亚洲av电影在线观看一区二区三区| 日韩大片免费观看网站| 亚洲国产av影院在线观看| 美女福利国产在线| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜制服| 一本色道久久久久久精品综合| 成人18禁高潮啪啪吃奶动态图| 国产片特级美女逼逼视频| 日韩欧美一区视频在线观看| 欧美成狂野欧美在线观看| 国产成人av激情在线播放| 少妇粗大呻吟视频| 久久国产精品大桥未久av| 狂野欧美激情性xxxx| 亚洲中文日韩欧美视频| 另类亚洲欧美激情| 成人黄色视频免费在线看| 女人爽到高潮嗷嗷叫在线视频| 国产野战对白在线观看| 精品免费久久久久久久清纯 | 欧美精品啪啪一区二区三区 | 侵犯人妻中文字幕一二三四区| 久久久国产欧美日韩av| 最新的欧美精品一区二区| 久久热在线av| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成77777在线视频| 免费观看av网站的网址| 精品少妇黑人巨大在线播放| 国产精品麻豆人妻色哟哟久久| 久久精品国产a三级三级三级| 国产在线观看jvid| 国产伦理片在线播放av一区| 国产成人精品久久久久久| 少妇人妻 视频| 久久人人爽av亚洲精品天堂| 欧美国产精品va在线观看不卡| 一边摸一边做爽爽视频免费| 中文字幕亚洲精品专区| 国产精品国产av在线观看| 国产成人精品久久二区二区91| 日韩伦理黄色片| 午夜久久久在线观看| 亚洲成人免费电影在线观看 | 国产精品 欧美亚洲| 日韩 亚洲 欧美在线| 中文字幕人妻丝袜一区二区| 亚洲av男天堂| 亚洲专区国产一区二区| 九草在线视频观看| 首页视频小说图片口味搜索 | 天堂中文最新版在线下载| 高清av免费在线| 日韩中文字幕欧美一区二区 | 精品欧美一区二区三区在线| 午夜两性在线视频| 人体艺术视频欧美日本| 搡老乐熟女国产| 中文字幕制服av| 热99久久久久精品小说推荐| 成人国产一区最新在线观看 | 日本av手机在线免费观看| 两个人看的免费小视频| 男男h啪啪无遮挡| 国产片特级美女逼逼视频| 亚洲精品国产区一区二| 免费少妇av软件| 天天添夜夜摸| 啦啦啦啦在线视频资源| 久久国产精品男人的天堂亚洲| 十八禁网站网址无遮挡| 一级,二级,三级黄色视频| 又大又黄又爽视频免费| 黄色a级毛片大全视频| 国产亚洲av高清不卡| 久久精品熟女亚洲av麻豆精品| 日韩熟女老妇一区二区性免费视频| 伊人亚洲综合成人网| 国产男女内射视频| 王馨瑶露胸无遮挡在线观看| 国产在线一区二区三区精| 国产精品久久久久久人妻精品电影 | 欧美精品亚洲一区二区| 国产精品久久久人人做人人爽| 午夜福利在线免费观看网站| 久久久久视频综合| 我要看黄色一级片免费的| 男女无遮挡免费网站观看| 亚洲熟女精品中文字幕| 中文字幕精品免费在线观看视频| 亚洲人成网站在线观看播放| 日本wwww免费看| 丝袜脚勾引网站| 国产欧美日韩精品亚洲av| 亚洲国产中文字幕在线视频| 日本欧美视频一区| 精品久久久久久电影网| 自线自在国产av| 久久性视频一级片| 真人做人爱边吃奶动态| 国产xxxxx性猛交| 在线看a的网站| 午夜老司机福利片| 久久99热这里只频精品6学生| 国产99久久九九免费精品| 一二三四在线观看免费中文在| 日本wwww免费看| 尾随美女入室| 欧美日韩一级在线毛片| 一本大道久久a久久精品| 亚洲少妇的诱惑av| 国产精品久久久久久人妻精品电影 | 黄色怎么调成土黄色| 国产成人欧美| 大陆偷拍与自拍| 色综合欧美亚洲国产小说| 秋霞在线观看毛片| 看免费成人av毛片| 久久久精品国产亚洲av高清涩受| www.熟女人妻精品国产| 激情视频va一区二区三区| 18禁观看日本| 青春草视频在线免费观看| 亚洲人成77777在线视频| 日韩伦理黄色片| 亚洲色图综合在线观看| 激情视频va一区二区三区| 久久av网站| 国产极品粉嫩免费观看在线| 亚洲精品av麻豆狂野| 悠悠久久av| 亚洲久久久国产精品| 一区二区三区精品91| 成人影院久久| 亚洲一区中文字幕在线| 性色av一级| 国产成人一区二区在线| 在线观看免费日韩欧美大片| 亚洲欧洲精品一区二区精品久久久| 不卡av一区二区三区| 精品人妻1区二区| 国产精品一区二区在线观看99| 亚洲精品久久久久久婷婷小说| 高清av免费在线| 国产片特级美女逼逼视频| 久久精品国产a三级三级三级| 男人添女人高潮全过程视频| 午夜福利在线免费观看网站| 国产极品粉嫩免费观看在线| 真人做人爱边吃奶动态| 老熟女久久久| 亚洲成色77777| 菩萨蛮人人尽说江南好唐韦庄| 久久影院123| 妹子高潮喷水视频| www.999成人在线观看| 成人黄色视频免费在线看| 校园人妻丝袜中文字幕| 亚洲欧美中文字幕日韩二区| 久久久久久久国产电影| 性色av乱码一区二区三区2| 一级毛片女人18水好多 | 久久中文字幕一级| 亚洲 欧美一区二区三区| 精品一区二区三卡| 亚洲五月婷婷丁香| 国产精品免费视频内射| 精品免费久久久久久久清纯 | 国产成人a∨麻豆精品| 欧美变态另类bdsm刘玥| 国产成人欧美在线观看 | 免费在线观看影片大全网站 | 亚洲欧美成人综合另类久久久| 日本欧美国产在线视频| 成人亚洲精品一区在线观看| 青春草亚洲视频在线观看| 午夜福利视频在线观看免费| 后天国语完整版免费观看| 一边摸一边抽搐一进一出视频| 亚洲,欧美,日韩| 国产精品人妻久久久影院| 亚洲精品第二区| 99国产综合亚洲精品| 丰满迷人的少妇在线观看| 精品人妻1区二区| 欧美精品一区二区免费开放| 国产精品久久久久久精品电影小说| 国产又色又爽无遮挡免| 欧美日韩成人在线一区二区| 在线 av 中文字幕| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 亚洲av在线观看美女高潮| 一区二区三区精品91| 国产免费视频播放在线视频| 国产又色又爽无遮挡免| 亚洲国产中文字幕在线视频| 丁香六月天网| 最黄视频免费看| 9191精品国产免费久久| 国产三级黄色录像| 久久热在线av| 久久精品aⅴ一区二区三区四区| 黄色片一级片一级黄色片| 久久久久网色| 国产有黄有色有爽视频| 黄色毛片三级朝国网站| 十八禁网站网址无遮挡| 丰满迷人的少妇在线观看| 亚洲精品久久成人aⅴ小说| 首页视频小说图片口味搜索 | 久久精品亚洲av国产电影网| 9热在线视频观看99| 美女脱内裤让男人舔精品视频| 国产亚洲午夜精品一区二区久久| 国产成人欧美| 国产色视频综合| 亚洲国产精品成人久久小说| 欧美激情高清一区二区三区| 9色porny在线观看| 欧美+亚洲+日韩+国产| 日韩av在线免费看完整版不卡| 大片免费播放器 马上看| 成年人免费黄色播放视频| 亚洲成国产人片在线观看| 99久久人妻综合| 男人操女人黄网站| 精品国产超薄肉色丝袜足j| 国产免费福利视频在线观看| 欧美国产精品va在线观看不卡| 黄色一级大片看看| 国产成人欧美在线观看 | 蜜桃在线观看..| 精品久久蜜臀av无| av在线app专区| 欧美日韩福利视频一区二区| 美女视频免费永久观看网站| 国产色视频综合| 一边摸一边做爽爽视频免费| 亚洲精品自拍成人| 一二三四在线观看免费中文在| 99国产综合亚洲精品| 中文字幕av电影在线播放| 免费在线观看完整版高清| 天天躁夜夜躁狠狠久久av| 中文字幕另类日韩欧美亚洲嫩草| 美女扒开内裤让男人捅视频| 在线亚洲精品国产二区图片欧美| 1024视频免费在线观看| www日本在线高清视频| 亚洲九九香蕉| 男男h啪啪无遮挡| 国产在线免费精品| 啦啦啦视频在线资源免费观看| 在线 av 中文字幕| 亚洲成人国产一区在线观看 | 丁香六月欧美| 赤兔流量卡办理| 日韩中文字幕视频在线看片| 天天躁夜夜躁狠狠躁躁| 国产黄频视频在线观看| 欧美日韩精品网址| 免费女性裸体啪啪无遮挡网站| 国产成人啪精品午夜网站| 亚洲国产毛片av蜜桃av| 日韩制服骚丝袜av| 男人添女人高潮全过程视频| 亚洲情色 制服丝袜| 女性生殖器流出的白浆| av不卡在线播放| 亚洲精品日韩在线中文字幕| 999久久久国产精品视频| 日韩大片免费观看网站| 免费在线观看日本一区| 精品国产一区二区三区久久久樱花| 免费在线观看视频国产中文字幕亚洲 | 中文字幕人妻丝袜一区二区| 国产成人a∨麻豆精品| 丝袜美腿诱惑在线| 又紧又爽又黄一区二区| 女警被强在线播放| 久久狼人影院| 久久久久久久精品精品| 丝袜美腿诱惑在线| 亚洲欧美日韩另类电影网站| 欧美日韩视频精品一区| 十八禁高潮呻吟视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美黄色片欧美黄色片| 99国产精品99久久久久| 欧美在线一区亚洲| 丝袜在线中文字幕| 国产一区亚洲一区在线观看| 黄片小视频在线播放| 亚洲中文日韩欧美视频| 国产精品久久久久久人妻精品电影 | 日韩av免费高清视频| 亚洲国产精品999| 色播在线永久视频| 国产精品久久久久久人妻精品电影 | 免费av中文字幕在线| 精品少妇黑人巨大在线播放| 一本久久精品| 婷婷色麻豆天堂久久| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 免费看av在线观看网站| 99精品久久久久人妻精品| 天天躁夜夜躁狠狠躁躁| 国产成人av教育| 天天躁夜夜躁狠狠躁躁| 国产熟女午夜一区二区三区| 久久人人爽人人片av| 欧美精品一区二区大全| 男人爽女人下面视频在线观看| 岛国毛片在线播放| 午夜免费鲁丝| 热99久久久久精品小说推荐| √禁漫天堂资源中文www| 青春草视频在线免费观看| 91麻豆av在线| 欧美在线黄色| 久久久国产一区二区| 男人添女人高潮全过程视频| 久久久久国产一级毛片高清牌| 好男人电影高清在线观看| 国产国语露脸激情在线看| 好男人电影高清在线观看| 国产精品亚洲av一区麻豆| 尾随美女入室| 我要看黄色一级片免费的| 国产精品成人在线| 一个人免费看片子| 我的亚洲天堂| 亚洲av日韩在线播放| 啦啦啦啦在线视频资源| 国产一区亚洲一区在线观看| 欧美人与善性xxx| 夜夜骑夜夜射夜夜干| 久久九九热精品免费| 一个人免费看片子| 午夜免费鲁丝| 久久99一区二区三区| 欧美亚洲日本最大视频资源| 啦啦啦在线观看免费高清www| 国产一卡二卡三卡精品| 亚洲欧美一区二区三区久久| 亚洲一区二区三区欧美精品| 韩国精品一区二区三区| 国产高清videossex| 午夜福利在线免费观看网站| 国产视频一区二区在线看| av片东京热男人的天堂| 蜜桃在线观看..| 女人爽到高潮嗷嗷叫在线视频| 久久久亚洲精品成人影院| 中文字幕制服av| 国产精品免费大片| 国产在线免费精品| 久热爱精品视频在线9| 国产一区二区在线观看av| 天天影视国产精品| 亚洲人成电影免费在线| 精品一区在线观看国产| 国产不卡av网站在线观看| 伦理电影免费视频| 亚洲成人国产一区在线观看 | 另类精品久久| 香蕉丝袜av| 亚洲国产最新在线播放| 成人亚洲精品一区在线观看| 亚洲精品成人av观看孕妇| 老司机午夜十八禁免费视频| 欧美激情 高清一区二区三区| 99久久综合免费| 中国美女看黄片| 免费在线观看影片大全网站 | 久久久久久久国产电影| 欧美国产精品一级二级三级| 亚洲人成77777在线视频| 亚洲中文字幕日韩| 18禁裸乳无遮挡动漫免费视频| 国产又色又爽无遮挡免| 国产在视频线精品| 青草久久国产| 免费少妇av软件| 国产免费视频播放在线视频| 永久免费av网站大全| 亚洲 国产 在线| 激情五月婷婷亚洲| 你懂的网址亚洲精品在线观看| 亚洲五月色婷婷综合| 亚洲成国产人片在线观看| 久久鲁丝午夜福利片| 亚洲欧美一区二区三区国产| 两人在一起打扑克的视频| 深夜精品福利| 中文乱码字字幕精品一区二区三区| 久9热在线精品视频| 欧美变态另类bdsm刘玥| 日韩免费高清中文字幕av| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产欧美一区二区综合| av在线app专区| 精品少妇久久久久久888优播| 大话2 男鬼变身卡| 国产爽快片一区二区三区| 在线观看国产h片| 男女免费视频国产| 国产深夜福利视频在线观看| 黑人欧美特级aaaaaa片| 久久99一区二区三区| 亚洲av在线观看美女高潮| 我的亚洲天堂| 色精品久久人妻99蜜桃| 日本91视频免费播放| 丁香六月欧美| 只有这里有精品99| 97在线人人人人妻| √禁漫天堂资源中文www| 国产欧美日韩精品亚洲av| 国语对白做爰xxxⅹ性视频网站| 狠狠精品人妻久久久久久综合|