• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance

    2022-08-01 05:59:32PeiShen沈培YingWang王穎andFeiCao曹菲
    Chinese Physics B 2022年7期
    關(guān)鍵詞:王穎

    Pei Shen(沈培), Ying Wang(王穎), and Fei Cao(曹菲)

    1The Key Laboratory of RF Circuits and Systems,Ministry of Education,Hangzhou Dianzi University,Hangzhou 310018,China

    2The School of Mechanical and Electronic Engineering,Pingxiang University,Pingxiang 337055,China

    Keywords: 4H-silicon carbide (4H-SiC) trench gate MOSFET, breakdown voltage (VBR), specific onresistance(Ron,sp),switching energy loss,super-junction

    1. Introduction

    Wide-band gap third-generation semiconductor material silicon carbide offers excellent switching properties, temperature stability and low electromagnetic interference (EMI),making it ideal for next-generation power conversion applications such as switching power supplies, electric vehicles,and industrial power.[1–4]In recent years, SiC power MOSFETs with theVBRof 600–1700 V level dominated have been commercialized,but higherVBRof the SiC MOSFETs are less studied. Especially, the SiC trench gate MOSFET generally has lowRon,spdue to the small cell-pitch using the trench gate configuration.[5–7]However, SiC trench gate MOSFET has a fatal disadvantage. As the drain–source voltage increases,the electric field at the bottom corner of the gate trench increases,affecting the gate oxide stability.[8,9]To overcome this issue,some good methods and novel structures are proposed to overcome the electric field concentration at the bottom corner of the gate trench.[10–12]The most commonly used way to shield highly the electric field at the bottom corner of the gate trench is to increase the p+shield region under the gate trench,[13–15]yet with a marked increase inRon,sp. With charge-balanced npillar and p-pillar,the super-junction(SJ)MOSFET has more superior electrical characteristics compared with conventional SiC trench MOSFET.[16–20]Vudumulaet al.[16]studied the static and dynamic characteristics of the CoolSiC trench MOSFET structure by introducing the concept of super-junction,and the structure provides a good trade-off between gate oxide reliability andRon,sp. Oroujiet al.[17]proposed to replace the p+shield region with an n-type pillar and a p-type pillar at the bottom of the gate trench. The new device structure improves theVBRand reduces theRon,sp,and has good switching characteristics. Denget al.[18]studied a novel structure embedded in a floating p-column in the drift region,which ensures that theVBRis not reduced, allowing for a compromise between theRon,sp, and the short-circuit characteristics. Kim[19]proposed a novel SJ structure with a hetero-junction diode for improved reverse recovery characteristics and switching energy loss. Heet al.[20]investigated a new SJ structure by using grounded p+buried layers and connected p columns to encapsulate deep trench gate oxide to reduce the saturation current.

    Moreover, the practical feasibility of fabricating superjunction structures has been discussed by using the trenchfilling epitaxial growth method in some papers. Jiet al.[21,22]studied and made possible uniform epitaxial filling in the 4HSiC trench between 7 μm and 50 μm deep. There have also been significant advances in understanding the mechanisms of epitaxial growth of trench filling.[23–25]In addition, Ryojiet al.[26]have established a key manufacturing process of superjunction structure with thickness over 20 μm and high aspect ratio, and the theoretical limit of 6.5-kV class 4H-SiC superjunction MOSFET is broken through by the trench filling epitaxial growth method. Consequently,it is feasible to study the trench-filled epitaxial growth method of SiC super-junction devices with high breakdown voltage.

    In this article, an improved structure of 4H-SiC trench gate MOSFET with a side-wall p-pillar and a wrapping npillar at the right of the p-pillar is studied to reduce the gate oxide electric field and switching energy loss. The Silvaco TCAD simulation results demonstrate that the SNPPT-MOS exhibits good static and dynamic performance. The SNNPTMOS structure is a significant optimization of the full-SJ-MOS structure. In addition,in the second section,some preliminary manufacturing techniques are discussed, and their feasibility is proved from the processing point of view.

    2. Description of the device structure and fabrication procedure

    Figure 1 shows the schematic cross-section of the SNPPTMOS and full-SJ-MOS.[27]The main device-related parameters of the two structures are shown in Figs.1(a)and 1(b). The SNPPT-MOS structure mainly includes a p+-SiC buried region,CSL region,a p-pillar,and a wrap n-pillar. The gate oxide thickness of both sidewalls and the bottom is about 50 nm.The height of the CSL region was 1.7 μm (LCSL=1.7 μm).The height of the p-pillar was 24 μm(Lp-pillar=24 μm). The wrapped n-pillar junction depth (Lwn) was set to be 1 μm to decrease the impact toVBRand gate-drain charge. The distance between the wrap n-pillar and the gate was set at 0.5 μm(Wng= 0.5 μm). The thickness of the gate oxide was set at 50 nm. The n-drift region dopant concentration (Nd) was set to be 3×1015cm-3. Moreover, in the super-junction (SJ)MOSFET structure, the charge balance between the n-pillar and p-pillar must be precisely controlled. Thus, the products of the width and doping concentration of the n-pillar region of the two structures must equal to the product of the width and doping concentration of the p-pillar region the according to[16,17,28,29]

    whereWpandWnare the widths of the p-pillar and n-pillar,NpandNnare doping concentrations of the p-pillar and n-pillar,respectively. The detailed parameters of the simulation used for the two structures are listed in Table 1.

    Fig. 1. The schematic cross-section of the (a) SNPPT-MOS and (b)full-SJ-MOS.

    Table 1. Device parameters in simulations.

    A feasible manufacturing process of the SNPPT-MOS is shown in Fig. 2. An n-drift was grown on a 4H-SiC n+substrate, as shown in Fig. 2(a). Fabrication of the superjunction structure began with a deep stripe-trench formation in an n-drift by using inductively coupled plasma etching in an SF6/O2gas ambient, as shown in Fig. 2(b). The p-pillar region was fabricated with the trench-filling epitaxial (TFE)growth method,[26]as shown in Fig.2(c). After TFE growth,the wafer surface was flattened by thinning the TFE grown wafer to the initial epitaxial wafer thickness by using grinding and polishing,as shown in Fig.2(d). And then,CSL grew on the flat surface of the wafer. After CSL was formed, a mask plate of a certain size(distance between the two p-pillar)was manufactured to mask CSL, and p+-SiC buried region were generated on both sides of the mask plate through ion implantation. The resulting structure is shown in Fig. 2(e). Then remove the mask based on the structure in Fig.2(e),and grow another layer of p-type 4H-SiC to form the p-body region. After the p-body region was formed, n+-SiC source region was formed by ion implantation. Then, masks of the same size were used to mask certain n+-SiC source region,and p+-SiC source region was generated on both sides of the mask by ion implantation. The final structure is shown in Fig.2(f). Finally,the p+-shielding, the oxide layer, the gate structure, and the electrode were implemented in a similar way to the conventional SiC trench MOSFET,as shown in Figs.2(g)and 2(h).

    Fig.2. The key fabrication procedure of the SNPPT-MOS.

    Moreover, it is a very important step to align p+-SiC buried region and p+-SiC source region with p-pillar in the process of SNPPT-MOS structure.Firstly,for Fig.1(d),ensure that the polishing process thinned the epitaxial wafer to the initial thickness of the epitaxial wafer, so that the wafer surface becomes sufficiently flat. Secondly, the size of the mask in Fig.1(e)can be determined, that is, the distance between the p-pillar on both sides. In addition, in SiC devices, due to the low diffusion coefficient of dopant,[30]p+-SiC buried region is formed by ion implantation,and the doping amount of ion implantation impurity can be precisely controlled. For Fig.1(f),the p+-SiC source region is firstly formed by ion implantation on both sides of the n+-SiC source region. The mask used is the same size as that used in Fig.1(e). And the p+-SiC source region on both sides of the n+-SiC source region is also formed by ion implantation,which can accurately control the amount of impurity doping. Therefore,the accurate alignment of align p+-SiC buried region and p+-SiC source with p-pillar is ensured to a certain extent.

    At the same time, in order to better illustrate the feasibility of SNPPT-MOS structure. TheVBR,Ron,sp, and FoM(V2BRRon,sp)of p+-SiC buried region width and p+-SiC source region width from-10% to +10% deviation are simulated and discussed, as shown in Table 2. As can be seen from Table 2, theVBRandRon,spof the device are almost constant when the error of the alignment widths of the p+-SiC source region and p+-SiC buried region with p-pillar ranges from 0 to-10%. When p+-SiC source region and p+-SiC buried region are aligned with the width of p-pillar from 0 to+10%,theVBRof the device increases slightly and then decreases slightly,theRon,spchanges accordingly,and the FoM(V2BRRon,sp)is calculated to be almost the same.

    Table 2.The VBR,Ron,sp and FoM(V2BR/Ron,sp)of p+-SiC buried region width and p+-SiC source region width from-10%to+10%.

    3. Numerical simulation and result analysis

    In this section,the static characteristics and the dynamic characteristics of the SNPPT-MOS were simulated by using the 2-D Silvaco ATLAS tool and compared the performance of the full-SJ-MOS with the performance of the SNPPT-MOS.In this simulation, some physical models were used. The physical models are divided into four parts. The first part is the mobility model, where the simulation uses the concentration and temperature-related mobility model(ANALYTIC)and the parallel electric field correlation model(FLDMOB).The second part is the composite model, where the simulation uses the Shockley–Read–Hall complex model(SRH)and the Auger complex model(AUGER).The third part is the carrier generation model, where the IMPACT SELB model is used in the simulation. The fourth part is the carrier statistical model.The incomplete ionization model (INCOMPLETE) is used in the simulation.[31–33]

    3.1. On-state characteristic

    The on-state output characteristic curves of the SNPPTMOS and full-SJ-MOS atVgs=20 V,Vgs=16 V,Vgs=12 V,andVgs=8 V are shown in Fig.3. TheRon,spof the SNPPTMOS was 9.90 mΩ·cm2, and theRon,spof the full-SJ-MOS was 11.5 mΩ·cm2,atVgs=16 V andVds=1 V.The wrap npillar and CSL region in the optimized structure provide two diffusion paths for current diffusion and compress the depletion region. The thin light doping of the CSL region causes the electrons to diffuse horizontally earlier.

    Fig. 3. The on-state output characteristic curves for the SNPPT-MOS and full-SJ-MOS.

    In addition, the wrap n-pillar allows the current to flow vertically. We know that the more narrow the depletion region, the wider the current path of the electron, resulting in the lowestRon,sp. Compared with full-SJ-MOS, theRon,spof SNPPT-MOS decreased by 16.2%. TheRon,spof the SNPPTMOS is slightly lower than that of full-SJ-MOS because the SNPPT-MOS structure has a higher doping concentration in wrap n-pillar. In the SNPPT-MOS structure,the wrap n-pillar under the CSL the electron concentration in the channel region,while the depletion region decreases,increasing the current path in the SNPPT-MOS structure, as shown in Fig. 4.The equation of theRon,spcan be described as

    whereWdis the maximum depletion width and theμnis the electron’s mobility.

    Fig.4. Distribution of the electron concentration for (a) SNPPT-MOS and(b)full-SJ-MOS.

    3.2. Off-state characteristics

    Figure 5 shows the off-state breakdown characteristic curves for the SNPPT-MOS and full-SJ-MOS. The corresponding electric field in the gate oxide distributions is shown in Fig.6.

    Fig.5. OFF-state breakdown characteristic curves of the SNPPT-MOS and full-SJ-MOS.

    Fig. 6. OFF-state corresponds to electric field curves of (a) SNPPTMOS and(b)full-SJ-MOS.

    We can see that the peak electric field in the gate oxide (Epeak-goe) in the full-SJ-MOS structure has reached 3.12 MV/cm with a drain bias voltage of 4226 V. In the SNPPT-MOS structure, the value of theEpeak-goeis about 2.80 MV/cm with a drain bias of 4713 V. The SNPPT-MOS exhibits lowerEpeak-goethan the full-SJ-MOS,this is because of the mutual depletion effect of the p-pillar and the wrap npillar in the n-drift,and the electric field around the bottom of the gate trench could be screened effectively. As for the full-SJ-MOS structure,it could also alleviate the high electric field around the bottom of the gate trench to a certain extent due to the p-pillar embedded n-drift region, while the high doping concentration of the n-drain region and thus theEpeak-goe(3.12 MV/cm)is slightly higher than the SNPPT-MOS,resulting in aVBRwitha drain bias of 4226 V. The vertical electric field distributions of the SNPPT-MOS and the full-SJ-MOS from 0 to 30 μm are shown in Fig. 7. The maximum gate oxide electric field is about 2.5 μm vertically. From 2.5 μm onward,the vertical electric field curve of SNPPT-MOS is almost as flat as that of the full-SJ-MOS.Because of the mutual depletion effect of the p-pillar and the wrap n-pillar in the ndrain region,the field distributions for the SNPPT-MOS at the p-pillar and the wrap n-pillar interface are uniforms.

    Fig.7. The vertical distribution of the electric field from 0 to 30 μm.

    3.3. Reverse transfer capacitance and gate charge characteristics

    The smaller reverse transfer capacitance is of great importance for reducing the switching loss and preventing the false turn-on. It helps improve the switching characteristics.The reverse transfer capacitance(Crss=Cgd)properties of the SNPPT-MOS and full-SJ-MOS are shown in Fig.8.Compared with theCrssof the full-SJ-MOS,the SNPPT-MOS exhibits a lowerCgdthan the full-SJ-MOS,owing to the effective electric field shielding of the p-pillar and wrap n-pillar. And they have a smaller p–n junction area than the conventional full superjunction structure.

    The specific gate charge (Qg,sp) characteristic curves of the SNPPT-MOS and the full-SJ-MOS are evaluated as well,as shown in Fig. 9. TheQg,spis extracted by using the mixmode simulation. The simulation circuit schematic diagram is inserted in the bottom right corner of Fig. 9. The extractedQgd,spof the SNPPT-MOS is 101 nC/cm2.The SNPPTMOS exhibits a lower miller charge compared with that of the 154 nC/cm2for the full-SJ-MOS due to the p-pillar and wrapped n-pillar having smaller p–n junction area and effective electric field shielding ability. The FoM (Ron,sp×Qgd,sp)is a widely used parameter to measure the device performance in high-frequency switching applications.[34–36]According to the calculation, the FoM (Ron,sp×Qgd,sp) of the full-SJ-MOS structure is 1771 mΩ·nC.The SNPPT-MOS structure obtained superiorRon,sp×Qgd,spwith a value of 999.9 mΩ·nC, which decreases by 77.1%compared with the full-SJ-MOS structure.

    Fig.8. The Crss property curves of the SNPPT-MOS and full-SJ-MOS.

    Fig.9. The Qg,sp characteristic curves of the SNPPT-MOS and full-SJMOS.

    3.4. Dynamic characteristics

    To better study the switching characteristics of the SNPPT-MOS, the double-pulse test (DUT) circuit is used to investigate the switching performance of the two structures,as shown in Fig. 10. The basic parameters of the DUT circuit are listed in Table 3. Figure 11 shows the switching waveforms of the SNPPT-MOS and full-SJ-MOS. As can be seen from Fig.11,the full-SJ-MOS needs a longer period to arrive at highVdsand highIdscompared with the SNPPT-MOS.TOFFis defined as the turn-off delay time and turn-off fall time.TONis defined as the turn-on delay time and turn-on fall time.

    Fig.10. The double-pulse test circuit.

    Table 3. The basic parameters of the DUT circuit.

    Fig.11. Switching waveforms of(a)SNPPT-MOS and(b)full-SJ-MOS.

    Figure 12 shows the switching energy loss for the SNPPTMOS and the full-SJ-MOS. The calculated energy loss values of turn-on (Eon) and turn-off (Eoff) for SNPPT-MOS are 32.5 mJ/cm2and 31.7 mJ/cm2. The calculated values ofEonandEofffor full-SJ-MOS are 40.3 mJ/cm2and 36.5 mJ/cm2.It can be discerned that in the SNPPT-MOS structure,the energy loss duringEonis reduced as a respective decrease of 24.%compared with the full-SJ-MOS, and theEoffis a respective decrease of 15.1%compared with the full-SJ-MOS.The equation of theEonandEoffcan be described as

    whereT1(10%ofVgs(on)),T2(2%ofVdd),T3(90%ofVgs(on))andT4(2%ofIds).

    Fig.12. Switching energy loss of the SNPPT-MOS and full-SJ-MOS.

    3.5. Parameters optimization

    To get the optimized device structure,the added wrap npillar dopant concentration(Nn),p-pillar dopant concentration(Np),and the height of the p-pillar(H)have a great influence on the device performance. In the SJ MOSFET structure, to obtain highVBR,it is necessary to control accurately the charge balance between n-pillar and p-pillar regions. So the products of the width and concentration of the n-pillar region of the SNPPT-MOS must equal the product of the width and concentration of the p-pillar region. Figure 13 shows theVBRandRon,spof this SNPPT-MOS structure in the case ofNpfrom 1×1016cm-3to 3×1016cm-3,Nnfrom 3×1016cm-3to 9×1016cm-3, andHfrom 10 μm to 24 μm. And the FoM(V2BR/Ron,sp) corresponding to differentHis given in detail.Figure 14 shows FoM(V2BR/Ron,sp)as a function of the differentNn,Np,andH. The maximum FoM that appears at theNn,Np, andHare 6×1016cm-3, 2×1016cm-3, and 24 μm, respectively. We also investigated the most suitableWng. TheWngfrom 0.1 μm to 0.7 μm, as shown in Fig. 15, we can see that the smaller theWngwas, the smaller theRon,spof the SNPPT-MOS was. However, theVBRalso decreased. As can be seen from Fig. 15, we can find that the most suitableWngwas 0.5 μm.

    Fig.13. The VBR and Ron,sp as function Np and Nn for different heights of the p-pillar.

    Fig.14. FoM(V2BR/Ron,sp)as a function of the different Nn,Np,and H.

    Fig. 15. The VBR and Ron,sp for the different distances between the npillar and the gate(Wng).

    Table 4 gives theVBR,Ron,sp,and FoM whenWngis set at 0.5 μm. The higher theNn,and the smaller theVBRandRon,spof the SNPPT-MOS.The FoM value increases firstly and then decreases. The main reason is that whenNnis low,the depletion region in the n-pillar is wider, which makes the current path narrow. As theNnvalue increases, the electron path becomes wider. As the doping concentration of n-pillar is higher than that of drift,the increase ofNnsignificantly improves the reduction ofRon,sp. WhenNnis low, the reduction ofRon,sphas more effect on FoM than that ofVBR. However,whenNnis high,the effect of the decrease ofRon,spon FoM is less than that of the decrease ofVBR.

    Table 4. The VBR,Ron,sp,and FoM at Wng=0.5 μm.

    Table 5 gives theVBR,Ron,sp, and FoM whenNnis 6×1016cm-3. As can be seen from Table 5, we can find that the wider theWng, the larger theRon,spand theVBR. The FoM value increases firstly and then decreases. The main reason is that when theWngis smaller, the larger the area of the electron flow through the n-pillar. The area of electrons flow through in the n-pillar is larger than the depletion region. With the increase ofWng, the area of electrons flowing through the n-pillar increases. It is because of the high doping concentration of the n-pillar that the area of electrons flows through the n-pillar increases, which promotes the decrease ofRon,sp.WhenWngis small,the effect ofRon,spon FoM is greater than that ofVBR.With the increase ofWng,the contribution ofRon,spto FoM decreased. In the largerWngcondition,the increase ofRon,sphad less effect on FoM than that ofVBR. Therefore,we choose these two parameters as the basement of our simulations and the following discussion. The electrical property of the full-SJ-MOS and the SNPPT-MOS are listed in Table 6.

    Table 5. The VBR,Ron,sp,and FoM at Nn=6×1016 cm-3.

    Table 6. Electrical property of the SNPPT-MOS and the full-SJ-MOS.

    4. Conclusion and perspectives

    An optimized structure of the 4H-SiC trench MOSFET is studied in this article. The improved structure exhibits good electrical characteristics due to the incorporating side-wall ppillar region and a wrapping n-pillar region in the drift region.The SNPPT-MOS structure has significantly protected the gate oxide and relieves the electric field around the p+ shielding region. With charge-balanced n-pillar and p-pillar under the p-body,the improved structure help reducing theRon,sp,which leads to the tradeoff of theVBRandRon,sp. In addition, the improved structure exhibit superior switching property during both the turn-on and the turn-off transients.

    Acknowledgements

    This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61774052 and 61904045), the National Natural Science Foundation of Jiangxi Province of China (Grant No. 20202BABL201021),and the Education Department of Jiangxi Province of China for Youth Foundation(Grant No.GJJ191154).

    猜你喜歡
    王穎
    發(fā)現(xiàn)反復(fù)結(jié)構(gòu),輕松學(xué)寫故事
    Novel layout design of 4H-SiC merged PiN Schottky diodes leading to improved surge robustness
    郝睿揚(yáng)、王潤(rùn)雪、王穎、田雨作品
    大觀(2022年9期)2022-12-06 12:37:40
    地表水監(jiān)測(cè)中存在的問題及策略
    Improved 4H-SiC UMOSFET with super-junction shield region*
    追本溯源刨根問底
    《水天一色》《踢球的女孩》《傍晚》
    文化交流(2019年12期)2019-01-09 07:06:30
    Solitary Vortex Evolution in Two-Dimensional Harmonically Trapped Bose-Einstein Condensates?
    Research and development trend of intelligent clothing
    東方教育(2018年3期)2018-03-30 09:19:36
    王穎作品
    国产白丝娇喘喷水9色精品| 哪里可以看免费的av片| 欧美黑人巨大hd| 女人被狂操c到高潮| 亚洲av中文字字幕乱码综合| 日本-黄色视频高清免费观看| 精品久久久久久,| 久久99热这里只有精品18| 日日干狠狠操夜夜爽| 国产人妻一区二区三区在| 天堂影院成人在线观看| 少妇熟女aⅴ在线视频| 婷婷精品国产亚洲av在线| 国产精品,欧美在线| 欧美成人性av电影在线观看| 精品久久久久久成人av| 久久久久久久久久成人| 日本五十路高清| 国产一区二区激情短视频| 国产亚洲av嫩草精品影院| 日本在线视频免费播放| 小说图片视频综合网站| 久久精品国产清高在天天线| 久久亚洲真实| 国产av一区在线观看免费| 亚洲av五月六月丁香网| 国产免费av片在线观看野外av| 国产伦人伦偷精品视频| 国产视频内射| 亚洲最大成人中文| 久久婷婷人人爽人人干人人爱| 最近中文字幕高清免费大全6 | 一本精品99久久精品77| 亚洲av五月六月丁香网| 久久精品国产清高在天天线| 在现免费观看毛片| 久久人妻av系列| 在线播放国产精品三级| 夜夜看夜夜爽夜夜摸| 精品一区二区免费观看| 日本一二三区视频观看| 亚洲三级黄色毛片| 91久久精品电影网| 淫秽高清视频在线观看| 久久久国产成人精品二区| 在线观看舔阴道视频| 男人舔奶头视频| 亚洲国产欧美人成| 麻豆精品久久久久久蜜桃| 真人做人爱边吃奶动态| 老熟妇仑乱视频hdxx| 在线免费观看的www视频| 午夜福利在线观看吧| 免费黄网站久久成人精品| 亚洲国产精品合色在线| 久久精品国产自在天天线| 日本爱情动作片www.在线观看 | 亚洲无线观看免费| 精品久久久久久久久亚洲 | 日本成人三级电影网站| 亚洲自偷自拍三级| 在现免费观看毛片| 在线播放无遮挡| 久久精品人妻少妇| 欧美性猛交黑人性爽| 国产精品嫩草影院av在线观看 | 午夜a级毛片| 亚洲黑人精品在线| 99热这里只有精品一区| 在线a可以看的网站| 草草在线视频免费看| 99久久无色码亚洲精品果冻| 十八禁国产超污无遮挡网站| 午夜福利高清视频| 一级毛片久久久久久久久女| 别揉我奶头 嗯啊视频| 国产激情偷乱视频一区二区| 国产探花极品一区二区| 国产午夜福利久久久久久| 欧美bdsm另类| 精品久久久久久久末码| 国内精品久久久久精免费| 国产极品精品免费视频能看的| 精品乱码久久久久久99久播| 99热6这里只有精品| 国产aⅴ精品一区二区三区波| 久久香蕉精品热| 国产精品免费一区二区三区在线| 日韩欧美精品免费久久| 成人欧美大片| av在线观看视频网站免费| av在线天堂中文字幕| 夜夜夜夜夜久久久久| 国产午夜精品论理片| 精品人妻视频免费看| 日韩欧美免费精品| 高清在线国产一区| 久久久久久九九精品二区国产| 国产av不卡久久| 国产人妻一区二区三区在| 久久久久久久久中文| 亚洲精品一区av在线观看| 国产精品女同一区二区软件 | 91麻豆精品激情在线观看国产| 亚洲欧美清纯卡通| 亚洲成av人片在线播放无| 最好的美女福利视频网| 一夜夜www| 成熟少妇高潮喷水视频| 身体一侧抽搐| 一个人免费在线观看电影| 中出人妻视频一区二区| 日韩中文字幕欧美一区二区| a级毛片a级免费在线| 国产亚洲欧美98| 一个人看视频在线观看www免费| 国产精品无大码| 欧美成人性av电影在线观看| 免费观看精品视频网站| 91午夜精品亚洲一区二区三区 | 亚洲精品一卡2卡三卡4卡5卡| 99久久精品热视频| 国产真实乱freesex| 在线播放无遮挡| 精华霜和精华液先用哪个| 日韩av在线大香蕉| 在线播放国产精品三级| 中文字幕av成人在线电影| 亚洲av一区综合| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av二区三区四区| 99热只有精品国产| 夜夜夜夜夜久久久久| 婷婷亚洲欧美| 亚洲熟妇熟女久久| 桃色一区二区三区在线观看| 精品不卡国产一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲一区高清亚洲精品| 黄色日韩在线| 日韩强制内射视频| 91精品国产九色| 国产精品98久久久久久宅男小说| 十八禁网站免费在线| 成人av在线播放网站| 国产精品不卡视频一区二区| eeuss影院久久| 亚洲精华国产精华精| 亚洲在线观看片| 男女啪啪激烈高潮av片| 日日干狠狠操夜夜爽| 国产 一区 欧美 日韩| 悠悠久久av| 舔av片在线| 女的被弄到高潮叫床怎么办 | 国产精品一区www在线观看 | 亚洲av免费高清在线观看| 人人妻人人看人人澡| eeuss影院久久| 毛片女人毛片| 在线观看舔阴道视频| 国产精品av视频在线免费观看| 真人一进一出gif抽搐免费| 国产精品人妻久久久久久| 五月伊人婷婷丁香| 别揉我奶头~嗯~啊~动态视频| 中文资源天堂在线| 99久久精品热视频| xxxwww97欧美| 亚洲中文字幕一区二区三区有码在线看| 淫秽高清视频在线观看| 观看免费一级毛片| 成人三级黄色视频| 久久久久九九精品影院| 内射极品少妇av片p| 久久99热这里只有精品18| 成人特级黄色片久久久久久久| 麻豆国产97在线/欧美| 干丝袜人妻中文字幕| 免费av不卡在线播放| 国产一区二区在线av高清观看| 麻豆av噜噜一区二区三区| 成年版毛片免费区| 国产国拍精品亚洲av在线观看| 麻豆精品久久久久久蜜桃| 亚洲专区国产一区二区| 乱人视频在线观看| 国产在线精品亚洲第一网站| 精华霜和精华液先用哪个| 国产亚洲精品久久久com| 在线国产一区二区在线| 99热只有精品国产| 干丝袜人妻中文字幕| 全区人妻精品视频| 两个人视频免费观看高清| 国产在线精品亚洲第一网站| 美女免费视频网站| 1024手机看黄色片| 亚洲经典国产精华液单| 深爱激情五月婷婷| 人妻久久中文字幕网| 夜夜看夜夜爽夜夜摸| 俄罗斯特黄特色一大片| 午夜精品一区二区三区免费看| 深夜a级毛片| 免费观看的影片在线观看| 亚洲午夜理论影院| 国产蜜桃级精品一区二区三区| 在线免费十八禁| 熟妇人妻久久中文字幕3abv| 国产成人福利小说| 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av在线| 欧美成人一区二区免费高清观看| 在线播放无遮挡| 91麻豆精品激情在线观看国产| 国内精品久久久久久久电影| 久久精品91蜜桃| 18禁在线播放成人免费| 黄色欧美视频在线观看| 一区福利在线观看| 在线看三级毛片| 三级男女做爰猛烈吃奶摸视频| 久久精品综合一区二区三区| 国产在线精品亚洲第一网站| 成人国产麻豆网| 简卡轻食公司| 动漫黄色视频在线观看| 性插视频无遮挡在线免费观看| 成人欧美大片| 久久久久久久久久黄片| 亚洲久久久久久中文字幕| 精品人妻偷拍中文字幕| 国产精品久久视频播放| 国产免费男女视频| 亚洲18禁久久av| 蜜桃亚洲精品一区二区三区| 91午夜精品亚洲一区二区三区 | 国产乱人视频| 欧美成人一区二区免费高清观看| 欧美激情国产日韩精品一区| 成年女人永久免费观看视频| 九色国产91popny在线| 成人三级黄色视频| 国产日本99.免费观看| 国产视频一区二区在线看| 黄色视频,在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 人人妻,人人澡人人爽秒播| 在线观看午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇中文字幕五十中出| 黄色丝袜av网址大全| av中文乱码字幕在线| 禁无遮挡网站| 女同久久另类99精品国产91| 91久久精品国产一区二区成人| 日韩一区二区视频免费看| 日本 av在线| 午夜激情福利司机影院| 91久久精品电影网| 亚洲av免费高清在线观看| 亚洲av五月六月丁香网| 亚洲七黄色美女视频| 欧美潮喷喷水| 在线免费观看的www视频| 欧美成人免费av一区二区三区| 嫩草影视91久久| 亚洲精品久久国产高清桃花| 黄色一级大片看看| 我要搜黄色片| 亚洲成av人片在线播放无| 亚洲综合色惰| 亚洲图色成人| 欧美日韩精品成人综合77777| 午夜激情福利司机影院| 国内少妇人妻偷人精品xxx网站| 男女视频在线观看网站免费| 天天一区二区日本电影三级| av在线天堂中文字幕| 日韩大尺度精品在线看网址| 国产成年人精品一区二区| 成熟少妇高潮喷水视频| av中文乱码字幕在线| 久9热在线精品视频| 麻豆成人av在线观看| 精品免费久久久久久久清纯| 91在线观看av| 噜噜噜噜噜久久久久久91| 国内精品久久久久精免费| 99久久精品热视频| 日本三级黄在线观看| 午夜影院日韩av| 精品人妻熟女av久视频| 一区二区三区高清视频在线| 毛片女人毛片| 动漫黄色视频在线观看| 春色校园在线视频观看| 在线天堂最新版资源| 久久久久久久精品吃奶| 久久精品国产亚洲av涩爱 | 亚州av有码| 免费黄网站久久成人精品| 日韩欧美精品v在线| 成人av在线播放网站| 全区人妻精品视频| 一本久久中文字幕| 国产熟女欧美一区二区| 高清毛片免费观看视频网站| 日本成人三级电影网站| 国模一区二区三区四区视频| 在线a可以看的网站| 69av精品久久久久久| 国产精品不卡视频一区二区| 久久久精品欧美日韩精品| 十八禁国产超污无遮挡网站| 日韩欧美三级三区| 观看免费一级毛片| 精品乱码久久久久久99久播| 国产高清三级在线| 久久久成人免费电影| 婷婷丁香在线五月| av天堂在线播放| 久99久视频精品免费| 日本黄色视频三级网站网址| 最近最新免费中文字幕在线| .国产精品久久| 日本爱情动作片www.在线观看 | 亚洲乱码一区二区免费版| 国产人妻一区二区三区在| 亚洲第一区二区三区不卡| 亚洲五月天丁香| 又黄又爽又免费观看的视频| 欧美在线一区亚洲| 国产精品国产高清国产av| 欧美一区二区亚洲| 色5月婷婷丁香| a级毛片免费高清观看在线播放| 成人美女网站在线观看视频| 亚洲18禁久久av| 国产 一区 欧美 日韩| www.色视频.com| 内地一区二区视频在线| 久久久成人免费电影| 内地一区二区视频在线| 精品一区二区免费观看| 国产aⅴ精品一区二区三区波| www.色视频.com| 亚洲图色成人| 欧美性感艳星| 欧美人与善性xxx| 99九九线精品视频在线观看视频| 在线播放无遮挡| 亚洲精品国产成人久久av| a级一级毛片免费在线观看| 少妇的逼好多水| 久久久久久久亚洲中文字幕| 国产精品一区二区三区四区久久| 天堂网av新在线| 美女高潮喷水抽搐中文字幕| 精品久久久噜噜| 97超视频在线观看视频| 国产精品一区二区免费欧美| 国产精品人妻久久久影院| 日本一本二区三区精品| 十八禁网站免费在线| 成人美女网站在线观看视频| 精品久久国产蜜桃| 国产精品人妻久久久久久| 淫秽高清视频在线观看| 亚洲性久久影院| 极品教师在线免费播放| 欧美绝顶高潮抽搐喷水| 91久久精品国产一区二区成人| 少妇高潮的动态图| 夜夜爽天天搞| 国产精品乱码一区二三区的特点| 久久6这里有精品| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| 啪啪无遮挡十八禁网站| .国产精品久久| 亚洲精品久久国产高清桃花| 亚洲中文字幕一区二区三区有码在线看| 日本欧美国产在线视频| 国产爱豆传媒在线观看| 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av在线| 久久精品国产亚洲网站| 亚洲乱码一区二区免费版| 成人二区视频| 国产不卡一卡二| 亚洲不卡免费看| 日本 av在线| 久久久久精品国产欧美久久久| 日日撸夜夜添| 亚洲在线自拍视频| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美在线乱码| 一夜夜www| 色综合色国产| 中国美女看黄片| 女同久久另类99精品国产91| 日韩亚洲欧美综合| 国产乱人视频| 男人狂女人下面高潮的视频| 久久精品夜夜夜夜夜久久蜜豆| 国产精品永久免费网站| 日本精品一区二区三区蜜桃| 精品久久久久久久人妻蜜臀av| 国国产精品蜜臀av免费| 国产亚洲精品av在线| 俄罗斯特黄特色一大片| 国产精品一区二区三区四区免费观看 | 日韩精品有码人妻一区| 久久久久精品国产欧美久久久| 精品乱码久久久久久99久播| 国产激情偷乱视频一区二区| 亚洲av一区综合| 久久久久国产精品人妻aⅴ院| 久久亚洲真实| 999久久久精品免费观看国产| 好男人在线观看高清免费视频| 午夜福利高清视频| 女人被狂操c到高潮| eeuss影院久久| 国内久久婷婷六月综合欲色啪| 国产精品久久久久久精品电影| 又黄又爽又刺激的免费视频.| 少妇的逼好多水| 亚洲精华国产精华液的使用体验 | 久久久久久久久久黄片| 真人做人爱边吃奶动态| 一个人免费在线观看电影| 亚洲av五月六月丁香网| 成年人黄色毛片网站| 1000部很黄的大片| 国产亚洲欧美98| 少妇被粗大猛烈的视频| 日韩欧美国产在线观看| 国产一区二区激情短视频| 日日摸夜夜添夜夜添av毛片 | 午夜福利在线观看免费完整高清在 | 国产精品久久久久久精品电影| 99热这里只有是精品50| 淫秽高清视频在线观看| 欧美日韩瑟瑟在线播放| 国产成人影院久久av| 免费在线观看影片大全网站| 亚洲人成伊人成综合网2020| 午夜福利欧美成人| 亚洲人成网站高清观看| 国产一区二区三区在线臀色熟女| 国产精品一区二区三区四区免费观看 | 一本一本综合久久| 男女啪啪激烈高潮av片| 男人狂女人下面高潮的视频| 久久久久久伊人网av| 免费观看精品视频网站| 欧美一区二区亚洲| av天堂中文字幕网| 国产欧美日韩一区二区精品| 2021天堂中文幕一二区在线观| 国产v大片淫在线免费观看| 十八禁网站免费在线| 天堂av国产一区二区熟女人妻| 国产精品自产拍在线观看55亚洲| 成年版毛片免费区| 99在线视频只有这里精品首页| 日韩精品青青久久久久久| 蜜桃亚洲精品一区二区三区| 久久中文看片网| 窝窝影院91人妻| 日韩欧美免费精品| 国产精品亚洲一级av第二区| 无人区码免费观看不卡| 在线观看一区二区三区| 天堂网av新在线| 乱人视频在线观看| av福利片在线观看| 国产成人aa在线观看| 亚洲欧美日韩无卡精品| 国产综合懂色| 丰满乱子伦码专区| 看免费成人av毛片| 久久午夜亚洲精品久久| 国产三级在线视频| 直男gayav资源| 欧美精品国产亚洲| 内射极品少妇av片p| 在线观看午夜福利视频| 97碰自拍视频| 蜜桃久久精品国产亚洲av| 十八禁网站免费在线| av在线亚洲专区| 午夜福利在线观看吧| 国内少妇人妻偷人精品xxx网站| 国产单亲对白刺激| 美女黄网站色视频| 午夜日韩欧美国产| 性插视频无遮挡在线免费观看| 亚洲成人久久性| 一级av片app| 色吧在线观看| 日韩欧美在线乱码| 午夜福利在线观看吧| 精品人妻偷拍中文字幕| 校园春色视频在线观看| 波多野结衣高清作品| 欧美人与善性xxx| 高清毛片免费观看视频网站| av中文乱码字幕在线| 亚洲第一电影网av| 国国产精品蜜臀av免费| 成年版毛片免费区| 国产成人aa在线观看| 黄片wwwwww| 免费观看精品视频网站| 最近中文字幕高清免费大全6 | 国产高清有码在线观看视频| 国产极品精品免费视频能看的| 国产69精品久久久久777片| 久久精品国产亚洲av香蕉五月| 国产激情偷乱视频一区二区| 免费搜索国产男女视频| 我的老师免费观看完整版| 男人狂女人下面高潮的视频| 五月玫瑰六月丁香| 亚洲va日本ⅴa欧美va伊人久久| 毛片女人毛片| 97人妻精品一区二区三区麻豆| 精品久久久久久久久久免费视频| 日韩欧美免费精品| 999久久久精品免费观看国产| 性欧美人与动物交配| 免费不卡的大黄色大毛片视频在线观看 | 亚洲,欧美,日韩| 日本一二三区视频观看| 亚洲欧美日韩无卡精品| 精品久久久噜噜| 男女之事视频高清在线观看| 人妻夜夜爽99麻豆av| 免费看日本二区| 国产高清视频在线观看网站| 亚洲最大成人中文| 99精品久久久久人妻精品| 五月伊人婷婷丁香| 美女被艹到高潮喷水动态| 免费人成视频x8x8入口观看| 久久精品人妻少妇| 在线播放国产精品三级| av在线天堂中文字幕| 夜夜看夜夜爽夜夜摸| 久久久国产成人精品二区| 波多野结衣高清作品| 伊人久久精品亚洲午夜| 日本欧美国产在线视频| eeuss影院久久| 国产av麻豆久久久久久久| 久久6这里有精品| 久久热精品热| 亚洲国产精品久久男人天堂| 狂野欧美激情性xxxx在线观看| 免费av不卡在线播放| 国内精品久久久久久久电影| 美女黄网站色视频| 天天一区二区日本电影三级| 别揉我奶头~嗯~啊~动态视频| 精品国产三级普通话版| 午夜视频国产福利| 久久久久国内视频| 国产精品无大码| 免费在线观看日本一区| 一个人观看的视频www高清免费观看| 成人国产一区最新在线观看| 国产精品永久免费网站| 欧美性感艳星| 麻豆久久精品国产亚洲av| 女的被弄到高潮叫床怎么办 | 久久久久国产精品人妻aⅴ院| 国产精品一区www在线观看 | 波多野结衣巨乳人妻| 亚洲精品久久国产高清桃花| 亚洲美女黄片视频| 联通29元200g的流量卡| 一级毛片久久久久久久久女| 免费在线观看影片大全网站| 九九爱精品视频在线观看| 我要看日韩黄色一级片| 全区人妻精品视频| 精品日产1卡2卡| 综合色av麻豆| 国产熟女欧美一区二区| 如何舔出高潮| 91久久精品国产一区二区三区| 全区人妻精品视频| 人妻久久中文字幕网| 淫秽高清视频在线观看| 日本黄色视频三级网站网址| 成熟少妇高潮喷水视频| 中文字幕熟女人妻在线| 亚洲中文字幕一区二区三区有码在线看| 亚洲av不卡在线观看| 国产精品日韩av在线免费观看| 久久香蕉精品热| 老司机福利观看| 欧美一区二区国产精品久久精品| 变态另类成人亚洲欧美熟女| xxxwww97欧美| 亚洲熟妇熟女久久| 日本成人三级电影网站| 国产v大片淫在线免费观看| 欧美性猛交黑人性爽| 免费观看在线日韩|