• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and investigation of ferroelectric memristors with various synaptic plasticities

    2022-08-01 05:59:32QiQin秦琦MiaochengZhang張繆城SuhaoYao姚蘇昊XingyuChen陳星宇AozeHan韓翱澤ZiyangChen陳子洋ChenxiMa馬晨曦MinWang王敏XintongChen陳昕彤YuWang王宇QiangqiangZhang張強強XiaoyanLiu劉曉燕ErtaoHu胡二濤LeiWang王磊andYiTong童祎
    Chinese Physics B 2022年7期
    關(guān)鍵詞:王宇

    Qi Qin(秦琦), Miaocheng Zhang(張繆城),?, Suhao Yao(姚蘇昊), Xingyu Chen(陳星宇), Aoze Han(韓翱澤),Ziyang Chen(陳子洋), Chenxi Ma(馬晨曦), Min Wang(王敏), Xintong Chen(陳昕彤), Yu Wang(王宇),Qiangqiang Zhang(張強強), Xiaoyan Liu(劉曉燕), Ertao Hu(胡二濤), Lei Wang(王磊),?, and Yi Tong(童祎),§

    1College of Electronic and Optical Engineering and College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: brain-inspired computing,ferroelectric memristors,mechanisms,resistive-switching

    1. Introduction

    The development of artificial intelligence is currently hindered by the bottlenecks of traditional von Neumann computing systems. The human brain, which can perform parallel operation and realize computing-in-memory, provides a solution to break the von Neumann bottlenecks.[1–3]Memristive devices feature continuously tunable conductive states, specific structures similar to the synapses in human brain,as well as excellent performance in emulating various synaptic plasticities. As a result, they are being explored to improve the power consumption, integration and efficiency of neuromorphic computing systems.[4–10]

    Recently,ferroelectric memristors have attracted huge attention for realizing non-volatile storage due to their great endurance, stable conductive states, fast switching speed and enormous application potential in microelectronics.[11–18]The polarization of ferroelectric tunnel junctions(FTJs)promotes charge accumulation and FTJs can be modified by variation of the interface barrier,[16]which will enhance the performance of memristive devices.Nevertheless,applications of ferroelectric memristive devices in artificial synapses have been rarely explored. In addition,the specific mechanisms of memristors with FTJs have not been fully clarified.[17,18]Therefore, the emulation of various synaptic functions and conductive mechanisms of ferroelectric memristors need to be investigated in detail.

    Herein, Cu/PbZr0.52Ti0.48O3(PZT)/Pt memristors have been fabricated by the traditional process for fabricating semiconductor devices. Physical characterizations of the PZT devices have been done using atomic force microscopy(AFM),scanning electron microscopy (SEM) and piezo-response force microscopy(PFM).During the electrical measurements,the transition from unipolar threshold-switching behavior to bipolar resistive-switching behavior (Roff/Ron104, switching voltage 3.5 V) can be observed by the modulation of the external signals. The switching mechanisms of the PZT devices based on interface barrier and conductive filament models have been studied in detail.Moreover,upon the stimulation of continuous pulses of voltage, some biological phenomena have been mimicked.[19–25]Therefore, this work may create more opportunities for the application of ferroelectric memristors in neuromorphic computing systems.

    2. Devices and experiments

    The structure of the PZT devices is schematically shown in Fig. 1(a). First, a p-type Si wafer was cleaned and used as the substrate. Next, 100 nm Pt was deposited onto the substrate as the bottom electrode by physical vapor deposition(PVD).Finally,40 nm PZT and 80 nm Cu with a shadow mask,as the ferroelectric film and top electrode,respectively,were successively grown on the Pt layer in the same way. The surface roughness of obtained PZT layer was investigated by AFM(Dimension Icon). The sectional structure of Cu/PZT/Pt memristors was observed by SEM (Hitachi S-4800). Moreover,the ferroelectric properties of PZT film were analyzed by PFM.To investigate the electrical properties of the PZT ferroelectric memristors, a bidirectional scan voltage was applied to the devices(Keithley 4200A SCS Semiconductor Analyzer and Cascade Micromesh M150).

    Fig.1. Physical characterizations of the PZT devices. (a)The structural representation of PZT devices. The SEM(b)and AFM picture(c)of sectional structure. (d)The phase hysteresis curve of the PZT film measured by PFM.

    3. Results and discussion

    3.1. The physical characterizations

    In order to analyze the stability and large-area uniformity of the PZT memristors, the sectional structure was observed by SEM. As shown in Fig. 1(b), the interfaces between each layer were clearly distinguished by white lines (the scale bar is 300 nm). In addition,AFM was performed on the PZT film.The AFM images of the PZT film with a scanning area of 3.6 μm×3.1 μm and a height range of-2.8 nm to 2.6 nm are shown in Fig. 1(c). The root-mean-square (RMS) roughness of the film is 0.77 nm. It can be observed from the right panel that there are no obvious large dark or light patches.Therefore,the results indicate a smooth surface of the PZT film in a direction perpendicular to the substrate. In addition,the images of the PFM phase measured by the voltage sweep (-10 V to+10 V)are presented in Fig.1(d). The 180°phase difference suggests that the PZT ferroelectric film exhibits two opposite polarization states during the voltage sweep.

    3.2. The switching characteristics

    In this work, successive direct current (DC) voltage sweeps with increasing current compliances(from 5×10-5A to 5×10-4A) were applied to the devices. Interestingly, by precise regulation of the current compliances and the ranges of the voltage sweep, the devices can realize the transition of switching characteristics from threshold switching (TS) to resistance switching (RS). The results of the first four voltage sweeps are presented in Fig.2(a). It can be seen that the devices exhibit TS characteristics at comparatively small current compliances (5×10-5A and 1×10-4A). Meanwhile,the devices exhibit RS characteristics at a comparatively large current compliance(5×10-4A),which can be inferred from Fig.2(b).The transition of switching characteristics can be explained using the conductive filaments model. Larger ranges of voltage sweep and current compliances will result in bigger conductive filaments. The realization of tuning the devices from volatile storage to nonvolatile storage may offer more possibilities for applications.

    The typical current–voltage curve of PZT devices is presented in Fig.2(c). During the positive voltage sweep,a rapid increase in current occurred at approximately 3.5 V, corresponding to the ‘SET’ process. During the negative voltage sweeps,the‘RESET’process can be also observed at-3.5 V.The data from the retention test at high- and low-resistance states (HRS and LRS) are displayed in Fig. 2(d), read at 0.02 V.It can be observed that the switching ratioRoff/Ronis approximately 104. There is no noticeable change in the two resistance states in 4000 s. In order to evaluate the repeatability of the Cu/PZT/Pt devices,consecutive DC voltage sweeps were applied to the devices. The cumulative distribution ofRonandRofffor 50 cycles is shown in Fig. 2(e). The HRS and LRS can be easily distinguished from the window and the conformity of each state is at an acceptable level. As a result,the devices exhibit repeatable bipolar switching characteristics with a high switching ratio of 104,a low operating voltage of±3.5 V and a long retention time of over 4000 s.

    3.3. The simulation of synaptic behaviors

    The bipolar analogous characteristics of the PZT devices were further investigated. As shown in Figs. 3(a) and 3(b),the response current increases regularly under positive voltage scans. Similarly,the response current decreases continuously under successive negative voltage scans.These results confirm that the devices exhibit excellent analogous switching characteristics under both positive and negative voltage sweeps.[27]This will make it possible to mimic synaptic behaviors using these ferroelectric memristors.

    Fig. 2. Electrical characteristics of PZT memristors. The transition from volatile storage (a) to nonvolatile storage (b) by changing the ranges of voltage sweep and current compliances. The ranges of voltage sweep and current compliances have been indicated. (c) The bipolar resistiveswitching characteristics. (d)The memory retention test,read at 0.02 V.(e)The cumulative probability of high resistance states and low resistance states(extracted at 0.1 V)of Cu/PZT/Pt memristors.

    A schematic diagram of the functions of neurons in the human brain is displayed in Fig.3(c). A biological synapse is the key part where two neurons contact each other by transferring neurotransmitters. Under external stimulation, action potentials from a neuron can be sent to the next neuron(s)via synapses and produce an excitatory post-synaptic current(EPSC).[26,28]As shown in Fig. 3(c), a single voltage pulse(4 V, 200 ms) was imposed on the memristors to mimic this phenomenon. The pulse reached at 450 ms. The post-synaptic current increases rapidly at the same time as the pulse arrives and gradually decays when the pulse is removed, as demonstrated in Fig.3(c). The variation in conductance is attributed to the formation of conductive filaments in the PZT film. The final value of the response current is larger than that of the initial state,indicating that the generated conductive filaments made of oxygen vacancies do not disappear immediately.

    With respect to neuroscience, synaptic plasticity means that the connections between neurons can be adjusted. Pairedpulse facilitation(PPF)and paired-pulse depression(PPD)are typical short-term plasticity processes,which can be simulated using the PZT memristors. The responses of the memristors to two consecutive positive pulses(3 V,20 ms)are presented in the inset of Fig. 3(d). The conductance of devices increases when the second pulse arrives, showing that the devices are more sensitive to the second pulse.[29–31]Moreover, the PPF index is related to the inter-spike interval, which is displayed in Fig.3(d). The functional relationship is as follows:

    Thus, the PPF-related short-term synaptic plasticity has been simulated using PZT ferroelectric memristors.

    In a biological synapse,the variation from potentiation to depression of the synapse can be caused by the application of continuous spikes with the same interval. This synaptic function can be demonstrated using the PZT memristors. In Fig. 3(e), under a train of pulses (3 V, 20 ms) with intervals of 100 ms,the response current rises constantly and reaches a saturation state.The current gradually decays after 130 pulses,revealing that the transition from PPF to PPD behavior has occurred. The PPF behavior was induced by the movement of oxygen vacancies. However, when the current saturates at a high level,the back-diffusion of oxygen vacancies induced by a higher concentration gradient is inevitable. The conductive filaments are not stable,causing the decrease in current.

    The spike timing-dependent plasticity (STDP) rule is a vital supplement to the Hebbian learning rule, revealing that the connection between neurons can be modified according to the sequence of pre- and post-neuron spikes.[32]In order to implement the STDP function,a pulse pair was applied to the PZT devices. The pulse protocol and results are demonstrated in Fig. 3(f). Here, Δtrefers to the time interval between two pulses

    and ΔWis the rate of change of conductance

    whereG1andG2are the conductances measured before and after the application of pulses, respectively. It can be observed that if pre-neuron pulse precedes the post-neuron pulse(Δt >0), the connection between neurons will be enhanced(ΔW >0). When the order of pulses is reversed (Δt <0),the conductance decreases (ΔW <0), corresponding to a depressed connection between neurons. These results have demonstrated that the STDP learning rule has been mimicked using the PZT devices.[33,34]

    Fig. 3. The emulation of synaptic plasticities by PZT memristors. (a) The analogy behaviors under positive voltage sweeps. (b) The analogy behaviors under negative voltage sweeps. (c)EPSC responses under a pulse signal(4 V,200 ms). The inset displays the functions of neurons and synapses of human brain. (d)The fitting map of relationship between PPF index and pulse interval. The PPF index is calculated as(I2-I1)/I1,in which I2 and I1 are the peak values of the second and first post-synaptic current responses. (e)The inflection from PPF behavior to PPD behavior.(f)The presentation of pulse protocol and simulation of STDP function.

    3.4. The conductive mechanisms

    To better understand the switching process of the PZT memristors,first-principles calculations were performed to investigate the conductive mechanisms of the devices. First,the PbTiO3crystal structure with the number 236933 and space groupP4mmwas selected from the Inorganic Crystal Structure Database. After optimization, the parameters of the unit cell werea=4.01 ?A,b=4.01 ?A,c=4.20 ?A and the optimized structure was expanded to 3×3×3. The structure obtained consisted of 27 Ti atoms, 14 of which were replaced with Zr atoms. The one with the lowest energy from the 10 crystal structures was chosen and the cleaved (100) surface was optimized. The dipole moment was eliminated by balancing the interfaces on both sides of the vacuum layer.Based on the final structure,the work function of PZT was calculated as 4.52 eV.Additionally,in order to work out the migration barrier of Cu ions and oxygen vacancies in the PZT layer,the two structures were doped with Cu atoms and oxygen vacancies,respectively.The structures were optimized and five points were analyzed between the initial and final states (Figs. 4(a) and 4(b)). Finally,the migration barrier of oxygen(0.44357 eV)is far less than that of Cu atoms(1.651064 eV),indicating that it is easier for oxygen vacancies to migrate in the PZT layer than Cu ions. As a result,the migration of Cu ions was ignored in the following.

    Fig.4.The internal mechanisms of PZT devices based on first-principles calculation. The Cu-doped (a) and oxygen vacancies-doped (b) PZT structure for calculation of migration barrier. The initial and final state of migration have been indicated. The variation of interface barrier and migration of oxygen vacancies under different voltage bias, including the HRS (c) and LRS(d). The polarization states have been indicated by the blue arrows.

    Schematic diagrams of possible conductive mechanisms of the Cu/PZT/Pt devices are shown in Fig. 4. The external voltages were applied to the Cu layer. Since the work function of Cu(4.65 eV)is larger than that of n-type PZT(4.52 eV),[35]there is a barrier at the interface of the Cu and PZT and positive charges in the depletion layer,indicating the initial state of the FTJ(V=0).[12,13]Several oxygen vacancies already exist in the PZT film. Upon a positive voltage bias(V >0),the Cu layer is oxidized to CuOxand more oxygen vacancies appear in the PZT layer.[36]Meanwhile, the polarization is pointing to the Pt layer and the negatively polarized charges tend to suppress the interface barrier of the PZT layer,[37]leading to the transport of electrons from the PZT layer to the Cu layer.As a result, the connection of conductive filaments made of oxygen vacancies and suppression of the interface barrier both contribute to state switching. On the contrary, under a negative bias, the interface barrier of the PZT layer may be enhanced by the positively polarized charges. The disruption of conductive filaments is induced by the migration of the oxygen vacancies in the opposite direction. Thus,the devices are switched to HRS.[38]Therefore,the excellent performances of the devices can be explained. The migration of oxygen vacancies and the variation of interface barriers both contribute to the state switching of PZT memristors.

    4. Conclusion and perspectives

    In summary, ferroelectric memristors based on PZT tunnel junctions have been manufactured. The hysteresis curves were measured by the Cu/PZT/Pt devices. The transition from threshold-switching behavior to resistive-switching behavior has been observed. Furthermore,the conduction mechanisms based on the interface barrier and oxygen vacancies of the PZT devices have been researched in detail. Additionally, under continuous voltage pulses,the memristors are able to simulate biological synaptic responses, including analogous behaviors and synaptic plasticities. This work may contribute to the developments of future neuromorphic computing.

    Acknowledgments

    Project supported by Jiangsu Province Research Foundation (Grant Nos. BK20191202, RK106STP18003, and SZDG2018007), the Jiangsu Province Research Foundation (Grant Nos. BK20191202, RK106STP18003, and SZDG2018007),the Research Innovation Program for College Graduates of Jiangsu Province (Grant Nos. KYCX200806,KYCX190960, and SJCX190268), and NJUPTSF (Grant Nos.NY217116,NY220078,and NY218107).

    猜你喜歡
    王宇
    Experimental study on the effect of H2O and O2 on the degradation of SF6 by pulsed dielectric barrier discharge
    基于ShuffleNet V2算法的三維視線估計
    A novel low-loss four-bit bandpass filter using RF MEMS switches
    應(yīng)急物流:疫情之下迎來“大考”
    美術(shù)作品
    人生的岔路口,幸好遇到你
    Cavitation erosion in bloods*
    報銷
    故事會(2014年19期)2014-09-25 14:08:10
    A Support Vector Machine Based on Bayesian Criterion
    Proton-exchange Sulfonated Poly(ether ether ketone)/SulfonatedPhenolphthalein Poly(ether sulfone) Blend Membranes in DMFCs*
    日本欧美视频一区| 国产深夜福利视频在线观看| 精品少妇黑人巨大在线播放| 亚洲国产精品成人久久小说| 亚洲欧美日韩另类电影网站 | 美女中出高潮动态图| 99久久精品一区二区三区| 99国产精品免费福利视频| 色网站视频免费| freevideosex欧美| 26uuu在线亚洲综合色| 亚洲精品色激情综合| 97在线视频观看| 一级二级三级毛片免费看| 成人国产av品久久久| 日韩在线高清观看一区二区三区| 另类亚洲欧美激情| 久久亚洲国产成人精品v| 国产一区二区三区综合在线观看 | 26uuu在线亚洲综合色| 各种免费的搞黄视频| 丰满乱子伦码专区| 综合色丁香网| 夜夜骑夜夜射夜夜干| 五月天丁香电影| 久久久久网色| 美女高潮的动态| 深夜a级毛片| 亚洲精品日韩在线中文字幕| 国产极品天堂在线| 观看av在线不卡| 久久99精品国语久久久| 日韩视频在线欧美| 精品一品国产午夜福利视频| 欧美激情国产日韩精品一区| 国产免费一级a男人的天堂| 又大又黄又爽视频免费| 国产国拍精品亚洲av在线观看| 久久 成人 亚洲| 韩国av在线不卡| 又黄又爽又刺激的免费视频.| 另类亚洲欧美激情| 制服丝袜香蕉在线| 少妇丰满av| 男女国产视频网站| 午夜福利视频精品| 欧美精品亚洲一区二区| 久久久久久久大尺度免费视频| 久久精品国产亚洲av天美| av视频免费观看在线观看| 九草在线视频观看| 亚洲av中文av极速乱| 少妇人妻久久综合中文| 我的女老师完整版在线观看| 我的女老师完整版在线观看| 国产成人精品婷婷| xxx大片免费视频| 亚洲国产欧美在线一区| 亚洲欧洲日产国产| 777米奇影视久久| 一区二区av电影网| 婷婷色麻豆天堂久久| 3wmmmm亚洲av在线观看| 十分钟在线观看高清视频www | 伊人久久精品亚洲午夜| 午夜日本视频在线| 色吧在线观看| 女人十人毛片免费观看3o分钟| 99热6这里只有精品| 国产在线一区二区三区精| 联通29元200g的流量卡| 亚洲性久久影院| av天堂中文字幕网| 国产午夜精品久久久久久一区二区三区| 大码成人一级视频| 国产精品久久久久久av不卡| 国产精品国产三级国产专区5o| 亚洲av成人精品一区久久| 一级毛片aaaaaa免费看小| 国产精品99久久久久久久久| 欧美激情极品国产一区二区三区 | 国产精品人妻久久久影院| 久久97久久精品| 国产成人aa在线观看| 亚洲av成人精品一区久久| 成人亚洲精品一区在线观看 | 男男h啪啪无遮挡| 国产亚洲一区二区精品| 欧美日韩亚洲高清精品| 国产亚洲av片在线观看秒播厂| 国产一区有黄有色的免费视频| 中文资源天堂在线| 亚洲av日韩在线播放| 最新中文字幕久久久久| 五月伊人婷婷丁香| 亚洲熟女精品中文字幕| 国产精品免费大片| 亚洲高清免费不卡视频| 在线 av 中文字幕| 男人狂女人下面高潮的视频| 亚洲精品一区蜜桃| 久热这里只有精品99| 成人高潮视频无遮挡免费网站| 日韩欧美 国产精品| 久久精品久久久久久噜噜老黄| 亚洲内射少妇av| 国产精品久久久久久av不卡| 99热6这里只有精品| 国产色爽女视频免费观看| 欧美人与善性xxx| 高清黄色对白视频在线免费看 | 一区二区av电影网| 免费大片18禁| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 五月玫瑰六月丁香| 韩国高清视频一区二区三区| 一个人看的www免费观看视频| 日日撸夜夜添| 我要看黄色一级片免费的| 一级av片app| 久久久久网色| 国产成人91sexporn| av免费在线看不卡| 欧美精品国产亚洲| 在线观看免费高清a一片| 国产精品国产三级国产专区5o| 国产日韩欧美亚洲二区| 观看免费一级毛片| 久久久久久久亚洲中文字幕| 另类亚洲欧美激情| 免费看不卡的av| kizo精华| 国产成人精品久久久久久| 国产精品偷伦视频观看了| 一级a做视频免费观看| 夜夜骑夜夜射夜夜干| 亚洲国产精品国产精品| 成人综合一区亚洲| .国产精品久久| freevideosex欧美| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品一区三区| 国模一区二区三区四区视频| 一区二区三区免费毛片| 美女高潮的动态| 精品一区二区三卡| 亚洲在久久综合| 中文天堂在线官网| 男女下面进入的视频免费午夜| 午夜免费鲁丝| 久久久久国产精品人妻一区二区| 久热久热在线精品观看| 99久久精品一区二区三区| 高清黄色对白视频在线免费看 | av国产精品久久久久影院| 啦啦啦视频在线资源免费观看| 国产片特级美女逼逼视频| videossex国产| 亚洲精品日本国产第一区| 亚洲精品一区蜜桃| 一个人看的www免费观看视频| 1000部很黄的大片| 99久久精品热视频| a级毛片免费高清观看在线播放| 日本av手机在线免费观看| 久久人人爽人人片av| 晚上一个人看的免费电影| 美女中出高潮动态图| 欧美变态另类bdsm刘玥| 女性生殖器流出的白浆| 国产成人精品久久久久久| 亚洲欧洲国产日韩| 少妇裸体淫交视频免费看高清| 欧美精品亚洲一区二区| 国产一区有黄有色的免费视频| 欧美区成人在线视频| 少妇被粗大猛烈的视频| 青春草亚洲视频在线观看| 亚洲精品国产av成人精品| 亚洲人成网站在线播| 亚洲久久久国产精品| 亚洲精品久久久久久婷婷小说| 日韩av免费高清视频| 99久国产av精品国产电影| 国产日韩欧美亚洲二区| 黄色配什么色好看| 一区二区三区精品91| 国产欧美另类精品又又久久亚洲欧美| 男男h啪啪无遮挡| 麻豆精品久久久久久蜜桃| 99热这里只有精品一区| 免费少妇av软件| 国产探花极品一区二区| 我的老师免费观看完整版| 少妇人妻一区二区三区视频| 国产精品免费大片| 国产成人a∨麻豆精品| 成人二区视频| 久久av网站| 自拍偷自拍亚洲精品老妇| 日韩欧美精品免费久久| 国产精品99久久99久久久不卡 | 日本-黄色视频高清免费观看| 久久久久久久久大av| 丰满少妇做爰视频| 直男gayav资源| 久久毛片免费看一区二区三区| 22中文网久久字幕| 高清av免费在线| 国产老妇伦熟女老妇高清| 国产乱来视频区| 亚洲精品乱码久久久v下载方式| 亚洲av不卡在线观看| 干丝袜人妻中文字幕| 在线观看一区二区三区激情| 国产精品不卡视频一区二区| 大话2 男鬼变身卡| freevideosex欧美| 色婷婷av一区二区三区视频| 国产av国产精品国产| 美女视频免费永久观看网站| 国产精品99久久久久久久久| 街头女战士在线观看网站| 亚洲精品国产色婷婷电影| 乱系列少妇在线播放| 久久久精品免费免费高清| 亚洲精品视频女| 91久久精品国产一区二区三区| 51国产日韩欧美| 91精品一卡2卡3卡4卡| 亚洲精品久久久久久婷婷小说| 人人妻人人添人人爽欧美一区卜 | 久久久久国产精品人妻一区二区| 中文字幕久久专区| 久久国产精品大桥未久av | 99视频精品全部免费 在线| 夜夜看夜夜爽夜夜摸| 国产爱豆传媒在线观看| 五月伊人婷婷丁香| 欧美性感艳星| 最近手机中文字幕大全| 午夜激情福利司机影院| 亚洲av不卡在线观看| 色5月婷婷丁香| 精品熟女少妇av免费看| 精品国产三级普通话版| 国产高清国产精品国产三级 | 久久国产精品大桥未久av | 久久人人爽人人爽人人片va| 高清欧美精品videossex| 青春草视频在线免费观看| 欧美日韩在线观看h| 大香蕉97超碰在线| 夫妻性生交免费视频一级片| 日本爱情动作片www.在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲天堂av无毛| 麻豆成人午夜福利视频| 欧美区成人在线视频| 国产男人的电影天堂91| 天堂俺去俺来也www色官网| 在线精品无人区一区二区三 | 亚洲精品日本国产第一区| 精品一区二区三区视频在线| 久久人人爽人人爽人人片va| 日韩欧美精品免费久久| 精品视频人人做人人爽| 国产精品国产三级专区第一集| 亚洲精品久久午夜乱码| 最近2019中文字幕mv第一页| av专区在线播放| 少妇人妻一区二区三区视频| 一二三四中文在线观看免费高清| 乱码一卡2卡4卡精品| 国产女主播在线喷水免费视频网站| 国产精品三级大全| 亚洲欧美日韩另类电影网站 | 欧美激情极品国产一区二区三区 | 天天躁日日操中文字幕| 国产日韩欧美亚洲二区| 成人毛片60女人毛片免费| 在线观看国产h片| 麻豆精品久久久久久蜜桃| 亚洲中文av在线| 精品国产乱码久久久久久小说| 亚洲va在线va天堂va国产| 国产精品麻豆人妻色哟哟久久| 日韩欧美 国产精品| 男女国产视频网站| 免费看av在线观看网站| 免费大片黄手机在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文乱码字字幕精品一区二区三区| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 一区二区三区四区激情视频| 秋霞伦理黄片| 中国三级夫妇交换| 新久久久久国产一级毛片| 精华霜和精华液先用哪个| 99热6这里只有精品| 在线看a的网站| 久久午夜福利片| 亚洲欧美日韩东京热| 成人影院久久| 久久久欧美国产精品| www.色视频.com| a 毛片基地| 黄色欧美视频在线观看| 少妇高潮的动态图| 在线观看三级黄色| 欧美极品一区二区三区四区| 天天躁夜夜躁狠狠久久av| 91精品国产国语对白视频| 特大巨黑吊av在线直播| 99国产精品免费福利视频| 男女下面进入的视频免费午夜| 老司机影院成人| www.av在线官网国产| 大话2 男鬼变身卡| 少妇的逼好多水| 中文字幕制服av| 午夜福利在线观看免费完整高清在| 激情 狠狠 欧美| 国产精品一区二区在线不卡| 免费少妇av软件| 亚洲欧美日韩无卡精品| 亚洲欧美清纯卡通| 免费看光身美女| 日韩av免费高清视频| 中文字幕免费在线视频6| av在线蜜桃| 久久久久久久精品精品| av专区在线播放| 色吧在线观看| 色视频www国产| 天堂中文最新版在线下载| 国产综合精华液| 青春草视频在线免费观看| 99热国产这里只有精品6| 欧美精品亚洲一区二区| 99精国产麻豆久久婷婷| 青春草亚洲视频在线观看| 又黄又爽又刺激的免费视频.| 午夜日本视频在线| 一区二区三区免费毛片| 在线精品无人区一区二区三 | 高清在线视频一区二区三区| 少妇人妻一区二区三区视频| 国产精品熟女久久久久浪| www.av在线官网国产| 伦理电影免费视频| 老师上课跳d突然被开到最大视频| 91午夜精品亚洲一区二区三区| 亚洲高清免费不卡视频| 久久这里有精品视频免费| 亚洲熟女精品中文字幕| 亚洲精品久久午夜乱码| 狠狠精品人妻久久久久久综合| 人妻夜夜爽99麻豆av| 一二三四中文在线观看免费高清| 日本欧美视频一区| 哪个播放器可以免费观看大片| 一本一本综合久久| 日本黄色日本黄色录像| 国产亚洲最大av| 国产 精品1| 高清视频免费观看一区二区| 搡女人真爽免费视频火全软件| 国内精品宾馆在线| 中文资源天堂在线| 2018国产大陆天天弄谢| 亚洲av在线观看美女高潮| 日韩人妻高清精品专区| 丰满少妇做爰视频| www.av在线官网国产| 色视频在线一区二区三区| 精品视频人人做人人爽| 少妇人妻 视频| 在线免费观看不下载黄p国产| 国产白丝娇喘喷水9色精品| 一级片'在线观看视频| 国产一级毛片在线| 国产欧美亚洲国产| 国产精品三级大全| 精品亚洲成国产av| 亚洲熟女精品中文字幕| 丝袜脚勾引网站| 少妇高潮的动态图| 我要看日韩黄色一级片| 成人美女网站在线观看视频| 最黄视频免费看| 麻豆精品久久久久久蜜桃| 久久热精品热| 久久国产亚洲av麻豆专区| 又黄又爽又刺激的免费视频.| 黄片wwwwww| 免费黄色在线免费观看| 日本免费在线观看一区| 午夜免费鲁丝| 久久久欧美国产精品| 免费不卡的大黄色大毛片视频在线观看| 国产一级毛片在线| 高清黄色对白视频在线免费看 | 日韩强制内射视频| 又黄又爽又刺激的免费视频.| 久久精品久久久久久噜噜老黄| 简卡轻食公司| 最近中文字幕2019免费版| 日韩成人av中文字幕在线观看| h视频一区二区三区| 亚洲一级一片aⅴ在线观看| 国产91av在线免费观看| 2022亚洲国产成人精品| 日本一二三区视频观看| 女性生殖器流出的白浆| 青青草视频在线视频观看| 人妻 亚洲 视频| 成人国产麻豆网| 免费在线观看成人毛片| 男女免费视频国产| 六月丁香七月| 一个人看视频在线观看www免费| 国产精品欧美亚洲77777| 国产 一区 欧美 日韩| 日本av免费视频播放| 一级黄片播放器| 亚洲av日韩在线播放| 午夜老司机福利剧场| 不卡视频在线观看欧美| 一级a做视频免费观看| av在线app专区| 国产伦精品一区二区三区视频9| 啦啦啦啦在线视频资源| 我的老师免费观看完整版| 日本一二三区视频观看| 久久久久久久久久人人人人人人| 啦啦啦中文免费视频观看日本| 午夜视频国产福利| 一本—道久久a久久精品蜜桃钙片| 91精品国产九色| 日本与韩国留学比较| 亚洲精品成人av观看孕妇| 久久精品人妻少妇| 日韩免费高清中文字幕av| 十八禁网站网址无遮挡 | 亚洲欧洲日产国产| 97在线人人人人妻| 欧美精品一区二区免费开放| 女性被躁到高潮视频| 成人亚洲精品一区在线观看 | 午夜激情福利司机影院| 一级毛片黄色毛片免费观看视频| 久久久久网色| 岛国毛片在线播放| 噜噜噜噜噜久久久久久91| 最近最新中文字幕大全电影3| 婷婷色综合大香蕉| 97精品久久久久久久久久精品| 99视频精品全部免费 在线| 毛片一级片免费看久久久久| 国产伦理片在线播放av一区| 一本—道久久a久久精品蜜桃钙片| 国产精品蜜桃在线观看| 免费人妻精品一区二区三区视频| 男人和女人高潮做爰伦理| 国产成人精品福利久久| 国产精品精品国产色婷婷| 国产真实伦视频高清在线观看| 欧美xxxx性猛交bbbb| 身体一侧抽搐| 韩国av在线不卡| 日本色播在线视频| 观看免费一级毛片| 噜噜噜噜噜久久久久久91| 国产欧美亚洲国产| 99久久精品国产国产毛片| 精品人妻偷拍中文字幕| 亚洲精品456在线播放app| 日本vs欧美在线观看视频 | 精品国产露脸久久av麻豆| 男人爽女人下面视频在线观看| av在线观看视频网站免费| 国产爽快片一区二区三区| 亚洲精品色激情综合| 免费看不卡的av| 久久 成人 亚洲| 天堂中文最新版在线下载| 99热全是精品| 少妇人妻 视频| 国产色婷婷99| 深爱激情五月婷婷| 黑丝袜美女国产一区| 国产精品一区www在线观看| 在线观看免费日韩欧美大片 | 久久99热6这里只有精品| 最新中文字幕久久久久| 联通29元200g的流量卡| 嫩草影院新地址| 国产有黄有色有爽视频| 久久久久性生活片| 日韩制服骚丝袜av| 久久这里有精品视频免费| 免费观看性生交大片5| 人体艺术视频欧美日本| 国产中年淑女户外野战色| 少妇丰满av| 黄色欧美视频在线观看| 观看美女的网站| 国产av码专区亚洲av| 欧美xxxx性猛交bbbb| 26uuu在线亚洲综合色| 夜夜爽夜夜爽视频| 久久人人爽av亚洲精品天堂 | 亚洲人与动物交配视频| 欧美bdsm另类| 国产淫语在线视频| 国精品久久久久久国模美| 国产免费福利视频在线观看| 亚洲成人一二三区av| 我的女老师完整版在线观看| 亚洲欧美成人精品一区二区| av国产久精品久网站免费入址| 国产av精品麻豆| 我要看黄色一级片免费的| 亚洲精品aⅴ在线观看| 免费黄色在线免费观看| 国产一区二区三区av在线| 免费黄网站久久成人精品| 最近最新中文字幕免费大全7| 欧美成人午夜免费资源| 日韩大片免费观看网站| 99热这里只有是精品50| 男女边吃奶边做爰视频| 麻豆成人av视频| 久久97久久精品| 最近中文字幕2019免费版| 99久国产av精品国产电影| 永久免费av网站大全| 国产美女午夜福利| 国产极品天堂在线| 亚洲av不卡在线观看| 久久99热这里只有精品18| 国产成人精品一,二区| 黑人猛操日本美女一级片| 日韩欧美一区视频在线观看 | 久久久久人妻精品一区果冻| 日韩国内少妇激情av| 黄色怎么调成土黄色| 女性生殖器流出的白浆| 欧美日韩国产mv在线观看视频 | 日韩欧美精品免费久久| 亚洲欧美精品自产自拍| 五月天丁香电影| 国产黄频视频在线观看| 午夜精品国产一区二区电影| 高清日韩中文字幕在线| 中文字幕久久专区| 日韩强制内射视频| 亚洲最大成人中文| 午夜福利视频精品| 久久久久久久久久人人人人人人| 美女cb高潮喷水在线观看| 男的添女的下面高潮视频| 三级国产精品片| 久久精品国产自在天天线| 直男gayav资源| 亚洲自偷自拍三级| av专区在线播放| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩东京热| 嫩草影院入口| 寂寞人妻少妇视频99o| 亚洲欧美中文字幕日韩二区| 日韩av在线免费看完整版不卡| 热re99久久精品国产66热6| 在线观看一区二区三区| 久久精品国产鲁丝片午夜精品| 久久久国产一区二区| 91狼人影院| 嫩草影院入口| 成人毛片60女人毛片免费| 性色av一级| 色婷婷av一区二区三区视频| 久久婷婷青草| 嫩草影院新地址| 欧美三级亚洲精品| 国产视频内射| 一区二区av电影网| 亚洲三级黄色毛片| 久久ye,这里只有精品| 久久鲁丝午夜福利片| 王馨瑶露胸无遮挡在线观看| 我的老师免费观看完整版| 99热全是精品| 久久精品国产自在天天线| 国产一区有黄有色的免费视频| 国产亚洲午夜精品一区二区久久| 欧美日本视频| 日本av手机在线免费观看| 欧美最新免费一区二区三区| 亚洲四区av| 男女边摸边吃奶| 如何舔出高潮| 国产成人91sexporn| 一级爰片在线观看| 亚洲精品国产成人久久av| 99国产精品免费福利视频| 欧美成人一区二区免费高清观看| av在线蜜桃| 国产视频内射| 草草在线视频免费看| 亚洲三级黄色毛片| 国产精品女同一区二区软件|