• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-pressure study of topological semimetals XCd2Sb2(X =Eu and Yb)

    2022-08-01 06:02:56ChuchuZhu朱楚楚HaoSu蘇豪ErjianCheng程二建LinGuo郭琳BinglinPan泮炳霖YeyuHuang黃燁煜JiaminNi倪佳敏YanfengGuo郭艷峰XiaofanYang楊小帆andShiyanLi李世燕
    Chinese Physics B 2022年7期
    關(guān)鍵詞:楚楚

    Chuchu Zhu(朱楚楚), Hao Su(蘇豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖),Yeyu Huang(黃燁煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艷峰),?,Xiaofan Yang(楊小帆),?, and Shiyan Li(李世燕),3,4,§

    1State Key Laboratory of Surface Physics and Department of Physics,F(xiàn)udan University,Shanghai 200438,China

    2School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China

    3Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China

    4Shanghai Research Center for Quantum Sciences,Shanghai 201315,China

    Keywords: high pressure,topological semimetal,magnetism,superconductivity

    1. Introduction

    Topological materials have been widely investigated in recent years due to their novel physical properties and the potential application in electronic devices.[1–6]By introducing magnetism into the topological materials,the initial electronic structure is modified by the broken time-reversal symmetry.[7]The combination of intrinsic magnetic order and nontrivial topology provides a platform for the investigations of exotic quantum states, such as Weyl semimetals,[8–11]anomalous Hall effect,[12,13]and axion insulators.[1,14]

    In this context, the topological semimetals EuCd2M2(M=As and Sb)have recently attracted a lot of attention due to its special A-type AFM configuration.[15–26]The Eu spins order ferromagnetically in theabplane and stack antiferromagnetically alongcaxis below N′eel temperatureTN=9.5 K forM=As and 7.4 K forM=Sb.[15–17]First-principle theoretical calculations predicted that EuCd2M2(M= As and Sb) is an AFM Dirac semimetal candidate with unbrokenC3symmetry,[18]and a single pair of Weyl nodes could be generated by splitting the Dirac cone close to Fermi surface in ferromagnetic(FM)state.[19]Experimentally,in AFM phase,the EuCd2M2was revealed to hold several nontrivial topological states including axion insulator, AFM topological crystalline insulator, and higher order topological insulator.[15,16,20]In spin-polarized FM phase induced by an external magnetic field alongcaxis, a single pair of Weyl nodes is generated near Fermi level due to the break of nonsymmetric time-reversal symmetry.[17,20]In the paramagnetic phase aboveTN, quasistatic FM fluctuations lift the Kramers degeneracy, indicating a centrosymmetric Weyl semimetal state of EuCd2M2.[22]Furthermore, the magnetic order in EuCd2M2can be suppressed by substituting europium atoms with non-magnetic atoms,for instance,ytterbium. The Yb-based compounds behave paramagnetically and theC3symmetry is maintained,becoming ideal Dirac semimetal candidates.Therefore,XCd2M2(X=Eu and Yb,M=As and Sb)has provided an ideal platform for exploring the intriguing interplay between topology and magnetism.[23–25]

    Applying pressure is a clean and effective method of tuning crystal structure and electronic state. Under pressure,the magnetic ordering may be suppressed and novel ground states such as superconductivity may emerge.[27–32]In this paper, we report the high-pressure electrical transport studies on EuCd2Sb2and YbCd2Sb2. It is found that the AFM transition temperatureTNof EuCd2Sb2increases from 7.4 K at ambient pressure to 50.9 K at 14.9 GPa, then the magnetism disappears. No sign of superconductivity is observed down to 300 mK. In contrast, superconductivity emerges in YbCd2Sb2at 1.94 GPa, manifesting a superconducting dome in the temperature-pressure phase diagram. High-pressure xray diffraction (XRD) measurements on YbCd2Sb2show no structural phase transition at low pressure,but a crystalline-toamorphous phase transition at about 16 GPa.Similar structural phase transition may cause the disappearance of magnetism in EuCd2Sb2.

    2. Materials and methods

    The EuCd2Sb2single crystals were grown by using tin as flux.[16]High-quality single crystals of YbCd2Sb2were grown by self-flux method using a mixture of Yb(purity 99.9%),Cd(purity 99.99%),and Sb(purity 99.999%)powders with a molar ratio of 1:20:2. The mixture was loaded into a corundum crucible which was further sealed in a quartz ampoule under vacuum. Subsequently,the ampoule was heated at 730°C for 5000 minutes and then slowly cooled down to 430°C at a rate of 1°C/h. Single crystals can be obtained by removing excess flux in a centrifuge and cooling down to room temperature.

    High pressure was generated by a diamond anvil cell(DAC),in which diamond anvils with a culet size of diameter 300 μm and a non-magnetic Be–Cu gasket were employed.Cubic boron nitride (c-BN) and NaCl powders were used as insulating material and pressure transmitting medium,respectively.XCd2Sb2(X=Eu and Yb)single crystals were crashed into small pieces and loaded inside of a hole (120 μm in diameter) in the center of the gasket. Subsequently, four electrodes of 4-μm-thick platinum thin foils were laid on the sample. With applying pressure, the small single crystals were crashed into powder and compressed together solidly, allowing a standard ohmic contact between sample and electrodes.The solid pressure transmitting medium provides a quasihydrostatic condition.The pressure inside the DAC was scaled by monitoring the Ruby fluorescence at room temperature each time before and after the measurement.[33]High pressure resistance of EuCd2Sb2and YbCd2Sb2were measured in a physical property measurement system(PPMS,Quantum Design)and a3He cryostat with Van der Pauw method.

    The XRD measurement at ambient pressure was performed by using an x-ray diffractometer (D8 Advance,Bruker). The high-pressure synchrotron XRD experiments were carried out using a symmetric DAC with a 260-μm culet diamond. A rhenium gasket was pre-compressed to 30 μm in thickness followed by drilling the central part by laser to form a 90-μm diameter hole as the sample chamber. The sample chamber was filled with a mixture of the sample,a ruby chip,and silicone oil as the pressure transmitting medium. The experimental pressures were determined by the pressure-induced fluorescence shift of ruby. Synchrotron XRD measurements were carried out at beamline BL15U1 of the Shanghai Synchrotron Radiation Facility (SSRF) using a monochromatic beam of 0.6199 ?A.

    3. Results and discussion

    Figure 1(a)shows the crystal structure ofXCd2Sb2(X=Eu and Yb)at ambient pressure.XCd2Sb2crystallizes in trigonal structure with a space group ofP3m1 (No. 164).[34,35]The ionic [Cd2Sb2] slab is sandwiched between layers of ytterbium/europium cations alongcaxis. From the XRD patterns in Fig.1(b),only(00l)Bragg peaks are detected,demonstrating that the largest natural surface of as-grownXCd2Sb2single crystals isabplane. Typical resistivityρ(T) curves ofXCd2Sb2single crystals at ambient pressure are plotted in Fig. 1(c). At high temperature, the resistivity of EuCd2Sb2exhibits a metallic behavior. Below 100 K, with decreasing temperature the resistivity increases rapidly to a maximum atTN=7.4 K and then drops sharply.The low-temperature resistivity behavior of EuCd2Sb2resembles previous report on its sister compound EuCd2As2, which attributed the sharp drop belowTNto the reduced scattering from the ordered state of the Eu moments.[23]For paramagnetic YbCd2Sb2,its resistivity exhibits a weakly metallic behavior.

    Fig.1. (a)Schematic crystal structure of XCd2Sb2 (X =Eu and Yb). Green,purple,and orange balls represent Sb,Cd,and Eu/Yb atoms,respectively. (b)Room-temperature x-ray diffraction pattern of XCd2Sb2 (X =Eu and Yb) single crystals, showing that the largest natural surface is ab plane. (c) Typical resistivity curves of XCd2Sb2 (X =Eu and Yb)single crystals at ambient pressure. The peak at 7.4 K denotes the antiferromagnetic transition of EuCd2Sb2.

    Fig.2. Temperature dependence of the normalized resistance under different pressures for EuCd2Sb2(a)below 14.9 GPa and(b)above 14.9 GPa in a temperature range of 2 K–300 K,respectively. The arrows denote the N′eel temperature TN. The inset of(b)depicts the pressure dependence of R at T =2 K(red squares) and 300 K (blue circles). (c) The temperature–pressure phase diagram of EuCd2Sb2. The values of TN are obtained from panel(a).

    Figures 2(a)and 2(b)present the temperature-dependence normalized resistanceR/R300Kof EuCd2Sb2up to 43.7 GPa.The data are obtained from two samples with two experimental runs, which have consistent results. The application of 2.61 GPa and 5.12 GPa shiftTN(the peak position) towards higher values. For 9.56 GPa and above, the AFM peak becomes broader and lower, therefore we redefine the value ofTNas the point of intersection of two lines extrapolated from theR(T)curve below and above the temperatures of the broad peak. The value ofTNincreases substantially to a maximum of 50.9 K at 14.9 GPa, about 6.8 times of that at ambient pressure. When the pressure is above 14.9 GPa, the AFM peak completely vanishes,indicating the absence of magnetic phase transition. The absolute resistancesR2KandR300Kalso decrease to very small values, as shown in the inset of Fig. 2(b). From these results, we construct the temperaturepressure phase diagram of EuCd2Sb2in Fig. 2(c). There are two main features in the phase diagram: (i)TNincreases monotonously with the applied pressure up to 14.9 GPa,then drops to zero. A similar phase diagram has recently been reported in EuIn2As2, in which the increase ofTNis mainly attributed to the enhancement of intralayer ferromagnetic exchange coupling by pressure.[36](ii)A non-magnetic state appears after the collapse of AFM phase above 14.9 GPa. Similarly, for EuIn2As2, with increasing pressure up to 17 GPa,a crystalline-to-amorphous phase transition occurs,which impedes further enhancement ofTN.[36]This will be discussed later. In order to further check whether there is pressureinduced superconductivity in EuCd2Sb2,we also measure another sample down to 300 mK and no sign of superconductivity is observed(data not shown here).

    The resistanceR(T)from 0.3 K to 300 K for YbCd2Sb2sample A under pressures up to 29.2 GPa is plotted in Fig.3(a).At low temperature, a resistance drop is clearly observed under 1.94 GPa,and becomes more pronounced with increasing pressure, as shown in Fig. 3(b). The value ofTc(defined at the 10%drop of normal-state resistance,),first increases to a maximum of 1.67 K at 5.22 GPa then decreases, eventually drops to below 0.3 K at 29.2 GPa. Noting that no zero resistance is observed for YbCd2Sb2sample A in the whole pressure range. To confirm that theRdrop is due to superconducting transition,we measure the resistance of sample A at different magnetic fields under 10.0 GPa. TheRdrop is gradually suppressed upon increasing magnetic field and completely disappears at 0.6 T. The upper critical fieldμ0Hc2(T)as a function of temperature is extracted and plotted in the inset of Fig. 3(c). It can be well fitted by the empirical Ginzburg–Landau(GL)formula[37]

    The zero-temperature upper critical fieldμ0Hc2(0) is determined to be 0.41 T,which is much lower than the Pauli paramagnetic limit fieldHp(0)=1.84Tc≈1.86 T,[38,39]indicating the absence of Pauli pair breaking.

    Fig. 3. High-pressure resistance curves of YbCd2Sb2 sample A. (a) Temperature dependence of resistance under different pressures up to 300 K.(b)Low-temperature resistance shows the superconducting transition. The inset in panel (b) demonstrates that pressure-induced superconductivity emerges at 1.94 GPa. (c)Temperature dependence of resistance at different magnetic fields under 10.0 GPa. The superconducting transition temperature Tc is defined at the 10%drop of normal-state resistance(T10%c ).The inset in panel(c)depicts the upper critical field μ0Hc2 as a function of Tc, which can be well fitted by Ginzburg–Landau formula.

    Fig. 4. (a) Low-temperature resistance under different pressures for YbCd2Sb2 sample B. (b) Temperature dependence of resistance under 0 T and 1 T at 6.96 GPa. (c)Temperature–pressure phase diagram of YbCd2Sb2,showing a dome-shaped pressure-induced superconductivity.

    In order to reproduce the pressure-induced superconductivity in YbCd2Sb2, a new sample B obtained from a different batch was measured under pressures from 3.85 GPa to 28.8 GPa, as shown in Fig. 4(a). For sample B, zero resistance is observed and the highestTcis 1.65 K under 6.96 GPa, consistent with sample A. When an external field 1 T is applied, theRdrop of sample B under 6.96 GPa is completely suppressed, as shown in Fig. 4(b).These results confirm the pressure-induced superconductivity in YbCd2Sb2. Combining the results of sample A with sample B, the temperature–pressure phase diagram of YbCd2Sb2is mapped out in Fig.4(c),which shows a clear superconducting dome. Note that the data points of 24.9 GPa for sample A and 25.2 GPa for sample B are not shown,since theTcs are below our lowest temperature 0.3 K.For the data points of 29.2 GPa for sample A and 28.8 GPa for sample B,we estimate that theTcs are very close to zero.These do not affect the overall shape of the superconducting dome in Fig.4(c).

    To check whether the pressure-induced superconductivity arises from a structural phase transition, we performed high-pressure synchrotron XRD measurements on YbCd2Sb2sample, shown in Fig. 5(a) for different pressures. The ambient–pressure phase persists up to 12.3 GPa,since no new diffraction peaks appear. Therefore, the superconductivity in YbCd2Sb2is not related to a pressure-induced structural phase transition. The pressure dependence of lattice parametersa,b,and unit-cell volumeV/Zare plotted in Figs. 5(b) and 5(c),obtained by fitting the XRD data with GSAS software. There is no anomaly ina,b,andV/Zexcept that the volume is compressed by 15.3%. Below 12.3 GPa,the evolution ofV/Zcan be well fitted by Birch–Murnaghan equation[40]

    whereB0,B′0,andV0are the bulk modulus,first-order derivative of the bulk modulus, and the derived zero-pressure volume, respectively. The fitting givesV0= 145.2 ?A3,B0=34.6 GPa,andB′0=9.1.

    Fig. 5. (a) High-pressure x-ray diffraction (λ = 0.6199 ?A) patterns of YbCd2Sb2 under pressures ranging from 0.1 GPa to 22.7 GPa. (b) and (c)Pressure dependence of the lattice parameters a,c,and V/Z for YbCd2Sb2,respectively. The black dashed line is the fitting of third-order Birch–Murnaghan equation, which derives zero-pressure volume V0 =145.2 ?A3,bulk modulus B0=34.6 GPa,and the first-order derivative of the bulk modulus B′0=9.1.

    Above 12.3 GPa, the pristine trigonal phase still exists,but the peak intensity decreases and some small diffraction peaks appear around major splitting peaks, which is resembling of EuCd2As2,[41]suggesting the instability of crystal structure and the emergence of new phase. However,it is hard to determine the space group of the high-pressure phase due to the complex diffraction spectra. When the pressure is higher than 16.3 GPa, the original diffraction peaks gradually vanish and only two humps are detected at 22.7 GPa. This is reminiscent of the crystalline-to-amorphous phase transition in EuIn2As2at~17 GPa.[36]For YbCd2Sb2, the superconductivity persists into the amorphous phase. Considering the structure similarity of EuCd2Sb2, YbCd2Sb2, and EuIn2As2,such crystalline-to-amorphous phase transition should also occur in EuCd2Sb2. Since the amorphous phase has no lattice period thus absence of magnetic order, this may explain the sudden disappearance of AFM order around 14.9 GPa in EuCd2Sb2. On the other hand, considering the energy difference between divalent and trivalent Eu ionic state is not extremely large and the ion radius of Eu3+is smaller than Eu2+,Eu2+state could thus be easily destabilized and pushed towards Eu3+state with external energy like pressurization in some Eu-based compounds,[42]leading to the collapse of antiferromagnetism. Whereas we did not detected the thermal hysteresis on cooling and warming resistance curves (as a hallmark of valence transition),[43–45]more high-pressure xray photoemission spectroscopy(XPS),x-ray absorption nearedge spectroscopy (XANES), and XRD measurements that could directly monitor valence and structure transition are further needed.

    The superconducting dome found in YbCd2Sb2is quite interesting. Usually, such a superconducting dome is associated with the suppression of magnetic order[46]or chargedensity wave.[47]However, no magnetic order and chargedensity wave have been observed in YbCd2Sb2. In this sense,its superconducting dome may be due to a Lifshitz transition(related to electrical topological transition and Fermi surface reconstruction), as observed in WTe2.[28]More Hall coefficient measurement on single crystal and electronic band structure calculation under pressure are needed to further clarify this issue.

    4. Conclusion

    We have systematically measured the resistance of topological semimetalsXCd2Sb2(X= Eu and Yb) under high pressures.For EuCd2Sb2,it is found that pressure strongly enhances the AFM transition up to~15 GPa,then the magnetic order suddenly disappears. The increase ofTNis attributed to pressure-enhanced intralayer FM exchange coupling and a crystalline-to-amorphous phase transition may cause the disappearance of magnetic order. For paramagnetic YbCd2Sb2,a clear superconducting dome is observed in the temperature–pressure phase diagram, which may relate to some kind of Lifshitz transition. Our results demonstrate thatXCd2Sb2(X=Eu and Yb)is a novel platform for exploring the interplay among magnetism,topology and superconductivity.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 12174064) and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01). Yanfeng Guo acknowledges the research fund from the State Key Laboratory of Surface Physics and Department of Physics, Fudan University (Grant No.KF202009).

    猜你喜歡
    楚楚
    租房變搶劫
    楚 楚
    長江叢刊(2018年22期)2018-11-14 22:44:32
    一個女孩的心靈成長史
    金楚楚??樓素宏??駱俊杰??《石繪》
    掌上明珠
    刺猬
    鏡子
    第109次求婚
    穿腸毒
    色(小說)
    翠苑(2009年6期)2009-03-29 03:43:08
    亚洲欧美色中文字幕在线| 午夜福利免费观看在线| 嫁个100分男人电影在线观看| 亚洲第一欧美日韩一区二区三区 | 999久久久国产精品视频| 日韩欧美一区二区三区在线观看 | 丝袜人妻中文字幕| 国产亚洲欧美精品永久| 亚洲国产欧美网| av不卡在线播放| 久久精品国产综合久久久| 国产精品自产拍在线观看55亚洲 | h视频一区二区三区| 在线观看免费视频网站a站| 精品视频人人做人人爽| 97在线人人人人妻| 91成人精品电影| 精品国产一区二区三区四区第35| 国产又色又爽无遮挡免费看| 午夜福利一区二区在线看| 国产免费av片在线观看野外av| 精品少妇黑人巨大在线播放| 日韩视频一区二区在线观看| 免费观看人在逋| av超薄肉色丝袜交足视频| 亚洲人成电影免费在线| 婷婷丁香在线五月| 在线观看免费高清a一片| 中文亚洲av片在线观看爽 | 在线亚洲精品国产二区图片欧美| 成人亚洲精品一区在线观看| 精品国产一区二区久久| 免费一级毛片在线播放高清视频 | 亚洲成国产人片在线观看| 午夜91福利影院| 自线自在国产av| 日韩三级视频一区二区三区| 99久久国产精品久久久| 丁香六月欧美| 老熟妇仑乱视频hdxx| 一二三四社区在线视频社区8| a在线观看视频网站| 在线播放国产精品三级| 午夜两性在线视频| 美女高潮喷水抽搐中文字幕| 国产欧美日韩一区二区精品| 国产1区2区3区精品| 女人被躁到高潮嗷嗷叫费观| 国产在线免费精品| 99久久精品国产亚洲精品| 亚洲国产欧美网| 午夜免费成人在线视频| 中文字幕人妻丝袜制服| 亚洲国产中文字幕在线视频| 亚洲熟女毛片儿| 涩涩av久久男人的天堂| 在线观看一区二区三区激情| 91成人精品电影| 在线天堂中文资源库| 亚洲国产精品一区二区三区在线| 视频区图区小说| 黄色丝袜av网址大全| 脱女人内裤的视频| 黄色视频在线播放观看不卡| 无遮挡黄片免费观看| 午夜福利视频在线观看免费| 亚洲精品在线美女| 丝瓜视频免费看黄片| 涩涩av久久男人的天堂| av有码第一页| 十八禁人妻一区二区| 69精品国产乱码久久久| 日本撒尿小便嘘嘘汇集6| av视频免费观看在线观看| 国产无遮挡羞羞视频在线观看| 久久久精品区二区三区| www日本在线高清视频| 色婷婷久久久亚洲欧美| 久久久久网色| 精品福利观看| 精品国产亚洲在线| 女人被躁到高潮嗷嗷叫费观| 国产一区有黄有色的免费视频| 亚洲第一青青草原| 亚洲中文av在线| 久久久久久久精品吃奶| 亚洲一卡2卡3卡4卡5卡精品中文| 首页视频小说图片口味搜索| 最新美女视频免费是黄的| 国产1区2区3区精品| 亚洲精品成人av观看孕妇| 亚洲少妇的诱惑av| 精品人妻熟女毛片av久久网站| 交换朋友夫妻互换小说| 欧美大码av| 国产精品久久久久久精品古装| 成年人免费黄色播放视频| 热99re8久久精品国产| 午夜91福利影院| 亚洲国产毛片av蜜桃av| 亚洲国产欧美一区二区综合| 久久热在线av| 欧美 日韩 精品 国产| 国产免费现黄频在线看| 久久精品国产99精品国产亚洲性色 | 黄色a级毛片大全视频| 老汉色∧v一级毛片| 五月开心婷婷网| 国产一区二区在线观看av| 欧美日韩视频精品一区| 色播在线永久视频| 天天躁狠狠躁夜夜躁狠狠躁| 中亚洲国语对白在线视频| 亚洲欧洲精品一区二区精品久久久| 亚洲熟女毛片儿| 黄色视频不卡| 成人三级做爰电影| 亚洲成人免费电影在线观看| 极品教师在线免费播放| 精品久久蜜臀av无| 一区二区三区激情视频| 亚洲熟妇熟女久久| 国产一区二区在线观看av| 国产精品久久久久成人av| 精品视频人人做人人爽| 欧美亚洲 丝袜 人妻 在线| 亚洲精品久久午夜乱码| 91成人精品电影| 成人亚洲精品一区在线观看| 中文字幕人妻熟女乱码| 每晚都被弄得嗷嗷叫到高潮| 国产精品98久久久久久宅男小说| 少妇粗大呻吟视频| 妹子高潮喷水视频| 老司机福利观看| 中文字幕色久视频| 亚洲情色 制服丝袜| 啦啦啦视频在线资源免费观看| 老熟妇乱子伦视频在线观看| www.自偷自拍.com| 久久久欧美国产精品| 国产成人影院久久av| 国产高清videossex| www日本在线高清视频| 极品少妇高潮喷水抽搐| 十八禁网站免费在线| 久久久久久久久久久久大奶| 免费在线观看视频国产中文字幕亚洲| a级毛片黄视频| 国产精品影院久久| 国产午夜精品久久久久久| 男人操女人黄网站| 搡老乐熟女国产| 老司机亚洲免费影院| 国产亚洲精品第一综合不卡| 国产精品一区二区在线观看99| 国产精品久久久久久人妻精品电影 | 欧美日韩黄片免| 午夜福利一区二区在线看| 亚洲黑人精品在线| 亚洲国产欧美在线一区| 一边摸一边抽搐一进一出视频| 国产精品香港三级国产av潘金莲| 国产免费现黄频在线看| 一区在线观看完整版| 亚洲欧美色中文字幕在线| 精品一品国产午夜福利视频| 男女之事视频高清在线观看| 日韩一卡2卡3卡4卡2021年| 中文字幕高清在线视频| 韩国精品一区二区三区| 欧美激情 高清一区二区三区| 一级,二级,三级黄色视频| 免费av中文字幕在线| 黄色成人免费大全| 国产精品久久久人人做人人爽| 这个男人来自地球电影免费观看| 亚洲成a人片在线一区二区| 啦啦啦在线免费观看视频4| 日韩一区二区三区影片| 国产一卡二卡三卡精品| 国产av精品麻豆| 十八禁人妻一区二区| 久久久国产一区二区| 免费在线观看视频国产中文字幕亚洲| 精品亚洲成a人片在线观看| 亚洲av电影在线进入| 人人妻人人澡人人看| 脱女人内裤的视频| 国产一区二区三区视频了| 久久中文看片网| 最新的欧美精品一区二区| 亚洲欧洲精品一区二区精品久久久| 少妇 在线观看| av视频免费观看在线观看| 1024视频免费在线观看| 夫妻午夜视频| 国产欧美日韩一区二区三区在线| 亚洲精华国产精华精| 中文字幕av电影在线播放| 久久国产精品男人的天堂亚洲| 香蕉国产在线看| 高清欧美精品videossex| 精品乱码久久久久久99久播| 久久久国产一区二区| 成人av一区二区三区在线看| 亚洲国产精品一区二区三区在线| 一区二区三区国产精品乱码| 日韩欧美三级三区| 亚洲国产中文字幕在线视频| 久久久久久久国产电影| 18在线观看网站| 亚洲欧美一区二区三区久久| 精品人妻熟女毛片av久久网站| 大码成人一级视频| 老司机靠b影院| 在线看a的网站| 国产av国产精品国产| av在线播放免费不卡| av福利片在线| 日韩一区二区三区影片| 久久久久久久久久久久大奶| 我要看黄色一级片免费的| 国产精品二区激情视频| 丰满人妻熟妇乱又伦精品不卡| 99久久人妻综合| 免费看十八禁软件| 美女国产高潮福利片在线看| 国内毛片毛片毛片毛片毛片| 99国产精品99久久久久| 久久天堂一区二区三区四区| 亚洲精品国产一区二区精华液| 嫩草影视91久久| 久久精品91无色码中文字幕| 超碰成人久久| 99国产综合亚洲精品| 9色porny在线观看| 亚洲精品久久成人aⅴ小说| 国产麻豆69| 国产精品98久久久久久宅男小说| 午夜福利在线免费观看网站| 女性被躁到高潮视频| 精品人妻熟女毛片av久久网站| 亚洲精品国产一区二区精华液| 好男人电影高清在线观看| 1024视频免费在线观看| a级毛片黄视频| 人人妻人人澡人人爽人人夜夜| av天堂久久9| 搡老岳熟女国产| 99精品久久久久人妻精品| 亚洲欧美精品综合一区二区三区| 狠狠婷婷综合久久久久久88av| 高潮久久久久久久久久久不卡| 久久精品熟女亚洲av麻豆精品| 日本一区二区免费在线视频| 丝袜在线中文字幕| 国产色视频综合| 欧美性长视频在线观看| 国产av精品麻豆| 久久99热这里只频精品6学生| 久久精品熟女亚洲av麻豆精品| 精品一区二区三区四区五区乱码| 少妇粗大呻吟视频| 如日韩欧美国产精品一区二区三区| 欧美国产精品va在线观看不卡| 国产在线免费精品| av国产精品久久久久影院| 在线永久观看黄色视频| 大片电影免费在线观看免费| 日韩成人在线观看一区二区三区| 日本vs欧美在线观看视频| 欧美亚洲日本最大视频资源| 在线观看免费日韩欧美大片| 黑人巨大精品欧美一区二区mp4| 久久人妻熟女aⅴ| 国精品久久久久久国模美| 国产不卡av网站在线观看| 国产单亲对白刺激| 国产日韩欧美亚洲二区| 性少妇av在线| 人人妻,人人澡人人爽秒播| 欧美成狂野欧美在线观看| 国产精品98久久久久久宅男小说| 交换朋友夫妻互换小说| 国产老妇伦熟女老妇高清| 老司机影院毛片| 国产99久久九九免费精品| 91麻豆精品激情在线观看国产 | 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 一本一本久久a久久精品综合妖精| 午夜久久久在线观看| av天堂在线播放| 99精品久久久久人妻精品| 成人特级黄色片久久久久久久 | 99久久99久久久精品蜜桃| 国产在线视频一区二区| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 大片电影免费在线观看免费| 精品国产一区二区三区四区第35| 777米奇影视久久| 精品人妻1区二区| 亚洲人成电影免费在线| 纯流量卡能插随身wifi吗| 国产精品成人在线| 妹子高潮喷水视频| 国产精品偷伦视频观看了| 成年版毛片免费区| 69av精品久久久久久 | 免费人妻精品一区二区三区视频| 黑人巨大精品欧美一区二区mp4| 国产成人精品久久二区二区91| 丰满少妇做爰视频| 叶爱在线成人免费视频播放| 午夜福利影视在线免费观看| 免费观看人在逋| 美女福利国产在线| 色94色欧美一区二区| 精品国内亚洲2022精品成人 | 成在线人永久免费视频| 亚洲av片天天在线观看| 天天添夜夜摸| 一本综合久久免费| 少妇裸体淫交视频免费看高清 | 夜夜夜夜夜久久久久| 三上悠亚av全集在线观看| tocl精华| 欧美亚洲日本最大视频资源| 国产精品偷伦视频观看了| 久久国产精品影院| 一级片免费观看大全| 久久精品亚洲熟妇少妇任你| 国产成人精品久久二区二区91| 中文字幕精品免费在线观看视频| 一夜夜www| 大片免费播放器 马上看| 欧美激情极品国产一区二区三区| 久久国产亚洲av麻豆专区| 捣出白浆h1v1| 国产免费视频播放在线视频| 五月开心婷婷网| 一级毛片精品| videosex国产| netflix在线观看网站| 美女高潮到喷水免费观看| 精品国产乱子伦一区二区三区| 他把我摸到了高潮在线观看 | 亚洲精品国产精品久久久不卡| 人人澡人人妻人| 国产91精品成人一区二区三区 | 十八禁网站免费在线| 亚洲综合色网址| 超碰97精品在线观看| 午夜福利在线免费观看网站| 在线观看免费午夜福利视频| 国产亚洲精品一区二区www | 国产野战对白在线观看| 这个男人来自地球电影免费观看| 色播在线永久视频| 日韩欧美一区二区三区在线观看 | 一边摸一边抽搐一进一小说 | 午夜激情av网站| 大香蕉久久网| 欧美国产精品一级二级三级| 国产深夜福利视频在线观看| 一级,二级,三级黄色视频| 丝袜美足系列| 国产一卡二卡三卡精品| 久久久久国产一级毛片高清牌| 成人av一区二区三区在线看| 一边摸一边抽搐一进一小说 | 蜜桃国产av成人99| 精品国产乱码久久久久久小说| 日韩免费av在线播放| 日本一区二区免费在线视频| 免费看a级黄色片| 十分钟在线观看高清视频www| 十八禁高潮呻吟视频| 国产成人免费观看mmmm| 国产一区有黄有色的免费视频| 亚洲第一欧美日韩一区二区三区 | 色婷婷av一区二区三区视频| 国产一区有黄有色的免费视频| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 熟女少妇亚洲综合色aaa.| 国产主播在线观看一区二区| 最新美女视频免费是黄的| 亚洲av美国av| 国产成人免费无遮挡视频| 大香蕉久久网| 美国免费a级毛片| 性色av乱码一区二区三区2| 国产精品久久久久成人av| 亚洲精品中文字幕一二三四区 | 免费观看a级毛片全部| 老司机靠b影院| 国产极品粉嫩免费观看在线| videos熟女内射| av又黄又爽大尺度在线免费看| 午夜福利欧美成人| av天堂久久9| 亚洲成av片中文字幕在线观看| 精品国内亚洲2022精品成人 | 日韩三级视频一区二区三区| 亚洲av成人一区二区三| 91av网站免费观看| 国产精品98久久久久久宅男小说| 久久性视频一级片| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 午夜免费成人在线视频| 午夜激情久久久久久久| 蜜桃在线观看..| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区激情短视频| 亚洲国产欧美网| 99精国产麻豆久久婷婷| 亚洲午夜精品一区,二区,三区| 男女边摸边吃奶| 中文亚洲av片在线观看爽 | 国产精品电影一区二区三区 | 免费不卡黄色视频| 99re在线观看精品视频| 国产片内射在线| 亚洲久久久国产精品| 亚洲精品av麻豆狂野| 成在线人永久免费视频| 欧美精品亚洲一区二区| 亚洲av欧美aⅴ国产| 国产亚洲av高清不卡| 波多野结衣一区麻豆| 狠狠精品人妻久久久久久综合| 免费不卡黄色视频| 午夜福利乱码中文字幕| 色视频在线一区二区三区| 女人久久www免费人成看片| 美国免费a级毛片| 纵有疾风起免费观看全集完整版| 黄网站色视频无遮挡免费观看| 成人黄色视频免费在线看| www.自偷自拍.com| 国产亚洲欧美精品永久| 一本一本久久a久久精品综合妖精| 黄色毛片三级朝国网站| 亚洲欧美一区二区三区黑人| 侵犯人妻中文字幕一二三四区| 国产黄色免费在线视频| 午夜精品国产一区二区电影| 最新在线观看一区二区三区| h视频一区二区三区| 国产精品一区二区免费欧美| 亚洲人成77777在线视频| av不卡在线播放| 日韩人妻精品一区2区三区| 久久久久久免费高清国产稀缺| 无人区码免费观看不卡 | 国产高清videossex| 亚洲精品美女久久av网站| 欧美日韩国产mv在线观看视频| 亚洲一码二码三码区别大吗| 亚洲精品在线美女| av片东京热男人的天堂| 人妻 亚洲 视频| 亚洲精品久久午夜乱码| 免费观看人在逋| 一级a爱视频在线免费观看| 男人操女人黄网站| 国产欧美日韩一区二区三区在线| 午夜精品久久久久久毛片777| 亚洲欧美激情在线| 亚洲精华国产精华精| 岛国在线观看网站| 日韩欧美免费精品| 女人爽到高潮嗷嗷叫在线视频| 成在线人永久免费视频| netflix在线观看网站| 极品教师在线免费播放| 亚洲欧美一区二区三区久久| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 国内毛片毛片毛片毛片毛片| 欧美人与性动交α欧美软件| 久久久国产精品麻豆| 少妇猛男粗大的猛烈进出视频| 日本精品一区二区三区蜜桃| 一级毛片电影观看| 日韩欧美一区视频在线观看| 欧美中文综合在线视频| 国产淫语在线视频| 欧美成人免费av一区二区三区 | 在线观看免费视频日本深夜| 久久久久久久久久久久大奶| 曰老女人黄片| 满18在线观看网站| 757午夜福利合集在线观看| 高清黄色对白视频在线免费看| 免费日韩欧美在线观看| 18禁美女被吸乳视频| 99国产精品一区二区三区| 一夜夜www| 一边摸一边抽搐一进一出视频| 69av精品久久久久久 | 男女免费视频国产| a级毛片黄视频| 久久天躁狠狠躁夜夜2o2o| 一二三四在线观看免费中文在| 欧美日韩福利视频一区二区| 欧美在线黄色| 我的亚洲天堂| 欧美激情高清一区二区三区| 麻豆乱淫一区二区| 夜夜夜夜夜久久久久| 国产不卡av网站在线观看| 大片免费播放器 马上看| 日韩人妻精品一区2区三区| 18禁观看日本| 亚洲精品国产一区二区精华液| 国产一区二区三区综合在线观看| 色婷婷久久久亚洲欧美| 欧美人与性动交α欧美精品济南到| 国产在线观看jvid| xxxhd国产人妻xxx| 国产成人精品无人区| 悠悠久久av| 91麻豆av在线| 日本黄色日本黄色录像| 在线 av 中文字幕| 日韩有码中文字幕| 一区二区日韩欧美中文字幕| 热re99久久国产66热| 一级,二级,三级黄色视频| 丝瓜视频免费看黄片| 高清在线国产一区| 国产男女超爽视频在线观看| 国产日韩欧美视频二区| 十分钟在线观看高清视频www| 国产伦理片在线播放av一区| 成人永久免费在线观看视频 | 男女午夜视频在线观看| 欧美大码av| 久久人妻福利社区极品人妻图片| 妹子高潮喷水视频| 91麻豆av在线| 国产在线免费精品| 一级a爱视频在线免费观看| 亚洲人成伊人成综合网2020| 宅男免费午夜| av电影中文网址| 香蕉国产在线看| 国产真人三级小视频在线观看| 国产av国产精品国产| 夜夜爽天天搞| 日韩欧美国产一区二区入口| 国产亚洲午夜精品一区二区久久| 久久毛片免费看一区二区三区| 最新美女视频免费是黄的| 欧美黄色片欧美黄色片| 久久午夜综合久久蜜桃| 18禁国产床啪视频网站| 正在播放国产对白刺激| 18禁国产床啪视频网站| xxxhd国产人妻xxx| 视频区欧美日本亚洲| 中文字幕精品免费在线观看视频| 精品福利永久在线观看| 在线观看66精品国产| 亚洲色图 男人天堂 中文字幕| 丝瓜视频免费看黄片| 久久久久视频综合| 1024香蕉在线观看| 国精品久久久久久国模美| 丝袜美腿诱惑在线| 在线 av 中文字幕| 最新的欧美精品一区二区| 久久久久久久大尺度免费视频| av片东京热男人的天堂| 国产又色又爽无遮挡免费看| 制服人妻中文乱码| 五月开心婷婷网| 欧美人与性动交α欧美软件| 亚洲精华国产精华精| 婷婷成人精品国产| 日本vs欧美在线观看视频| 久久精品熟女亚洲av麻豆精品| 久久影院123| 亚洲精品国产精品久久久不卡| 成人永久免费在线观看视频 | 9热在线视频观看99| 这个男人来自地球电影免费观看| 99国产极品粉嫩在线观看| 精品第一国产精品| 国产成人精品久久二区二区91| 老熟女久久久| 国产日韩一区二区三区精品不卡| 亚洲精品中文字幕一二三四区 | www.精华液| 午夜福利在线免费观看网站| 超碰97精品在线观看| 欧美中文综合在线视频| 亚洲九九香蕉| 纯流量卡能插随身wifi吗| 搡老乐熟女国产| 在线看a的网站| 久久精品国产a三级三级三级| 淫妇啪啪啪对白视频| 电影成人av| 日韩成人在线观看一区二区三区| 窝窝影院91人妻| 国产成人影院久久av| 99re在线观看精品视频| 精品国产国语对白av| 国产欧美日韩一区二区精品|