• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved 4H-SiC UMOSFET with super-junction shield region*

    2021-05-24 02:28:08PeiShen沈培YingWang王穎XingJiLi李興冀JianQunYang楊劍群ChengHaoYu于成浩andFeiCao曹菲
    Chinese Physics B 2021年5期
    關鍵詞:王穎

    Pei Shen(沈培), Ying Wang(王穎),?, Xing-Ji Li(李興冀),Jian-Qun Yang(楊劍群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲)

    1Key Laboratory of RF Circuits and Systems,Ministry of Education,Hangzhou Dianzi University,Hangzhou 310018,China

    2National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment,Harbin Institute of Technology,Harbin 150080,China

    Keywords: breakdown voltage, specific on-resistance, silicon carbide, switching energy loss, super-junction(SJ),trench gate MOSFET

    1. Introduction

    The advantages of silicon carbide (SiC) include a good wide bandgap performance, high electron saturation drift velocity, and high thermal conductivity.[1]The SiC is therefore very suitable for the development of the next-generation power electronic components that possess a high conversion efficiency,high voltage capability and low conduction loss. Furthermore, through simulation studies, Yu and Sheng[2]have shown the possibility that a SiC device can perform beyond its unipolar theoretical limit.

    A SiC power trench gate MOSFET is a good candidate for serving as power switching in order to increase conversion efficiency. However, the UMOSFET does have a critical issue that it can generate a large E-field in the corner of the trench bottom, which affects the reliability of the device. To overcome this, some shielding methods and structures have been improved.[3–5]The most representative approach is to introduce the p+shielded region under the gate trench (conventional-UMOS).[6–9]However, the JFET region is formed between the p+shielded region and the p-base region, which increases the specific on-resistance. In order to achieve a better trade-off between specific on-resistance and avalanche voltage, a super-junction is a new structure, which improves the trade-off between specific on-resistance and avalanche voltage, and enables the low specific on-resistance in the industrial silicon power MOSFET.[10–12]Orouji et al.[13]studied the unique features that were exhibited by power in the 4H-SiC UMOSFET, where the n- and p-type columns in the drift region were incorporated in order to improve the breakdown voltage, on-resistance. In order to achieve lower on-resistance and better switching performance,Deng et al.[14]investigated a device structure that had a built-in floating component. In order to optimize the trade-off between on-resistance and short circuit ruggedness, He et al.[15]improved a 4H-SiC super-junction trench MOSFET by adding a grounded p+buried layer below the p-body,an oxide trench under the gate,and a p-region surrounding the oxide trench.

    Moreover, the practical feasibility of fabricating superjunction structures has been discussed in some papers.[16–21]Kobayashi et al.[16]for example,reported that the SJ structure was formed on the drift layer by using multi-epitaxial growth seven times,gaining a thickness of 0.65μm each,and then the p-column was formed by implanting aluminum into the driftlayer and multi-epitaxial layers eight times in total. Furthermore, Kosugi et al.[17]developed a novel trench-filling epitaxial growth method as a promising alternative and Harada et al.[18]presented the first demonstration of the dynamic characteristics for a SiC superjunction MOSFET that was realized by the multi-epitaxial growth method.

    This article investigates an improved 4H-SiC UMOSFET that has alternate p-type and n-type conductive pillars under the gate. The simulations indicate that the modified structure exhibits a good dynamic performance and improves the VBRand Ron,sp. The figure of merit of the conventional-UMOS is 563 MW/cm2, while the FOM of the modified-UMOS is 1008 MW/cm2. The VBRof the Gauss-doped structure is improved to 10.4%compared with that of the uniformdoped structure. The Gauss-doped and uniform-doped superjunction shield region gate–drain charges are the same.

    2. Description of device structure and fabrica tion procedure

    -

    Figures 1(a)and 1(b)show the schematic cross section of a conventional-UMOS and a modified-UMOS,which are both used for reference. The detailed simulation parameters of the structure are listed in Table 1.

    Figure 2 shows a feasible method of fabricating the modified-UMOS. An n-type epitaxial layer was grown on an n+substrate. The whole drift layer was about 10-μm thick with a doping concentration of 7.0×1015cm?3. The trench was formed by inductive coupled plasma reactive-ion etching (ICP-RIE) with SF6, O2, and HBr, using a Ni/Al2O3bilayer mask.[22,23]The n-pillars were formed by deposition[14]as shown in Fig. 2(a). The p-pillars, with a depth of 6 μm,were formed by a multi-epitaxial growth method[18]as shown in Fig.2(c).Finally,the p-body region,the light n-type current spreading layer,the n+source region,the p+source region,and the gate structure were implemented in a similar way to that adopted in the conventional-UMOS.

    Fig.1. Structures of studied trench MOSFET:(a)conventional-UMOS,and(b)modified-UMOS.

    Fig.2. Key fabrication process for the modified-UMOS.

    Table 1. Device parameters for simulations.

    3. Results and discussion

    In this work, the physical 4H-SiC MOSFET models, including the FLDMOB and ANALYTIC mobility models, are used. The FLDMOB is a parallel, E-field-dependent model,that requires the modeling of any type of velocity saturation effect;the ANALYTIC model is a concentration-temperaturedependent model;the Shockley–Read–Hall and AUGER models are composite models that are used to solve the electron/hole continuity equation, as well as the Poisson equation; IMPACT SELB is a Selberherr model and is recommended for most situations;and INCOMPLETE is an ionization model.[24]

    3.1. Static performance

    The two structures’ typical output characteristic curves of Vgs= 8 V, Vgs= 12 V, Vgs= 16 V, and Vgs= 20 V are shown in Fig. 3. The Ron,spof the modified-UMOS and the conventional-UMOS are estimated as ~1.9 m?·cm2and~2.4 m?·cm2at Vgs=16 V and Vds=1 V,respectively. The n-type conductive pillars and a thin NCSL provide two paths,which suppress the depletion region. The smaller the depletion region, the wider the current path for the electrons is.Moreover, a thin light doping of the NCSL causes the electrons to spread in the horizontal direction earlier. In addition,n-pillars under the gate allow the current to flow in the vertical direction. Therefore, the modified structure reduces the Ron,sp. Comparing with the conventional-UMOS,the Ron,spof the modified structure decreases by 22.2%. In the modified-UMOS, the n-type conductive pillars under the gate increase the electron concentration of the channel region,while the depletion region is reduced in order to increase the current path in the modified structure as shown in Fig.4.

    Fig.3. Typical output characteristic curves of two structures.

    Fig.4. Distribution of electron concentration(Conc.) for(a)conventional-UMOS and(b)modified-UMOS.

    The equation of the Ron,spcan be described as

    where WDis the maximum depletion width and the μnis the electrons mobility.

    Figure 5 shows reverse breakdown characteristic contours(at Vgs=0 V). The VBRof the two structures are calculated to be ~1167 V and ~1413 V respectively. The modified structure has a higher VBR,because the n-pillar and p-pillar at the bottom of the trench are configured to have a substantial charge balance in an SJ structure. When the doping density of the n-type conductive pillars is equal to the surface doping density of the p-type conductive pillars,the mutual depletion of the n-pillar and the p-pillar under the gate trench can achieve the charge balance of the SJ structure.

    For the conventional-UMOS, the peak E-field (~3.3 MV/cm)occurs in the corner of the gate trench,whereas in the modified structure,the peak E-field(~2.6 MV/cm)occurs at the bottom of the p-pillars. The critical gate oxide E-field of a conventional UMOS is ~2.1 MV/cm, which is higher than the ~1.2 MV/cm belonging to the modified-UMOS as shown in Fig. 6. This difference occurs because the protruding p-pillar has an excellent shielding effect. During the simulation, the breakdown voltage for the modified-UMOS has an improvement of 21.1% compared with the the breakdown voltage of the conventional-UMOS.

    Fig.5. Reverse breakdown characteristic(at Vgs =0 V)curves of two structures.

    Fig.6. OFF-state critical E-field curves of(a)conventional-UMOS,(b)modified-UMOS.

    3.2. Dynamic performance

    Figure 7 shows the curves of the input capacitance Ciss[Ciss=Cgd(gate–drain capacitance) + Cgs(gate–source capacitance)] and the reverse transfer capacitance (Crss=Cgd).[25,26]The smaller Cgdhelps improve the switching characteristic.

    The small ac signal works at 1 MHz to extract the capacitance,[27,28]and the capacitance cures of the modified-UMOS are not linear.[29,30]When Vds<Vt(at Vt= 75 V),the Crssis small because of the protruding p-pillar on the left,which shields Cgd. Thus,the capacitance at the bottom of the gate trench is mainly Cgs. When Vds>Vt, the p-pillar region will shrink,the shielding effect will be weakened and Crsswill slowly increase.

    Fig.7. Small signal capacitances Ciss and Crss of two structures.

    Figure 8 shows gate charge characteristic curves of the two structures.In the simulation,the test circuit is indicated as an inset in Fig.8. The FOM Ron,sp×Qgdis widely used.[31,32]Since the substantial charge balance of the SJ structure is achieved when the surface doping density in the p-type conductive pillar, the Qgdof the improved structure is a little smaller than that of the conventional-UMOS as can be seen in this figure. When the modified-UMOS is turned off,the twodimensional fast depletion of the n-type conductive pillar and p-type conductive pillar enables the charge carriers to be extracted quickly.The FOM Ron,sp×Qgdof the modified-UMOS shows an improvement of 43.3% in comparison with that of the conventional-UMOS. Detailed data are listed in Table 2.Using the double-pulse test(DPT),figure 9 shows the switching performance of the two structures. The area of the SiC MOSFET is set to be 0.09 cm2.For convenience,some parameters in the following simulation design are given as follows:a gate resistor is Rg=20 ?,the supply voltage is Vdd=400 V,the inductive load is LL=200 μH, and the stray inductance(LS)is assumed to be 10 mH in the power loop. The gate voltage is switched between 0 V and 20 V in order to turn-on and turn-off the device.

    Fig. 8. Gate charge tests on the modified-UMOS (red line) and on conventional-UMOS(black line),with insert showing test circuit.

    Figures 10(a) and 10(b) show the switching waveforms of the two structures with a test current of 20 A/cm2. As can be seen from Fig. 7, the low Crssin the modified-UMOS has a faster switching speed than that in the conventional-UMOS.Therefore,the conventional-UMOS needs a longer time period to arrive at a high Vdsand a high Idsas the switching characteristics are related to the charge and discharge of its Cissand the smaller Cisscan improve the switching characteristics.

    Fig.9. Double-pulse test circuit.

    Fig. 10. Switching waveforms for (a) modified-UMOS and (b) conventional-UMOS,showing that improved structure is much faster than conventional-UMOS.

    Figure 11 shows the switching energy losses for the conventional-UMOS and modified-UMOS. It can be discerned that in the modified structure, the losses during both turnon (Eon) and turn-off (Eoff) are reduced. For the modified-UMOS,the calculated value of Eonand Eoffare 33.5 mJ/cm2and 32.9 mJ/cm2,respectively,which correspondingly reduce 33.4% and 8.2% of the counterparts for the conventional-UMOS. The TOFFand TONof the two structures are listed in Table 2. The Eonand Eoffcan be expressed as

    where T1is the time when Vgs(on) reaches 10% of its value,T2is the time when Vddarrives at 10% of its value, T3is the time when Vgs(on)rises to 90%of its value,and T4is the time when Idsis 2%of its value.

    Fig.11. Switching energy losses of two structures.

    Table 2. Static performance and dynamic performance data.

    3.3. Parameter optimization

    Figure 12 shows FOM(V2BR/Ron,sp)as a function of Nrp,Nn, Nlp, and H in the modified-UMOS. The doping concentration(Nlp)of the protruding p-pillar,(Nrp)the p-pillar at the bottom of gate trench, (Nn), and the n-type conductive pillar,as well as the height (H) of pillars, have a great influence on the device performance. The p-type conductive pillars may have a doping concentration in a range from ~1×1016cm?3to ~1×1017cm?3. The doping concentration of the p-type and n-type pillars are denoted as Npand Nn,respectively,and the width of the p-type and n-type pillars are represented by Wpand Wn, respectively. The n-type pillar and p-type pillar at the bottom of the gate trench are configured to achieve a substantial charge balance in the SJ structure. This is achieved when the WncotNn=Wp·Np. If the conductive pillar is the one affected by the incomplete ionization,the current density is highly reduced, and the risk is that this leads to the total depletion of the p-type pillar, and consequentially, to no current flowing in the device.[33]The protruding p-pillar plays a critical role in shielding the high E-field of the trench bottom,therefore,the protruding p-pillar must have a high doping concentration in order to have the necessary efficacy to shield the high E-field. The Nncan be raised appropriately to reduce Ron,spand when increasing the doping concentrations of these pillars,Nrpand Nlpcan also be appropriately optimized to improve VBR.

    The maximum figure of merit values appear at Nrp=Nn=4×1016cm?3, and Nlp=6×1016cm?3. Figure 13 shows the maximum figure of merit values of the modified-UMOS at H=6μm. When the value of H is greater than 6μm,the epitaxial layer is likely to be cut through. Therefore,H=6μm is selected for designing the n-pillars and p-pillars. Finally, the parameters in the above simulation and discussion are used.The figure of merit values of the two structures are calculated to be ~1.008 kV2/(m?· cm2) and ~0.563 kV2/(m?· cm2),respectively. The modified-UMOS is 79.0% higher than that of the conventional-UMOS.

    Fig.12. FOM(V2BR/Ron,sp)as a function of Nrp,Nn,and Nlp,and with pillar height H=6μm.

    Fig.13. FOM versus column height of modified UMOS.

    Fig.14. Simulated VBR versus unbalance ratio for device structure with the impact ionization model.

    Figure 14 shows that the simulated VBRversus unbalance ratio for the device structure with the impact ionization models, where the unbalance ratio is defined as 100×abs(ND?NA)/max(NA, ND). For the balanced device, its charge imbalance (C.I.) is equal to 0% and is characterized by ND=NA=4×1016cm?3. The unbalance is indicated as a percentage and defined as

    3.4. Gauss-doped super-junction shield region

    The doping distribution in the super-junction shield region is shown in Fig. 15(a), in which the doping concentration in uniform-doped super-junction shield region is 4×1016cm?3, the doping concentration in Gauss-doped super-junction shield region is 1.0×1017cm?3, the doping concentration reduces 5.9×1015cm?3. Figure 15(b) shows the OFF-state characteristic curve of the Gauss-doped and uniform-doped region. The VBRof the Gauss-doped is improved to 10.4%compared with that of the uniform-doped region.

    Fig. 15. (a) Variation of the doping concentration at super-junction of two structures with Y axis and (b) variation of drain current density with drain voltage in Gauss-doped region and uniform-doped region.

    To compare the gate charges of the Gauss-doped and uniform-doped super-junction shield region, the gate charges of the two are simulated on condition that the total charge quantity of super-junction is the same, and the other parameters of the device are also the same. The time-varying curve of Qgand Vgsof the super-junction shield region are shown in Fig. 16. According to the calculation, the Qgdof uniformdoped super-junction shield region and Gauss-doped superjunction shield region are 307 nC/cm2and 327 nC/cm2. It can be seen that under the condition of the same total charge quantity of super-junction, gate-drain charge quantity in Gaussdoped and uniform-doped super-junction shield region are the same.

    Fig.16. Simulation curve of gate charge characteristics of Gauss-doped and uniform-doped super-junction shield region.

    4. Conclusions

    In this paper, an improved 4H-SiC UMOSFET with alternate n-pillars and p-pillars under the trench is investigated.The Ron,spof the modified structure reduces 22.2%compared with that of the conventional-UMOS. Moreover, the critical gate oxide E-field of the conventional-UMOS is higher than that of the modified-UMOS.The results in the breakdown voltage is improved by 21.1%in comparison with the results of the conventional-UMOS, thus avoiding a premature breakdown of the trench gate oxide. Furthermore, the modified structure shows excellent dynamic characteristics and reduces the switching energy loss. The calculated values of Eonand Eofffor the modified-UMOS are 33.5 mJ/cm2and 32.9 mJ/cm2,respectively,which show a decrease of 33.4%and 8.2%respectively,in comparison with the results of conventional-UMOS.The modified-UMOS structure shows a significant improvement over the conventional-UMOS. In addition, the Gaussdoped super-junction shield region can increase the VBRof the device without degradation of dynamic performance. For device stability as well as switching speed considerations,we believe that the modified structure is more attractive and shows more promising for high power applications.

    猜你喜歡
    王穎
    發(fā)現(xiàn)反復結(jié)構(gòu),輕松學寫故事
    Novel layout design of 4H-SiC merged PiN Schottky diodes leading to improved surge robustness
    郝睿揚、王潤雪、王穎、田雨作品
    大觀(2022年9期)2022-12-06 12:37:40
    A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
    地表水監(jiān)測中存在的問題及策略
    追本溯源刨根問底
    《水天一色》《踢球的女孩》《傍晚》
    文化交流(2019年12期)2019-01-09 07:06:30
    Solitary Vortex Evolution in Two-Dimensional Harmonically Trapped Bose-Einstein Condensates?
    Research and development trend of intelligent clothing
    東方教育(2018年3期)2018-03-30 09:19:36
    王穎作品
    777久久人妻少妇嫩草av网站| 乱人伦中国视频| 日韩欧美一区视频在线观看| 国产高清不卡午夜福利| 又大又黄又爽视频免费| 久久 成人 亚洲| 国产一级毛片在线| 熟女av电影| 国产精品 国内视频| 在线av久久热| www日本在线高清视频| 国产爽快片一区二区三区| 国产成人一区二区在线| 欧美人与性动交α欧美精品济南到| 精品久久蜜臀av无| 免费日韩欧美在线观看| 日韩电影二区| 男女边摸边吃奶| 亚洲综合色网址| 一本综合久久免费| 美女午夜性视频免费| 一级毛片黄色毛片免费观看视频| 一级毛片 在线播放| 一本—道久久a久久精品蜜桃钙片| 熟女少妇亚洲综合色aaa.| 午夜免费鲁丝| 老司机亚洲免费影院| 侵犯人妻中文字幕一二三四区| 久久人人爽人人片av| 亚洲精品一卡2卡三卡4卡5卡 | 一级,二级,三级黄色视频| 亚洲国产欧美在线一区| 老司机在亚洲福利影院| 国产又色又爽无遮挡免| 成人手机av| 国产高清videossex| 亚洲欧美中文字幕日韩二区| 免费看不卡的av| 天天躁夜夜躁狠狠久久av| 中文精品一卡2卡3卡4更新| 夜夜骑夜夜射夜夜干| av天堂在线播放| 久久女婷五月综合色啪小说| 国产97色在线日韩免费| av不卡在线播放| 国产亚洲av片在线观看秒播厂| 丝袜美腿诱惑在线| 一边亲一边摸免费视频| 国产亚洲av高清不卡| 久久天堂一区二区三区四区| 亚洲美女黄色视频免费看| 亚洲国产精品一区三区| 男人舔女人的私密视频| 丝袜美腿诱惑在线| 欧美中文综合在线视频| 免费看av在线观看网站| 成人免费观看视频高清| 国产成人免费观看mmmm| av电影中文网址| 91成人精品电影| 黄频高清免费视频| 国产亚洲午夜精品一区二区久久| 国产亚洲av高清不卡| 国产欧美日韩一区二区三 | 又大又黄又爽视频免费| 2021少妇久久久久久久久久久| 丝袜喷水一区| 一级,二级,三级黄色视频| 精品一区在线观看国产| 另类精品久久| 黑丝袜美女国产一区| 亚洲免费av在线视频| 国产成人免费无遮挡视频| av电影中文网址| 一区二区三区激情视频| 精品人妻一区二区三区麻豆| 99精国产麻豆久久婷婷| 国产成人啪精品午夜网站| 精品福利观看| 免费在线观看完整版高清| 在线观看免费日韩欧美大片| 一区二区三区四区激情视频| 午夜福利视频在线观看免费| 母亲3免费完整高清在线观看| 国产精品三级大全| 亚洲精品在线美女| 久久精品国产亚洲av涩爱| 99精品久久久久人妻精品| 美女福利国产在线| 国产一区有黄有色的免费视频| 中文字幕人妻丝袜制服| 国产片内射在线| 建设人人有责人人尽责人人享有的| 国产伦理片在线播放av一区| 人人妻人人澡人人看| 美女福利国产在线| 女人高潮潮喷娇喘18禁视频| 久久人妻福利社区极品人妻图片 | 亚洲人成网站在线观看播放| 一区在线观看完整版| 久久精品久久精品一区二区三区| 人人妻,人人澡人人爽秒播 | 女人爽到高潮嗷嗷叫在线视频| videos熟女内射| 男女之事视频高清在线观看 | 男女午夜视频在线观看| 母亲3免费完整高清在线观看| 久久ye,这里只有精品| 久久久精品区二区三区| 99国产综合亚洲精品| 大码成人一级视频| 午夜两性在线视频| 国产成人精品在线电影| 国产成人啪精品午夜网站| 另类精品久久| 国产精品av久久久久免费| 可以免费在线观看a视频的电影网站| 久久久久网色| 黄色视频不卡| av又黄又爽大尺度在线免费看| 中文乱码字字幕精品一区二区三区| 久久精品aⅴ一区二区三区四区| 久久精品成人免费网站| 国产成人免费无遮挡视频| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 久久精品久久精品一区二区三区| 亚洲国产毛片av蜜桃av| 日本av免费视频播放| 免费一级毛片在线播放高清视频 | 亚洲专区中文字幕在线| 日本a在线网址| 多毛熟女@视频| 亚洲成人免费电影在线观看 | 我要看黄色一级片免费的| 亚洲国产看品久久| 超色免费av| 亚洲精品av麻豆狂野| 伊人久久大香线蕉亚洲五| 叶爱在线成人免费视频播放| 欧美精品av麻豆av| 亚洲图色成人| 最新的欧美精品一区二区| 午夜免费鲁丝| 欧美在线黄色| 欧美人与性动交α欧美精品济南到| av国产久精品久网站免费入址| 国产成人系列免费观看| 中文欧美无线码| 国产成人免费无遮挡视频| 欧美av亚洲av综合av国产av| 男女边摸边吃奶| 啦啦啦中文免费视频观看日本| 韩国精品一区二区三区| 亚洲一码二码三码区别大吗| 啦啦啦中文免费视频观看日本| 涩涩av久久男人的天堂| 亚洲美女黄色视频免费看| 99久久99久久久精品蜜桃| 日韩视频在线欧美| 久久精品久久久久久噜噜老黄| 一本大道久久a久久精品| 巨乳人妻的诱惑在线观看| 婷婷色麻豆天堂久久| 亚洲精品av麻豆狂野| 天天躁狠狠躁夜夜躁狠狠躁| 男女边摸边吃奶| 黄色毛片三级朝国网站| 国产午夜精品一二区理论片| 一级毛片 在线播放| 侵犯人妻中文字幕一二三四区| 在线天堂中文资源库| 狂野欧美激情性xxxx| 国产精品国产三级国产专区5o| 国产亚洲欧美在线一区二区| 免费av中文字幕在线| 女人被躁到高潮嗷嗷叫费观| 国产精品久久久久久人妻精品电影 | 国产亚洲av片在线观看秒播厂| 黄频高清免费视频| 免费不卡黄色视频| 国产片内射在线| 久久综合国产亚洲精品| 超碰成人久久| av在线app专区| 亚洲av日韩精品久久久久久密 | 两个人看的免费小视频| 久久国产精品影院| 在线观看一区二区三区激情| 日韩,欧美,国产一区二区三区| 嫁个100分男人电影在线观看 | 尾随美女入室| 国产黄色免费在线视频| 中文精品一卡2卡3卡4更新| 老司机影院成人| av天堂在线播放| 免费高清在线观看日韩| 亚洲欧洲国产日韩| 一级毛片女人18水好多 | 亚洲精品日韩在线中文字幕| 国产精品 欧美亚洲| 色婷婷久久久亚洲欧美| 亚洲欧美色中文字幕在线| 香蕉丝袜av| 少妇人妻久久综合中文| 欧美日韩国产mv在线观看视频| 精品一品国产午夜福利视频| 只有这里有精品99| xxxhd国产人妻xxx| 丝袜在线中文字幕| 亚洲激情五月婷婷啪啪| 日本欧美国产在线视频| 中文字幕人妻丝袜一区二区| 一级片'在线观看视频| 黄色 视频免费看| 满18在线观看网站| 99九九在线精品视频| 另类亚洲欧美激情| 精品久久蜜臀av无| 久久久久久人人人人人| 汤姆久久久久久久影院中文字幕| 一级毛片我不卡| 欧美黄色片欧美黄色片| 亚洲av男天堂| 亚洲专区中文字幕在线| 香蕉国产在线看| av不卡在线播放| 精品人妻熟女毛片av久久网站| 午夜激情久久久久久久| www.自偷自拍.com| 香蕉国产在线看| 成年人午夜在线观看视频| 看免费成人av毛片| 中文字幕最新亚洲高清| 在线观看免费视频网站a站| 国产成人一区二区三区免费视频网站 | 老熟女久久久| 国产黄频视频在线观看| 亚洲欧美精品综合一区二区三区| 国产成人精品久久久久久| 久久久久久久精品精品| kizo精华| 熟女少妇亚洲综合色aaa.| 日韩制服丝袜自拍偷拍| 日本av免费视频播放| 国产片特级美女逼逼视频| 久久久国产精品麻豆| 国产片内射在线| 国产亚洲av片在线观看秒播厂| 视频在线观看一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品 欧美亚洲| 久久ye,这里只有精品| 99热全是精品| 亚洲精品一二三| 亚洲精品久久久久久婷婷小说| 青青草视频在线视频观看| 999久久久国产精品视频| 欧美日韩综合久久久久久| 大码成人一级视频| 50天的宝宝边吃奶边哭怎么回事| 美女国产高潮福利片在线看| 国产精品麻豆人妻色哟哟久久| 亚洲av欧美aⅴ国产| 高潮久久久久久久久久久不卡| 国产一级毛片在线| 亚洲精品美女久久av网站| 只有这里有精品99| 国产成人a∨麻豆精品| 好男人电影高清在线观看| 免费观看人在逋| 精品欧美一区二区三区在线| 午夜福利影视在线免费观看| 亚洲精品久久成人aⅴ小说| 最新的欧美精品一区二区| 久久久精品94久久精品| 免费在线观看视频国产中文字幕亚洲 | 无限看片的www在线观看| 日本91视频免费播放| 国产熟女欧美一区二区| 国产麻豆69| 无限看片的www在线观看| 免费黄频网站在线观看国产| 亚洲黑人精品在线| 亚洲欧洲精品一区二区精品久久久| 丰满饥渴人妻一区二区三| 欧美日本中文国产一区发布| 精品久久久久久电影网| 亚洲自偷自拍图片 自拍| 欧美黑人精品巨大| 久久99精品国语久久久| 九色亚洲精品在线播放| 国产女主播在线喷水免费视频网站| 亚洲成人手机| 19禁男女啪啪无遮挡网站| 精品一区在线观看国产| 国产真人三级小视频在线观看| 18禁黄网站禁片午夜丰满| 国产视频一区二区在线看| 日本a在线网址| 国产免费一区二区三区四区乱码| 久久精品国产亚洲av涩爱| av一本久久久久| 日韩视频在线欧美| 午夜激情久久久久久久| 精品一区二区三卡| 一级毛片 在线播放| 91字幕亚洲| 久久精品亚洲av国产电影网| 国产亚洲一区二区精品| 欧美精品一区二区大全| 在线 av 中文字幕| 男女下面插进去视频免费观看| 精品国产国语对白av| 国产在线免费精品| 久久 成人 亚洲| www.999成人在线观看| 久久影院123| 在线观看免费视频网站a站| 成年女人毛片免费观看观看9 | 后天国语完整版免费观看| 国产视频一区二区在线看| 一级片免费观看大全| av不卡在线播放| 丝袜美腿诱惑在线| 天天躁日日躁夜夜躁夜夜| 视频区欧美日本亚洲| 日本av手机在线免费观看| 久久av网站| 亚洲,欧美精品.| √禁漫天堂资源中文www| 国产免费又黄又爽又色| av又黄又爽大尺度在线免费看| 女人高潮潮喷娇喘18禁视频| 国产97色在线日韩免费| 国产精品麻豆人妻色哟哟久久| 99热网站在线观看| 丝袜喷水一区| 国产成人欧美在线观看 | www.精华液| 青春草视频在线免费观看| 欧美黄色淫秽网站| 丝袜在线中文字幕| 国产极品粉嫩免费观看在线| 国产深夜福利视频在线观看| 国产精品秋霞免费鲁丝片| 伊人久久大香线蕉亚洲五| 99热国产这里只有精品6| 亚洲国产欧美日韩在线播放| 久久精品久久久久久噜噜老黄| 亚洲国产欧美日韩在线播放| 99热国产这里只有精品6| 午夜视频精品福利| 人人妻人人澡人人看| 999久久久国产精品视频| 欧美日韩福利视频一区二区| 丝瓜视频免费看黄片| 99香蕉大伊视频| 国产无遮挡羞羞视频在线观看| 免费人妻精品一区二区三区视频| 韩国高清视频一区二区三区| 国产一区二区三区av在线| 日韩中文字幕欧美一区二区 | 97在线人人人人妻| 爱豆传媒免费全集在线观看| 日韩视频在线欧美| 黑人猛操日本美女一级片| 国产免费又黄又爽又色| 男女边吃奶边做爰视频| 亚洲精品一二三| 国产日韩一区二区三区精品不卡| 欧美黑人欧美精品刺激| 一级毛片女人18水好多 | 欧美人与性动交α欧美软件| 国产成人精品久久二区二区91| 国产老妇伦熟女老妇高清| 国产免费福利视频在线观看| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 久久久久国产精品人妻一区二区| 91国产中文字幕| 免费看av在线观看网站| 女警被强在线播放| 十八禁高潮呻吟视频| e午夜精品久久久久久久| 人人妻,人人澡人人爽秒播 | 人人妻,人人澡人人爽秒播 | 97在线人人人人妻| 精品欧美一区二区三区在线| 久久久精品免费免费高清| 国产亚洲午夜精品一区二区久久| 亚洲成人国产一区在线观看 | 夫妻性生交免费视频一级片| av电影中文网址| 天堂中文最新版在线下载| 五月天丁香电影| 久久人妻福利社区极品人妻图片 | 91国产中文字幕| 国产一级毛片在线| 极品人妻少妇av视频| 在线观看人妻少妇| 成人三级做爰电影| 91麻豆精品激情在线观看国产 | 飞空精品影院首页| 国产日韩一区二区三区精品不卡| 捣出白浆h1v1| 午夜91福利影院| 叶爱在线成人免费视频播放| 亚洲午夜精品一区,二区,三区| 交换朋友夫妻互换小说| 秋霞在线观看毛片| 日本午夜av视频| 好男人电影高清在线观看| 99热国产这里只有精品6| 婷婷色av中文字幕| 亚洲国产av影院在线观看| 晚上一个人看的免费电影| 久久天躁狠狠躁夜夜2o2o | 国产一区二区激情短视频 | 精品熟女少妇八av免费久了| 少妇 在线观看| 欧美黑人欧美精品刺激| 高清不卡的av网站| av线在线观看网站| 香蕉国产在线看| 少妇 在线观看| 亚洲欧美精品自产自拍| 在线观看免费高清a一片| 久久av网站| 夫妻午夜视频| 国产日韩欧美在线精品| 久久这里只有精品19| 久久精品久久久久久久性| 日韩av不卡免费在线播放| 老司机亚洲免费影院| 国产av精品麻豆| 高清不卡的av网站| 国产成人一区二区在线| 国产精品 欧美亚洲| 国产免费又黄又爽又色| 91国产中文字幕| 丝袜在线中文字幕| 桃花免费在线播放| 人妻 亚洲 视频| 青春草亚洲视频在线观看| 国产欧美亚洲国产| 国产精品久久久久成人av| 国产精品 国内视频| 亚洲精品在线美女| 日韩一卡2卡3卡4卡2021年| 久久国产精品男人的天堂亚洲| 夫妻午夜视频| 国产一区二区三区综合在线观看| 中文字幕高清在线视频| 大型av网站在线播放| 亚洲成人免费电影在线观看 | 久久精品亚洲熟妇少妇任你| 男的添女的下面高潮视频| 国产亚洲av高清不卡| 美女大奶头黄色视频| 免费在线观看视频国产中文字幕亚洲 | 视频在线观看一区二区三区| 久久久久久人人人人人| 国产一区亚洲一区在线观看| 国产一卡二卡三卡精品| 国产免费视频播放在线视频| 最近最新中文字幕大全免费视频 | 老司机午夜十八禁免费视频| 亚洲精品久久成人aⅴ小说| 黄片播放在线免费| 精品国产一区二区三区久久久樱花| 亚洲欧美中文字幕日韩二区| 欧美成狂野欧美在线观看| 亚洲国产精品国产精品| 国产精品免费大片| 亚洲久久久国产精品| 99九九在线精品视频| 亚洲黑人精品在线| 免费在线观看影片大全网站 | 999久久久国产精品视频| 亚洲精品乱久久久久久| 熟女av电影| 99久久综合免费| 交换朋友夫妻互换小说| 欧美成人精品欧美一级黄| 亚洲av男天堂| 91麻豆精品激情在线观看国产 | 亚洲伊人色综图| 国产亚洲欧美精品永久| 国产精品二区激情视频| 最近手机中文字幕大全| 超色免费av| 乱人伦中国视频| 亚洲欧洲日产国产| 国产欧美亚洲国产| 男人爽女人下面视频在线观看| 成年人黄色毛片网站| 精品人妻1区二区| 免费av中文字幕在线| 欧美激情极品国产一区二区三区| 中文乱码字字幕精品一区二区三区| 两性夫妻黄色片| 国产亚洲av片在线观看秒播厂| 男女国产视频网站| 五月开心婷婷网| 我要看黄色一级片免费的| 亚洲人成电影观看| 午夜免费成人在线视频| 亚洲精品国产色婷婷电影| 90打野战视频偷拍视频| 一二三四在线观看免费中文在| 国产极品粉嫩免费观看在线| h视频一区二区三区| xxxhd国产人妻xxx| 男女免费视频国产| 国产成人欧美| 精品久久蜜臀av无| 捣出白浆h1v1| 亚洲国产精品成人久久小说| 别揉我奶头~嗯~啊~动态视频 | 伊人亚洲综合成人网| 久久久久久久大尺度免费视频| 自拍欧美九色日韩亚洲蝌蚪91| av视频免费观看在线观看| 美女福利国产在线| 一级,二级,三级黄色视频| www.自偷自拍.com| 国产片内射在线| 波野结衣二区三区在线| 亚洲精品成人av观看孕妇| 极品人妻少妇av视频| 久久久欧美国产精品| netflix在线观看网站| a级毛片在线看网站| 亚洲 国产 在线| 欧美另类一区| 人人妻人人澡人人爽人人夜夜| 国产精品免费视频内射| 国产成人av教育| 国产午夜精品一二区理论片| 久久精品国产综合久久久| 18在线观看网站| 精品亚洲成a人片在线观看| 成人18禁高潮啪啪吃奶动态图| 叶爱在线成人免费视频播放| 在线观看www视频免费| 久久久久久亚洲精品国产蜜桃av| 国产成人一区二区在线| 久久精品亚洲熟妇少妇任你| 亚洲一卡2卡3卡4卡5卡精品中文| 一区福利在线观看| 中文字幕高清在线视频| 日韩大码丰满熟妇| 涩涩av久久男人的天堂| 青青草视频在线视频观看| 亚洲欧美一区二区三区黑人| 国产成人欧美| 国产精品免费大片| 亚洲成色77777| 麻豆乱淫一区二区| 首页视频小说图片口味搜索 | 中文字幕精品免费在线观看视频| 制服诱惑二区| 精品一品国产午夜福利视频| 色播在线永久视频| 91国产中文字幕| 国产xxxxx性猛交| av国产精品久久久久影院| 永久免费av网站大全| 自线自在国产av| 欧美大码av| 香蕉丝袜av| 悠悠久久av| 国产男女内射视频| 免费高清在线观看日韩| 丰满饥渴人妻一区二区三| 国产精品人妻久久久影院| 老汉色av国产亚洲站长工具| 丝袜脚勾引网站| 性少妇av在线| 久久av网站| a级毛片黄视频| 久久亚洲精品不卡| 午夜日韩欧美国产| 成人手机av| avwww免费| 9191精品国产免费久久| 久久精品亚洲av国产电影网| 男人添女人高潮全过程视频| 国产免费视频播放在线视频| 日韩大码丰满熟妇| 巨乳人妻的诱惑在线观看| 国产av国产精品国产| 电影成人av| 女人高潮潮喷娇喘18禁视频| 高潮久久久久久久久久久不卡| 母亲3免费完整高清在线观看| 女人高潮潮喷娇喘18禁视频| xxxhd国产人妻xxx| 亚洲激情五月婷婷啪啪| 国产精品麻豆人妻色哟哟久久| 中文字幕av电影在线播放| 日韩大码丰满熟妇| 国产xxxxx性猛交| 午夜日韩欧美国产| 精品少妇一区二区三区视频日本电影| 18禁裸乳无遮挡动漫免费视频| 19禁男女啪啪无遮挡网站| 精品少妇一区二区三区视频日本电影| 狂野欧美激情性xxxx| av有码第一页| 丰满饥渴人妻一区二区三| 免费久久久久久久精品成人欧美视频| 色网站视频免费|