• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance

    2022-08-01 05:59:32PeiShen沈培YingWang王穎andFeiCao曹菲
    Chinese Physics B 2022年7期
    關(guān)鍵詞:王穎

    Pei Shen(沈培), Ying Wang(王穎), and Fei Cao(曹菲)

    1The Key Laboratory of RF Circuits and Systems,Ministry of Education,Hangzhou Dianzi University,Hangzhou 310018,China

    2The School of Mechanical and Electronic Engineering,Pingxiang University,Pingxiang 337055,China

    Keywords: 4H-silicon carbide (4H-SiC) trench gate MOSFET, breakdown voltage (VBR), specific onresistance(Ron,sp),switching energy loss,super-junction

    1. Introduction

    Wide-band gap third-generation semiconductor material silicon carbide offers excellent switching properties, temperature stability and low electromagnetic interference (EMI),making it ideal for next-generation power conversion applications such as switching power supplies, electric vehicles,and industrial power.[1–4]In recent years, SiC power MOSFETs with theVBRof 600–1700 V level dominated have been commercialized,but higherVBRof the SiC MOSFETs are less studied. Especially, the SiC trench gate MOSFET generally has lowRon,spdue to the small cell-pitch using the trench gate configuration.[5–7]However, SiC trench gate MOSFET has a fatal disadvantage. As the drain–source voltage increases,the electric field at the bottom corner of the gate trench increases,affecting the gate oxide stability.[8,9]To overcome this issue,some good methods and novel structures are proposed to overcome the electric field concentration at the bottom corner of the gate trench.[10–12]The most commonly used way to shield highly the electric field at the bottom corner of the gate trench is to increase the p+shield region under the gate trench,[13–15]yet with a marked increase inRon,sp. With charge-balanced npillar and p-pillar,the super-junction(SJ)MOSFET has more superior electrical characteristics compared with conventional SiC trench MOSFET.[16–20]Vudumulaet al.[16]studied the static and dynamic characteristics of the CoolSiC trench MOSFET structure by introducing the concept of super-junction,and the structure provides a good trade-off between gate oxide reliability andRon,sp. Oroujiet al.[17]proposed to replace the p+shield region with an n-type pillar and a p-type pillar at the bottom of the gate trench. The new device structure improves theVBRand reduces theRon,sp,and has good switching characteristics. Denget al.[18]studied a novel structure embedded in a floating p-column in the drift region,which ensures that theVBRis not reduced, allowing for a compromise between theRon,sp, and the short-circuit characteristics. Kim[19]proposed a novel SJ structure with a hetero-junction diode for improved reverse recovery characteristics and switching energy loss. Heet al.[20]investigated a new SJ structure by using grounded p+buried layers and connected p columns to encapsulate deep trench gate oxide to reduce the saturation current.

    Moreover, the practical feasibility of fabricating superjunction structures has been discussed by using the trenchfilling epitaxial growth method in some papers. Jiet al.[21,22]studied and made possible uniform epitaxial filling in the 4HSiC trench between 7 μm and 50 μm deep. There have also been significant advances in understanding the mechanisms of epitaxial growth of trench filling.[23–25]In addition, Ryojiet al.[26]have established a key manufacturing process of superjunction structure with thickness over 20 μm and high aspect ratio, and the theoretical limit of 6.5-kV class 4H-SiC superjunction MOSFET is broken through by the trench filling epitaxial growth method. Consequently,it is feasible to study the trench-filled epitaxial growth method of SiC super-junction devices with high breakdown voltage.

    In this article, an improved structure of 4H-SiC trench gate MOSFET with a side-wall p-pillar and a wrapping npillar at the right of the p-pillar is studied to reduce the gate oxide electric field and switching energy loss. The Silvaco TCAD simulation results demonstrate that the SNPPT-MOS exhibits good static and dynamic performance. The SNNPTMOS structure is a significant optimization of the full-SJ-MOS structure. In addition,in the second section,some preliminary manufacturing techniques are discussed, and their feasibility is proved from the processing point of view.

    2. Description of the device structure and fabrication procedure

    Figure 1 shows the schematic cross-section of the SNPPTMOS and full-SJ-MOS.[27]The main device-related parameters of the two structures are shown in Figs.1(a)and 1(b). The SNPPT-MOS structure mainly includes a p+-SiC buried region,CSL region,a p-pillar,and a wrap n-pillar. The gate oxide thickness of both sidewalls and the bottom is about 50 nm.The height of the CSL region was 1.7 μm (LCSL=1.7 μm).The height of the p-pillar was 24 μm(Lp-pillar=24 μm). The wrapped n-pillar junction depth (Lwn) was set to be 1 μm to decrease the impact toVBRand gate-drain charge. The distance between the wrap n-pillar and the gate was set at 0.5 μm(Wng= 0.5 μm). The thickness of the gate oxide was set at 50 nm. The n-drift region dopant concentration (Nd) was set to be 3×1015cm-3. Moreover, in the super-junction (SJ)MOSFET structure, the charge balance between the n-pillar and p-pillar must be precisely controlled. Thus, the products of the width and doping concentration of the n-pillar region of the two structures must equal to the product of the width and doping concentration of the p-pillar region the according to[16,17,28,29]

    whereWpandWnare the widths of the p-pillar and n-pillar,NpandNnare doping concentrations of the p-pillar and n-pillar,respectively. The detailed parameters of the simulation used for the two structures are listed in Table 1.

    Fig. 1. The schematic cross-section of the (a) SNPPT-MOS and (b)full-SJ-MOS.

    Table 1. Device parameters in simulations.

    A feasible manufacturing process of the SNPPT-MOS is shown in Fig. 2. An n-drift was grown on a 4H-SiC n+substrate, as shown in Fig. 2(a). Fabrication of the superjunction structure began with a deep stripe-trench formation in an n-drift by using inductively coupled plasma etching in an SF6/O2gas ambient, as shown in Fig. 2(b). The p-pillar region was fabricated with the trench-filling epitaxial (TFE)growth method,[26]as shown in Fig.2(c). After TFE growth,the wafer surface was flattened by thinning the TFE grown wafer to the initial epitaxial wafer thickness by using grinding and polishing,as shown in Fig.2(d). And then,CSL grew on the flat surface of the wafer. After CSL was formed, a mask plate of a certain size(distance between the two p-pillar)was manufactured to mask CSL, and p+-SiC buried region were generated on both sides of the mask plate through ion implantation. The resulting structure is shown in Fig. 2(e). Then remove the mask based on the structure in Fig.2(e),and grow another layer of p-type 4H-SiC to form the p-body region. After the p-body region was formed, n+-SiC source region was formed by ion implantation. Then, masks of the same size were used to mask certain n+-SiC source region,and p+-SiC source region was generated on both sides of the mask by ion implantation. The final structure is shown in Fig.2(f). Finally,the p+-shielding, the oxide layer, the gate structure, and the electrode were implemented in a similar way to the conventional SiC trench MOSFET,as shown in Figs.2(g)and 2(h).

    Fig.2. The key fabrication procedure of the SNPPT-MOS.

    Moreover, it is a very important step to align p+-SiC buried region and p+-SiC source region with p-pillar in the process of SNPPT-MOS structure.Firstly,for Fig.1(d),ensure that the polishing process thinned the epitaxial wafer to the initial thickness of the epitaxial wafer, so that the wafer surface becomes sufficiently flat. Secondly, the size of the mask in Fig.1(e)can be determined, that is, the distance between the p-pillar on both sides. In addition, in SiC devices, due to the low diffusion coefficient of dopant,[30]p+-SiC buried region is formed by ion implantation,and the doping amount of ion implantation impurity can be precisely controlled. For Fig.1(f),the p+-SiC source region is firstly formed by ion implantation on both sides of the n+-SiC source region. The mask used is the same size as that used in Fig.1(e). And the p+-SiC source region on both sides of the n+-SiC source region is also formed by ion implantation,which can accurately control the amount of impurity doping. Therefore,the accurate alignment of align p+-SiC buried region and p+-SiC source with p-pillar is ensured to a certain extent.

    At the same time, in order to better illustrate the feasibility of SNPPT-MOS structure. TheVBR,Ron,sp, and FoM(V2BRRon,sp)of p+-SiC buried region width and p+-SiC source region width from-10% to +10% deviation are simulated and discussed, as shown in Table 2. As can be seen from Table 2, theVBRandRon,spof the device are almost constant when the error of the alignment widths of the p+-SiC source region and p+-SiC buried region with p-pillar ranges from 0 to-10%. When p+-SiC source region and p+-SiC buried region are aligned with the width of p-pillar from 0 to+10%,theVBRof the device increases slightly and then decreases slightly,theRon,spchanges accordingly,and the FoM(V2BRRon,sp)is calculated to be almost the same.

    Table 2.The VBR,Ron,sp and FoM(V2BR/Ron,sp)of p+-SiC buried region width and p+-SiC source region width from-10%to+10%.

    3. Numerical simulation and result analysis

    In this section,the static characteristics and the dynamic characteristics of the SNPPT-MOS were simulated by using the 2-D Silvaco ATLAS tool and compared the performance of the full-SJ-MOS with the performance of the SNPPT-MOS.In this simulation, some physical models were used. The physical models are divided into four parts. The first part is the mobility model, where the simulation uses the concentration and temperature-related mobility model(ANALYTIC)and the parallel electric field correlation model(FLDMOB).The second part is the composite model, where the simulation uses the Shockley–Read–Hall complex model(SRH)and the Auger complex model(AUGER).The third part is the carrier generation model, where the IMPACT SELB model is used in the simulation. The fourth part is the carrier statistical model.The incomplete ionization model (INCOMPLETE) is used in the simulation.[31–33]

    3.1. On-state characteristic

    The on-state output characteristic curves of the SNPPTMOS and full-SJ-MOS atVgs=20 V,Vgs=16 V,Vgs=12 V,andVgs=8 V are shown in Fig.3. TheRon,spof the SNPPTMOS was 9.90 mΩ·cm2, and theRon,spof the full-SJ-MOS was 11.5 mΩ·cm2,atVgs=16 V andVds=1 V.The wrap npillar and CSL region in the optimized structure provide two diffusion paths for current diffusion and compress the depletion region. The thin light doping of the CSL region causes the electrons to diffuse horizontally earlier.

    Fig. 3. The on-state output characteristic curves for the SNPPT-MOS and full-SJ-MOS.

    In addition, the wrap n-pillar allows the current to flow vertically. We know that the more narrow the depletion region, the wider the current path of the electron, resulting in the lowestRon,sp. Compared with full-SJ-MOS, theRon,spof SNPPT-MOS decreased by 16.2%. TheRon,spof the SNPPTMOS is slightly lower than that of full-SJ-MOS because the SNPPT-MOS structure has a higher doping concentration in wrap n-pillar. In the SNPPT-MOS structure,the wrap n-pillar under the CSL the electron concentration in the channel region,while the depletion region decreases,increasing the current path in the SNPPT-MOS structure, as shown in Fig. 4.The equation of theRon,spcan be described as

    whereWdis the maximum depletion width and theμnis the electron’s mobility.

    Fig.4. Distribution of the electron concentration for (a) SNPPT-MOS and(b)full-SJ-MOS.

    3.2. Off-state characteristics

    Figure 5 shows the off-state breakdown characteristic curves for the SNPPT-MOS and full-SJ-MOS. The corresponding electric field in the gate oxide distributions is shown in Fig.6.

    Fig.5. OFF-state breakdown characteristic curves of the SNPPT-MOS and full-SJ-MOS.

    Fig. 6. OFF-state corresponds to electric field curves of (a) SNPPTMOS and(b)full-SJ-MOS.

    We can see that the peak electric field in the gate oxide (Epeak-goe) in the full-SJ-MOS structure has reached 3.12 MV/cm with a drain bias voltage of 4226 V. In the SNPPT-MOS structure, the value of theEpeak-goeis about 2.80 MV/cm with a drain bias of 4713 V. The SNPPT-MOS exhibits lowerEpeak-goethan the full-SJ-MOS,this is because of the mutual depletion effect of the p-pillar and the wrap npillar in the n-drift,and the electric field around the bottom of the gate trench could be screened effectively. As for the full-SJ-MOS structure,it could also alleviate the high electric field around the bottom of the gate trench to a certain extent due to the p-pillar embedded n-drift region, while the high doping concentration of the n-drain region and thus theEpeak-goe(3.12 MV/cm)is slightly higher than the SNPPT-MOS,resulting in aVBRwitha drain bias of 4226 V. The vertical electric field distributions of the SNPPT-MOS and the full-SJ-MOS from 0 to 30 μm are shown in Fig. 7. The maximum gate oxide electric field is about 2.5 μm vertically. From 2.5 μm onward,the vertical electric field curve of SNPPT-MOS is almost as flat as that of the full-SJ-MOS.Because of the mutual depletion effect of the p-pillar and the wrap n-pillar in the ndrain region,the field distributions for the SNPPT-MOS at the p-pillar and the wrap n-pillar interface are uniforms.

    Fig.7. The vertical distribution of the electric field from 0 to 30 μm.

    3.3. Reverse transfer capacitance and gate charge characteristics

    The smaller reverse transfer capacitance is of great importance for reducing the switching loss and preventing the false turn-on. It helps improve the switching characteristics.The reverse transfer capacitance(Crss=Cgd)properties of the SNPPT-MOS and full-SJ-MOS are shown in Fig.8.Compared with theCrssof the full-SJ-MOS,the SNPPT-MOS exhibits a lowerCgdthan the full-SJ-MOS,owing to the effective electric field shielding of the p-pillar and wrap n-pillar. And they have a smaller p–n junction area than the conventional full superjunction structure.

    The specific gate charge (Qg,sp) characteristic curves of the SNPPT-MOS and the full-SJ-MOS are evaluated as well,as shown in Fig. 9. TheQg,spis extracted by using the mixmode simulation. The simulation circuit schematic diagram is inserted in the bottom right corner of Fig. 9. The extractedQgd,spof the SNPPT-MOS is 101 nC/cm2.The SNPPTMOS exhibits a lower miller charge compared with that of the 154 nC/cm2for the full-SJ-MOS due to the p-pillar and wrapped n-pillar having smaller p–n junction area and effective electric field shielding ability. The FoM (Ron,sp×Qgd,sp)is a widely used parameter to measure the device performance in high-frequency switching applications.[34–36]According to the calculation, the FoM (Ron,sp×Qgd,sp) of the full-SJ-MOS structure is 1771 mΩ·nC.The SNPPT-MOS structure obtained superiorRon,sp×Qgd,spwith a value of 999.9 mΩ·nC, which decreases by 77.1%compared with the full-SJ-MOS structure.

    Fig.8. The Crss property curves of the SNPPT-MOS and full-SJ-MOS.

    Fig.9. The Qg,sp characteristic curves of the SNPPT-MOS and full-SJMOS.

    3.4. Dynamic characteristics

    To better study the switching characteristics of the SNPPT-MOS, the double-pulse test (DUT) circuit is used to investigate the switching performance of the two structures,as shown in Fig. 10. The basic parameters of the DUT circuit are listed in Table 3. Figure 11 shows the switching waveforms of the SNPPT-MOS and full-SJ-MOS. As can be seen from Fig.11,the full-SJ-MOS needs a longer period to arrive at highVdsand highIdscompared with the SNPPT-MOS.TOFFis defined as the turn-off delay time and turn-off fall time.TONis defined as the turn-on delay time and turn-on fall time.

    Fig.10. The double-pulse test circuit.

    Table 3. The basic parameters of the DUT circuit.

    Fig.11. Switching waveforms of(a)SNPPT-MOS and(b)full-SJ-MOS.

    Figure 12 shows the switching energy loss for the SNPPTMOS and the full-SJ-MOS. The calculated energy loss values of turn-on (Eon) and turn-off (Eoff) for SNPPT-MOS are 32.5 mJ/cm2and 31.7 mJ/cm2. The calculated values ofEonandEofffor full-SJ-MOS are 40.3 mJ/cm2and 36.5 mJ/cm2.It can be discerned that in the SNPPT-MOS structure,the energy loss duringEonis reduced as a respective decrease of 24.%compared with the full-SJ-MOS, and theEoffis a respective decrease of 15.1%compared with the full-SJ-MOS.The equation of theEonandEoffcan be described as

    whereT1(10%ofVgs(on)),T2(2%ofVdd),T3(90%ofVgs(on))andT4(2%ofIds).

    Fig.12. Switching energy loss of the SNPPT-MOS and full-SJ-MOS.

    3.5. Parameters optimization

    To get the optimized device structure,the added wrap npillar dopant concentration(Nn),p-pillar dopant concentration(Np),and the height of the p-pillar(H)have a great influence on the device performance. In the SJ MOSFET structure, to obtain highVBR,it is necessary to control accurately the charge balance between n-pillar and p-pillar regions. So the products of the width and concentration of the n-pillar region of the SNPPT-MOS must equal the product of the width and concentration of the p-pillar region. Figure 13 shows theVBRandRon,spof this SNPPT-MOS structure in the case ofNpfrom 1×1016cm-3to 3×1016cm-3,Nnfrom 3×1016cm-3to 9×1016cm-3, andHfrom 10 μm to 24 μm. And the FoM(V2BR/Ron,sp) corresponding to differentHis given in detail.Figure 14 shows FoM(V2BR/Ron,sp)as a function of the differentNn,Np,andH. The maximum FoM that appears at theNn,Np, andHare 6×1016cm-3, 2×1016cm-3, and 24 μm, respectively. We also investigated the most suitableWng. TheWngfrom 0.1 μm to 0.7 μm, as shown in Fig. 15, we can see that the smaller theWngwas, the smaller theRon,spof the SNPPT-MOS was. However, theVBRalso decreased. As can be seen from Fig. 15, we can find that the most suitableWngwas 0.5 μm.

    Fig.13. The VBR and Ron,sp as function Np and Nn for different heights of the p-pillar.

    Fig.14. FoM(V2BR/Ron,sp)as a function of the different Nn,Np,and H.

    Fig. 15. The VBR and Ron,sp for the different distances between the npillar and the gate(Wng).

    Table 4 gives theVBR,Ron,sp,and FoM whenWngis set at 0.5 μm. The higher theNn,and the smaller theVBRandRon,spof the SNPPT-MOS.The FoM value increases firstly and then decreases. The main reason is that whenNnis low,the depletion region in the n-pillar is wider, which makes the current path narrow. As theNnvalue increases, the electron path becomes wider. As the doping concentration of n-pillar is higher than that of drift,the increase ofNnsignificantly improves the reduction ofRon,sp. WhenNnis low, the reduction ofRon,sphas more effect on FoM than that ofVBR. However,whenNnis high,the effect of the decrease ofRon,spon FoM is less than that of the decrease ofVBR.

    Table 4. The VBR,Ron,sp,and FoM at Wng=0.5 μm.

    Table 5 gives theVBR,Ron,sp, and FoM whenNnis 6×1016cm-3. As can be seen from Table 5, we can find that the wider theWng, the larger theRon,spand theVBR. The FoM value increases firstly and then decreases. The main reason is that when theWngis smaller, the larger the area of the electron flow through the n-pillar. The area of electrons flow through in the n-pillar is larger than the depletion region. With the increase ofWng, the area of electrons flowing through the n-pillar increases. It is because of the high doping concentration of the n-pillar that the area of electrons flows through the n-pillar increases, which promotes the decrease ofRon,sp.WhenWngis small,the effect ofRon,spon FoM is greater than that ofVBR.With the increase ofWng,the contribution ofRon,spto FoM decreased. In the largerWngcondition,the increase ofRon,sphad less effect on FoM than that ofVBR. Therefore,we choose these two parameters as the basement of our simulations and the following discussion. The electrical property of the full-SJ-MOS and the SNPPT-MOS are listed in Table 6.

    Table 5. The VBR,Ron,sp,and FoM at Nn=6×1016 cm-3.

    Table 6. Electrical property of the SNPPT-MOS and the full-SJ-MOS.

    4. Conclusion and perspectives

    An optimized structure of the 4H-SiC trench MOSFET is studied in this article. The improved structure exhibits good electrical characteristics due to the incorporating side-wall ppillar region and a wrapping n-pillar region in the drift region.The SNPPT-MOS structure has significantly protected the gate oxide and relieves the electric field around the p+ shielding region. With charge-balanced n-pillar and p-pillar under the p-body,the improved structure help reducing theRon,sp,which leads to the tradeoff of theVBRandRon,sp. In addition, the improved structure exhibit superior switching property during both the turn-on and the turn-off transients.

    Acknowledgements

    This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61774052 and 61904045), the National Natural Science Foundation of Jiangxi Province of China (Grant No. 20202BABL201021),and the Education Department of Jiangxi Province of China for Youth Foundation(Grant No.GJJ191154).

    猜你喜歡
    王穎
    發(fā)現(xiàn)反復(fù)結(jié)構(gòu),輕松學(xué)寫故事
    Novel layout design of 4H-SiC merged PiN Schottky diodes leading to improved surge robustness
    郝睿揚(yáng)、王潤(rùn)雪、王穎、田雨作品
    大觀(2022年9期)2022-12-06 12:37:40
    地表水監(jiān)測(cè)中存在的問題及策略
    Improved 4H-SiC UMOSFET with super-junction shield region*
    追本溯源刨根問底
    《水天一色》《踢球的女孩》《傍晚》
    文化交流(2019年12期)2019-01-09 07:06:30
    Solitary Vortex Evolution in Two-Dimensional Harmonically Trapped Bose-Einstein Condensates?
    Research and development trend of intelligent clothing
    東方教育(2018年3期)2018-03-30 09:19:36
    王穎作品
    欧美日韩亚洲高清精品| 亚洲欧美一区二区三区黑人 | 美女脱内裤让男人舔精品视频| 99国产精品免费福利视频| 午夜福利,免费看| 精品人妻熟女毛片av久久网站| 美女脱内裤让男人舔精品视频| 日韩av在线免费看完整版不卡| 欧美日韩视频精品一区| 成人18禁高潮啪啪吃奶动态图 | 自拍欧美九色日韩亚洲蝌蚪91 | 欧美一级a爱片免费观看看| 青春草视频在线免费观看| 亚洲国产精品999| 亚洲成色77777| 成人毛片a级毛片在线播放| 免费人妻精品一区二区三区视频| 精品久久久久久久久亚洲| 亚洲美女视频黄频| 中国国产av一级| 色视频在线一区二区三区| 国产精品女同一区二区软件| 观看美女的网站| 亚洲国产精品一区三区| 啦啦啦中文免费视频观看日本| 能在线免费看毛片的网站| 一本一本综合久久| 内地一区二区视频在线| 亚洲久久久国产精品| 99精国产麻豆久久婷婷| 精品久久久久久久久亚洲| 男女边吃奶边做爰视频| 午夜老司机福利剧场| 韩国av在线不卡| 新久久久久国产一级毛片| 97超碰精品成人国产| 最近中文字幕2019免费版| 午夜日本视频在线| 久久人人爽人人爽人人片va| 能在线免费看毛片的网站| 国产视频内射| 精品久久久噜噜| 肉色欧美久久久久久久蜜桃| av在线观看视频网站免费| a级毛片免费高清观看在线播放| 91精品国产国语对白视频| 国产成人aa在线观看| 亚洲av不卡在线观看| 久久久精品免费免费高清| 国产黄片美女视频| 一区二区三区精品91| 亚洲自偷自拍三级| 能在线免费看毛片的网站| 少妇人妻精品综合一区二区| 在线观看一区二区三区激情| 看十八女毛片水多多多| 一区在线观看完整版| 伦理电影免费视频| 一本一本综合久久| 纯流量卡能插随身wifi吗| 蜜桃在线观看..| 人体艺术视频欧美日本| 亚洲欧洲国产日韩| 久久青草综合色| 男人爽女人下面视频在线观看| av黄色大香蕉| 国产成人精品福利久久| 国产精品无大码| 国产男人的电影天堂91| 嫩草影院入口| 在线观看一区二区三区激情| 亚洲第一区二区三区不卡| 国产精品成人在线| 在线观看免费高清a一片| 99热这里只有精品一区| 尾随美女入室| 男人舔奶头视频| 国产国拍精品亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 亚洲美女搞黄在线观看| 三级经典国产精品| 久久久久久伊人网av| 中文字幕av电影在线播放| 最近的中文字幕免费完整| 91成人精品电影| 久久av网站| 亚洲一区二区三区欧美精品| 亚洲精品国产色婷婷电影| 春色校园在线视频观看| 国产日韩欧美亚洲二区| 国产男女超爽视频在线观看| 欧美精品国产亚洲| 插阴视频在线观看视频| 亚洲精品一区蜜桃| av天堂中文字幕网| 亚洲精品久久久久久婷婷小说| 免费av中文字幕在线| 久久精品久久精品一区二区三区| 国产中年淑女户外野战色| 内地一区二区视频在线| 欧美老熟妇乱子伦牲交| 日韩中字成人| 久久人人爽av亚洲精品天堂| 丰满少妇做爰视频| 一区二区三区乱码不卡18| 亚洲精品成人av观看孕妇| 国产淫语在线视频| 久久久久久久久久久免费av| av又黄又爽大尺度在线免费看| 国产成人a∨麻豆精品| 亚洲av不卡在线观看| 午夜福利,免费看| a级毛片在线看网站| 亚洲激情五月婷婷啪啪| 精品久久国产蜜桃| 亚洲精品成人av观看孕妇| 少妇被粗大的猛进出69影院 | 欧美精品国产亚洲| 观看美女的网站| 久久久久久人妻| 熟女av电影| 久久久久久久久久久久大奶| 一级片'在线观看视频| 91精品伊人久久大香线蕉| 秋霞在线观看毛片| 日本黄色日本黄色录像| 成人黄色视频免费在线看| 国产视频首页在线观看| 色视频www国产| 免费看光身美女| 2022亚洲国产成人精品| 我要看日韩黄色一级片| 久久 成人 亚洲| 久久国内精品自在自线图片| 国产精品蜜桃在线观看| 亚洲av二区三区四区| 亚洲天堂av无毛| 搡老乐熟女国产| 在现免费观看毛片| 99国产精品免费福利视频| 一区二区三区精品91| 久久ye,这里只有精品| 国产亚洲一区二区精品| 国产成人午夜福利电影在线观看| 国产免费福利视频在线观看| 99久久中文字幕三级久久日本| 久久午夜综合久久蜜桃| 亚洲av免费高清在线观看| 国产亚洲一区二区精品| 精品视频人人做人人爽| 在线天堂最新版资源| 日韩欧美 国产精品| 91aial.com中文字幕在线观看| 久久青草综合色| 特大巨黑吊av在线直播| 人妻制服诱惑在线中文字幕| 2022亚洲国产成人精品| 最近手机中文字幕大全| a级毛色黄片| 国产午夜精品一二区理论片| 大话2 男鬼变身卡| 大码成人一级视频| 在现免费观看毛片| 国产一区有黄有色的免费视频| 老司机影院毛片| 日韩伦理黄色片| 黄色怎么调成土黄色| 久久精品久久久久久久性| 精品少妇黑人巨大在线播放| 久久精品国产自在天天线| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区国产| 国产欧美日韩精品一区二区| 久久久久久久久久久久大奶| av天堂久久9| 少妇熟女欧美另类| 高清视频免费观看一区二区| 久久国产精品大桥未久av | 极品教师在线视频| 黄色欧美视频在线观看| 欧美日韩综合久久久久久| 人妻夜夜爽99麻豆av| 亚洲美女视频黄频| 精品少妇内射三级| 秋霞伦理黄片| 我的老师免费观看完整版| 在线观看免费日韩欧美大片 | 最黄视频免费看| 久久久国产一区二区| 在现免费观看毛片| 欧美精品高潮呻吟av久久| 午夜福利,免费看| 国产女主播在线喷水免费视频网站| 国产一区亚洲一区在线观看| 少妇猛男粗大的猛烈进出视频| 在线亚洲精品国产二区图片欧美 | 亚洲国产精品一区二区三区在线| 亚洲自偷自拍三级| 久久99热6这里只有精品| 国产成人精品福利久久| 哪个播放器可以免费观看大片| 久久久久视频综合| 偷拍熟女少妇极品色| 丰满少妇做爰视频| 精品人妻一区二区三区麻豆| 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 亚洲av电影在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲av成人精品一区久久| 看免费成人av毛片| 欧美bdsm另类| 亚洲色图综合在线观看| 能在线免费看毛片的网站| 中文字幕免费在线视频6| 99久久精品一区二区三区| 黑丝袜美女国产一区| 国产精品国产三级专区第一集| 国产成人一区二区在线| 免费观看av网站的网址| 又大又黄又爽视频免费| 狂野欧美激情性xxxx在线观看| 啦啦啦中文免费视频观看日本| 国国产精品蜜臀av免费| 最近2019中文字幕mv第一页| 国产毛片在线视频| 少妇被粗大猛烈的视频| 亚洲高清免费不卡视频| 99久久人妻综合| 亚洲国产日韩一区二区| 美女主播在线视频| 午夜福利视频精品| 成年av动漫网址| 伦理电影大哥的女人| 亚洲伊人久久精品综合| 最近手机中文字幕大全| 久久狼人影院| 免费人妻精品一区二区三区视频| av在线播放精品| 亚洲美女搞黄在线观看| 亚洲av日韩在线播放| av一本久久久久| 欧美丝袜亚洲另类| 麻豆成人av视频| 2022亚洲国产成人精品| 亚洲精品久久午夜乱码| 久久久国产欧美日韩av| 国产精品福利在线免费观看| 中国国产av一级| 欧美丝袜亚洲另类| 你懂的网址亚洲精品在线观看| 午夜久久久在线观看| 中文字幕精品免费在线观看视频 | 9色porny在线观看| 成年av动漫网址| 夜夜看夜夜爽夜夜摸| 多毛熟女@视频| 亚洲av综合色区一区| 黄色配什么色好看| 欧美精品国产亚洲| 婷婷色av中文字幕| 人体艺术视频欧美日本| 免费久久久久久久精品成人欧美视频 | 少妇精品久久久久久久| 免费播放大片免费观看视频在线观看| 男人狂女人下面高潮的视频| 欧美亚洲 丝袜 人妻 在线| 人妻人人澡人人爽人人| 久久久久久久久久久丰满| 国产成人精品一,二区| av在线观看视频网站免费| 99久国产av精品国产电影| 人人妻人人看人人澡| 日本wwww免费看| 国语对白做爰xxxⅹ性视频网站| 日韩视频在线欧美| 日韩中文字幕视频在线看片| 能在线免费看毛片的网站| 欧美精品亚洲一区二区| 国产黄片美女视频| 人人妻人人添人人爽欧美一区卜| 观看免费一级毛片| 亚洲精品视频女| 精品一区在线观看国产| 高清在线视频一区二区三区| 蜜臀久久99精品久久宅男| 日日摸夜夜添夜夜爱| 大又大粗又爽又黄少妇毛片口| 久久99精品国语久久久| 最黄视频免费看| av国产精品久久久久影院| 国产精品一二三区在线看| 亚洲av二区三区四区| 国产亚洲91精品色在线| 极品教师在线视频| av福利片在线观看| 狂野欧美激情性xxxx在线观看| 在线观看www视频免费| 精品酒店卫生间| 草草在线视频免费看| 一本久久精品| 国产在线免费精品| 亚洲一级一片aⅴ在线观看| 简卡轻食公司| 人妻制服诱惑在线中文字幕| 亚洲欧洲日产国产| 青春草视频在线免费观看| 色吧在线观看| 在线观看www视频免费| 日韩一本色道免费dvd| 日韩不卡一区二区三区视频在线| 亚洲精品国产av成人精品| 中文资源天堂在线| 观看av在线不卡| 我要看黄色一级片免费的| 国产一区有黄有色的免费视频| av福利片在线观看| 男人和女人高潮做爰伦理| 国产伦理片在线播放av一区| 日韩av免费高清视频| 晚上一个人看的免费电影| 99久久精品一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲av电影在线观看一区二区三区| 国产69精品久久久久777片| 精品国产一区二区三区久久久樱花| 又粗又硬又长又爽又黄的视频| 六月丁香七月| 赤兔流量卡办理| 国产一区二区在线观看av| 乱系列少妇在线播放| 亚洲欧美日韩东京热| 大码成人一级视频| 亚洲精品国产av蜜桃| 国产成人精品无人区| 观看美女的网站| 麻豆精品久久久久久蜜桃| 欧美激情极品国产一区二区三区 | 国产探花极品一区二区| 亚州av有码| 日本黄色片子视频| 久久国产精品大桥未久av | av黄色大香蕉| 日韩人妻高清精品专区| 毛片一级片免费看久久久久| 另类亚洲欧美激情| 久久精品国产自在天天线| 少妇人妻精品综合一区二区| 成人亚洲精品一区在线观看| 97在线视频观看| 中文字幕制服av| 91久久精品电影网| 最近手机中文字幕大全| 精品酒店卫生间| 激情五月婷婷亚洲| 老熟女久久久| 69精品国产乱码久久久| 欧美日韩国产mv在线观看视频| 99re6热这里在线精品视频| 久久人人爽人人爽人人片va| 黄色欧美视频在线观看| 精品久久久久久电影网| 午夜激情福利司机影院| 自拍偷自拍亚洲精品老妇| 欧美日韩国产mv在线观看视频| 久久国产精品大桥未久av | 欧美日本中文国产一区发布| 九色成人免费人妻av| 亚洲人成网站在线播| 又大又黄又爽视频免费| 亚洲av综合色区一区| 午夜av观看不卡| 国产老妇伦熟女老妇高清| 日韩熟女老妇一区二区性免费视频| 国产高清有码在线观看视频| 久久久欧美国产精品| 亚州av有码| 日本欧美视频一区| 久久久久精品久久久久真实原创| 欧美xxxx性猛交bbbb| 男的添女的下面高潮视频| 午夜福利视频精品| 国产探花极品一区二区| 久久97久久精品| 久久久欧美国产精品| 最黄视频免费看| 亚洲人成网站在线播| 一区二区三区精品91| 高清欧美精品videossex| 全区人妻精品视频| 国产免费视频播放在线视频| 内射极品少妇av片p| 九色成人免费人妻av| 极品少妇高潮喷水抽搐| 欧美日韩精品成人综合77777| 色婷婷久久久亚洲欧美| 国产欧美亚洲国产| 日日爽夜夜爽网站| 午夜福利,免费看| 午夜久久久在线观看| 精品亚洲成a人片在线观看| 五月伊人婷婷丁香| 国语对白做爰xxxⅹ性视频网站| 丝袜喷水一区| 3wmmmm亚洲av在线观看| 亚洲国产精品成人久久小说| 男女免费视频国产| 婷婷色综合www| 黄色配什么色好看| 9色porny在线观看| 国产伦理片在线播放av一区| 国产男女内射视频| 老女人水多毛片| 国产成人免费观看mmmm| 自线自在国产av| 亚洲熟女精品中文字幕| 少妇人妻精品综合一区二区| 欧美xxⅹ黑人| 国产成人a∨麻豆精品| 另类亚洲欧美激情| av一本久久久久| 少妇精品久久久久久久| 国产成人免费观看mmmm| 啦啦啦啦在线视频资源| 日本午夜av视频| 熟女人妻精品中文字幕| 亚洲电影在线观看av| 99久久综合免费| 免费观看在线日韩| 男男h啪啪无遮挡| 亚洲无线观看免费| 精品久久国产蜜桃| 精品久久久噜噜| www.色视频.com| 香蕉精品网在线| 国产黄频视频在线观看| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区黑人 | 日日爽夜夜爽网站| 内射极品少妇av片p| 久久午夜综合久久蜜桃| 国产成人午夜福利电影在线观看| 久久97久久精品| 人体艺术视频欧美日本| 男人和女人高潮做爰伦理| 国产精品一区二区在线观看99| 国产高清国产精品国产三级| 熟女av电影| 精品久久国产蜜桃| 欧美xxⅹ黑人| 日日摸夜夜添夜夜爱| 国产成人一区二区在线| 成人特级av手机在线观看| 夜夜爽夜夜爽视频| 亚洲av.av天堂| 精品99又大又爽又粗少妇毛片| 99久久中文字幕三级久久日本| 精品一品国产午夜福利视频| 18禁在线播放成人免费| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产av成人精品| 久久热精品热| 男人狂女人下面高潮的视频| 女人精品久久久久毛片| 国产精品国产av在线观看| 欧美日韩视频高清一区二区三区二| 国产在线免费精品| 最近手机中文字幕大全| 日韩欧美 国产精品| 三级国产精品片| 国产一区二区三区av在线| 韩国av在线不卡| av福利片在线观看| 啦啦啦视频在线资源免费观看| 夫妻性生交免费视频一级片| 少妇裸体淫交视频免费看高清| 91精品一卡2卡3卡4卡| 久久精品国产亚洲网站| 男人舔奶头视频| 国产精品久久久久成人av| 少妇精品久久久久久久| 亚洲精品乱久久久久久| 国产成人精品一,二区| 26uuu在线亚洲综合色| 一级av片app| 日本与韩国留学比较| 国产精品一二三区在线看| 免费人妻精品一区二区三区视频| 亚洲精品成人av观看孕妇| 高清午夜精品一区二区三区| 国产精品久久久久久av不卡| 久久鲁丝午夜福利片| 一级毛片电影观看| 97在线人人人人妻| 观看av在线不卡| 免费观看的影片在线观看| 三级经典国产精品| av国产精品久久久久影院| 日韩,欧美,国产一区二区三区| 欧美另类一区| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6| 欧美+日韩+精品| 偷拍熟女少妇极品色| 日韩成人伦理影院| 成人影院久久| 亚洲,欧美,日韩| 嫩草影院新地址| 99国产精品免费福利视频| 9色porny在线观看| 欧美激情国产日韩精品一区| 午夜免费鲁丝| 大香蕉久久网| 国产黄片视频在线免费观看| 在线播放无遮挡| 一区二区三区四区激情视频| 久久精品国产亚洲av涩爱| 9色porny在线观看| 日韩成人伦理影院| 国产黄片视频在线免费观看| 国产欧美亚洲国产| 黄色毛片三级朝国网站 | 18禁在线播放成人免费| 久久亚洲国产成人精品v| 搡老乐熟女国产| 国产伦在线观看视频一区| 成人特级av手机在线观看| 人妻 亚洲 视频| 九色成人免费人妻av| 亚洲国产毛片av蜜桃av| 美女国产视频在线观看| 少妇的逼水好多| 狂野欧美激情性xxxx在线观看| 人人妻人人看人人澡| 18禁在线无遮挡免费观看视频| 成人亚洲欧美一区二区av| 91久久精品国产一区二区成人| 亚洲av日韩在线播放| 熟女人妻精品中文字幕| 男女啪啪激烈高潮av片| 十八禁高潮呻吟视频 | 国产成人aa在线观看| 久久精品国产自在天天线| 新久久久久国产一级毛片| 久久免费观看电影| 99热这里只有精品一区| 女人精品久久久久毛片| 亚洲av不卡在线观看| 久久久久久伊人网av| 午夜影院在线不卡| 亚洲欧洲日产国产| a级片在线免费高清观看视频| 色视频在线一区二区三区| 国产在线视频一区二区| 久久国内精品自在自线图片| 在线观看av片永久免费下载| 成年人午夜在线观看视频| 亚洲美女黄色视频免费看| 中文字幕免费在线视频6| 日本猛色少妇xxxxx猛交久久| 日日摸夜夜添夜夜添av毛片| 免费观看性生交大片5| 亚洲久久久国产精品| 美女内射精品一级片tv| 亚洲欧美一区二区三区黑人 | 少妇人妻 视频| 91精品国产九色| 如日韩欧美国产精品一区二区三区 | 91aial.com中文字幕在线观看| 亚洲不卡免费看| 日本vs欧美在线观看视频 | 精品久久久久久电影网| 在线亚洲精品国产二区图片欧美 | 最新中文字幕久久久久| 国产精品国产三级国产专区5o| 成人毛片60女人毛片免费| 色婷婷久久久亚洲欧美| 最近中文字幕2019免费版| 久久精品久久精品一区二区三区| 黄色一级大片看看| 嫩草影院入口| 在线看a的网站| a 毛片基地| 日本与韩国留学比较| 免费黄网站久久成人精品| 爱豆传媒免费全集在线观看| 免费人成在线观看视频色| 97在线视频观看| 亚洲精品一二三| 久久 成人 亚洲| 免费观看av网站的网址| 国产精品久久久久久精品电影小说| 在线观看av片永久免费下载| 婷婷色av中文字幕| 少妇人妻久久综合中文| 欧美丝袜亚洲另类| 欧美亚洲 丝袜 人妻 在线| 国产深夜福利视频在线观看| xxx大片免费视频| 91精品一卡2卡3卡4卡| av国产精品久久久久影院| 免费av不卡在线播放| 亚洲va在线va天堂va国产| 成年美女黄网站色视频大全免费 | 国产精品久久久久久av不卡| 欧美区成人在线视频| 亚洲国产精品成人久久小说| 蜜臀久久99精品久久宅男| 久久久久久人妻| 日韩中文字幕视频在线看片| 80岁老熟妇乱子伦牲交| 伦理电影免费视频| 午夜福利,免费看| 一区二区三区乱码不卡18| 天天躁夜夜躁狠狠久久av|