• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes

    2022-08-01 05:59:24YiLi李毅MeiGe葛梅MeiyuWang王美玉YouhuaZhu朱友華andXinglongGuo郭興龍
    Chinese Physics B 2022年7期
    關(guān)鍵詞:李毅美玉

    Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友華), and Xinglong Guo(郭興龍)

    School of Information Science and Technology&Tongke School of Microelectronics,Nantong University,Nantong 226019,China

    Keywords: surface plasmon,AlGaN-based light emitting diodes,F(xiàn)DTD,K-P method

    1. Introduction

    AlGaN-based light emitting diodes (LEDs) as the deep ultraviolet (DUV) light sources have attracted great attention due to their potential applications in water purification,optical catalysis and other fields.[1]Although great progress has been made in the research of AlGaN-based DUV LEDs,[2]the luminous efficiency is still lower than that of GaN-based visible LEDs.[3]One of the limiting factors to improve the luminous efficiency of DUV-LEDs is the poor light extraction efficiency(LEE).Different from GaN material,the crystal-field split-off hole(CH)band of AlGaN alloy will become the topmost valence subband with the increase of Al-content,[4]which will lead to the transverse-magnetic (TM) dominated emission.[5]The TM polarization denotes that the emission polarization is perpendicular to thec-plane. Forc-plane AlGaN-based LEDs,TM polarized emission is difficult to extract from the top or bottom surface. In addition,due to the low conductivity of p-AlGaN,the p-GaN contact layer is often employed in AlGaNbased DUV-LEDs, which will lead to strong absorption and reduce the LEE of the device.[6]

    In order to improve the performance of DUV LEDs,structural design strategies are often used, such as ultrathin GaN/AlN multiple quantum well (MQW) structure[7]and lateral-polarity structure.[8]Moreover, an alternative method is to adopt the surface plasmon (SP) coupled LED structure, which can enhance both the internal quantum efficiency(IQE) and LEE.[9]For example, Heet al.reported that the IQE and LEE of DUV LED with Al nanoparticles (NPs) on SiO2dielectric interlayer were increased by 230% and 13%,respectively.[10]Interestingly, Zhanget al. reported that the enhancement ratio of transverse-electric(TE)mode was larger than that of TM mode through local SP (LSP) coupling,[11]which will help to improve the luminous efficiency ofc-plane LED devices. The TE polarization denotes that the polarization is parallel to thec-plane. The corresponding mechanism was considered that the LSP–QW coupling results in the conversion of some TM emission to TE emission. However, detailed theoretical analysis is lacking in the literature.

    In this study,we focus on the effect of SP coupling on the polarization characteristics of DUV LEDs by numerical calculation.Firstly,considering the valence band mixing effects and the scattering relaxation, the TE/TM polarized spontaneous emission (SE) rate into the SP mode are calculated by 6×6 K-P method.[12]The corresponding band structure is obtained by self-consistent solution of Schr¨odinger–Poisson equations.Then,the scattering process of radiating dipole with TE mode or TM mode in the metal nanostructures is investigated by the three-dimensional(3D)finite-difference time-domain(FDTD)simulation. Thus,the effect of the radiative recombination by SP–QW coupling and the scattering by metal nanostructures on the TE/TM polarized emissions can be described, respectively. Through these simulation results, the influence of SP coupling behavior on the optical anisotropy of AlGaN-based LEDs can be better understood.

    2. Theory

    When an electron-hole pair in the AlGaN QW is located within the SP fringing field penetration depth, the radiative recombination energy can be transferred into the SP mode instead of into the free space.[13]The corresponding SE rate into the SP mode can be expressed as[12]

    Here,kspandL2are the real part of wave vector and the inplane area, respectively. As taking account to ohmic loss of metal materials,the DOS of SPP mode will be broadened.[14]The modified DOS can be expressed as

    For TE polarized emission, the momentum matrix element|E·pσnm|2in formula(1)can be written as[12]

    Meanwhile,for TM polarized emission,the momentum matrix element is

    Fig.1. Schematic illustration of simulated structure.

    Fig. 2. The real part ε1 (a) and imaginary part ε2 (b) of the dielectric constants of Al0.5Ga0.5N,Al and Al2O3.

    3. Results and discussion

    3.1. DOS and normalized electric field of SPP mode

    Figure 3 shows the schematic diagram of the Al0.5Ga0.5N/Al/Al2O3slab structure and the dispersion relation of SPP modes with different Al thickness. The dispersion relation of the SPP mode is calculated by performing a parameter sweep over the wave vectorkspand looking for frequencies with strong resonances. In the calculation, the two-dimensional(2D)FDTD simulation is used. The dimension of the simulation range is 2 μm×1 nm for thezandxdirections. The PML boundary condition is set in thezdirection and the Bloch boundary condition is set in thexdirection.Ten randomly oriented dipoles are set in the simulation region.In Figs.3(b)and 3(c),two SPP modes from the AlGaN/Al and Al/Al2O3interfaces can be observed. In the regime of small wave vectorsksp, the dispersion curves from the AlGaN/Al interface are close to the light lines, and the waves can extend into the dielectric space. Therefore, SPPs are known as Sommerfeld–Zenneck waves in this regime.[17]In the regime of large wave vectors, the SPP mode from the AlGaN/Al interface approaches the SP“resonance”energy(ESP≈4.6 eV)asymptotically. For the thinner Al layer, the dispersion curve deviates slightly farther from the resonance energy due to the strong interaction of SPP modes in the two interfaces. In fact,when the thickness of Al is 50 nm,the dispersion curve almost coincides with that of semi infinite thickness Al film. The dotted lines in Figs.3(b)–3(d)are the SPP dispersion relation of AlGaN/Al/air structure,which is calculated by the formula[13]

    Hereε1,ε2,andε3are the permittivity of AlGaN,Al,and air,respectively.tis the thickness of Al film. It can be seen from the figure that the calculated results are basically consistent with the FDTD fitting result. That is to say, the influence of 3nm-thick Al2O3on the dispersion relation of SPP can be ignored.It should be noted that since the imaginary part of wave vectorkis difficult to obtain from FDTD simulation, we use the dispersion relation calculated by formula(6)when calculating the modified DOS of SPP mode. Figure 4 shows the modified DOS of SPP modes from the AlGaN/Al interface.For the Al0.5Ga0.5N/Al/Al2O3slab with different Al thickness,the modified DOS of SPP mode has a maximum value at 4.4–4.48 eV. The energy corresponding to the peak DOS of SPP mode is lower than the SP resonance energy,which can be attributed to the larger imaginary part of the wave vector at the SP resonance. In addition,compared with other Al film thickness,the peak DOS of 50 nm thick Al film is relatively large.

    Fig.3. (a)Schematic diagram of the Al0.5Ga0.5N/Al/Al2O3 slab structure and the dispersion relation of SPP modes with(b)16 nm Al film,(c)50 nm Al film,and(d)infinite thickness Al film.

    Fig. 4. The modified DOS from the AlGaN/Al interface for the Al0.5Ga0.5N/Al/Al2O3 slab with different Al thickness.

    Figure 5 shows the normalized electric field(Ex,Ez)with infinite thickness Al film, 50 nm Al film, 30 nm Al film, and 16 nm Al film from 2D FDTD simulation. The dimension of the simulation range is 1 μm×2 μm for thezandxdirections. The PML boundary conditions are set in the both directions. In order to eliminate the influence of“magnetic dipole”light source on detecting the electric field of SPP mode,a high absorption material is used to separate the light source from the monitor in the simulation. Only 4 nm gap are left to pass through the excited SPP mode from the AlGaN-Al interface.In Fig. 5(a), the normalized electric field solved analytically is also shown. The corresponding un-normalized electric field from the AlGaN–Al interface is calculated by the following formula:[18]

    Here,the subscripts M and D denote Al and AlGaN materials,respectively. From Fig.5(a),it can be seen that the FDTD fitting result is basically consistent with the analytical solution result. In addition, the SPP evanescent field decays exponentially. It can be seen from the figure that the evanescent field on the AlGaN side is almost 0 at a distance of 50 nm from the metal aluminum. The short SP coupling distance will become the difficulty in the practical preparation of SP coupled LED devices. With the decrease of Al layer thickness,the field intensity on AlGaN side decreases obviously due to the coupling of SPP modes from the two interfaces of Al layer. At the same time,the influence of the light source on the detected field distribution is more significant, so that the evanescent field on the AlGaN side of the structure with Al thickness of 16 nm will not be exponentially reduced to 0,as shown in Fig.5(d).Moreover,as Al thickness is decreased to 16 nm,it is also observed that theExcomponent of the normalized electric field on the AlGaN side is greater than theEzcomponent, which means that the SE rate of TE polarization will be greater than that of TM polarization.

    Fig.5. The normalized electric field with(a)infinite thickness Al film,(b)50 nm Al film,(c)30 nm Al film,and(d)16 nm Al film.

    3.2. SE rate into SPP mode

    By using the DOS and normalized electric field obtained above,the TE/TM polarized SE rate into the SPP mode is calculated. Here,the radiation dipole is considered to come from a quantum well structure composed of a 2 nm Al0.35Ga0.65N well layer and an 8 nm Al0.5Ga0.5N barrier layer. The band structure is calculated by the 6×6 K-P method. The sheet carrier density is set as 8×1012cm-2.Figure 6 shows the TE/TM polarized spontaneous emission spectra from the SP–QW coupling. The thickness of Al is set to be infinite. The spacingdbetween QW and Al is set to be 15 nm and 25 nm. Compared with the case without SP coupling,the SE rate into SPP mode is significantly improved regardless of TE polarized emission or TM polarized emission. However, the degree of polarization (DOP) decreased from-14% without SPP coupling to-44% (d=15 nm) and-42% (d=25 nm). The DOP is defined asρ=(ITE-ITM)/(ITE+ITM).ITEandITMare the integrated intensity of the TE-polarized and TM-polarized SE rate into SPP mode or free space.

    Fig. 6. TE/TM polarized spontaneous emission spectra from the SP–QW coupling. The thickness of Al is set to infinite. The spacing d between QW and Al is set to be 15 nm and 25 nm. The spontaneous emission spectrum without SP coupling is also shown.

    Fig.7.(a)TE/TM polarized spontaneous emission spectra from SP coupling with Al thickness of 16 nm, 30 nm, and 50 nm; (b) the TE/TM polarization total SE rate(Rsp)into SPP mode as a function of Al thickness. The Rsp into free space without SP coupling is also shown in(b).

    3.3. Transmittance for Al NP structure

    It is shown above that the DOP of SP coupled LED varies with Al thickness. However,due to the anisotropic extraction behavior of polarized light,[19]the actual DOP will be different from the above calculation results. Figure 8(a)shows the transmission spectra of an Al NP placed on the Al0.5Ga0.5N layer. The structure diagram of the simulation is shown in Fig.1. It can be obviously observed that the transmittance of TE-polarized light is much larger than that of TM-polarized light,which will lead to greater DOP.Compared with the case without SP coupling, the ratio of transmittance between TE polarization and TM polarization through SP coupling is significantly improved. Figure 8(b)shows the transmittance as a function of Al thickness atλ=285 nm. When the thickness of Al is less than 20 nm, the transmittance of TM polarization decreases significantly faster than that of TE polarization with the increase of Al thickness. When the thickness of Al is greater than 20 nm, the transmittance of both TE/TM polarizations basically remains unchanged with the increase of Al thickness. With the increase of Al thickness from 0 nm to 70 nm,the ratio of transmittance between TE polarized emission and TM polarized emission increases from 1.2 to 7.8. It should be noted that the position of radiation dipole can significantly affect the calculated TE/TM polarized light transmission ratio. For example, when the dipole moves from directly below Al NP to the edge, the ratio for the 30 nm Al NP structure decreases from 7.5 to 1.82. Nevertheless,the ratio of average transmittance of TE/TM polarized light can still reach 3.06. As a result, the DOP of SP coupled LED can be expected to be improved in the actual applications,as reported in Ref.[11].

    Fig. 8. (a) The transmission spectra of an Al NP placed on the Al0.5Ga0.5N layer; (b) the transmittance as a function of Al thickness at λ =285 nm.

    4. Conclusion

    In summary,the optical anisotropy of SP coupled LED is studied by 6×6 K-P method and FDTD simulation. Through SP coupling, the energy of the radiation dipole can be transferred to the SPP mode,which can be expected to improve the radiation recombination rate of LED devices. However, the dipole-SP coupling has different effects on TE/TM polarized emission. For the Al0.5Ga0.5N/Al/Al2O3slab structure,when the thickness of Al is less than 16 nm,the TE-polarized SE rate into SPP mode is significantly higher than that of TM mode due to the largerExcomponent of the normalized electric field on the AlGaN side. At the same time, when Al thickness is greater than 24 nm,TM polarized emission becomes the dominant emission, and the average total SE rate is greater than that without SP coupling. For the Al NPs structure,the extraction behavior of TE/TM polarized light is obviously different.Compared with the structure without Al,the decrease of transmittance of TM polarized light is much greater than that of TE polarized light. Thus, the ratio of transmittance between TE polarization and TM polarization for the 30 nm Al NP structure can be increased by 1.55 times atλ=285 nm.In practical application,the reasonable design of SP coupled LED device can significantly improve the DOP and luminous efficiency.

    Acknowledgements

    This work was supported by the National Nature Science Foundation of China (Grant Nos. 62004109, 61874168, and 62074086),Jiangsu Provincial Double-Innovation Doctor Program,Development of antibacterial multifunctional PVC facing new material technology(Grant No.21ZH626).

    猜你喜歡
    李毅美玉
    A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability
    The Iditarod
    Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer?
    Hunter—Gatherers
    Advantages and Disadvantages of Studying Abroad
    鄭美玉二三事
    海峽姐妹(2019年2期)2019-03-23 02:54:46
    伊源美玉—中國翠
    寶藏(2017年11期)2018-01-03 06:46:12
    國際標(biāo)準(zhǔn)攻堅克難“S試件”美玉漸成
    聚天下良友 琢百世美玉
    天工(2015年3期)2015-12-21 12:23:40
    美玉如華敬仰天地
    中國三峽(2014年4期)2014-04-25 08:45:52
    成年人午夜在线观看视频| 国产精品一区二区精品视频观看| av在线app专区| 18禁国产床啪视频网站| 欧美在线一区亚洲| 成年女人毛片免费观看观看9 | 纵有疾风起免费观看全集完整版| 日韩大片免费观看网站| 免费一级毛片在线播放高清视频 | 欧美在线黄色| 51午夜福利影视在线观看| 免费在线观看黄色视频的| 国产片内射在线| 在线观看人妻少妇| 极品少妇高潮喷水抽搐| 久久久国产欧美日韩av| 免费少妇av软件| 少妇精品久久久久久久| 日本欧美视频一区| 80岁老熟妇乱子伦牲交| 考比视频在线观看| 久久久久精品人妻al黑| 一个人免费在线观看的高清视频 | 日本vs欧美在线观看视频| 精品久久久久久电影网| 性少妇av在线| 欧美日韩福利视频一区二区| 老司机午夜十八禁免费视频| 亚洲国产中文字幕在线视频| 成年人午夜在线观看视频| 丝袜喷水一区| 亚洲欧美精品自产自拍| 国产男女内射视频| 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 欧美xxⅹ黑人| 成年女人毛片免费观看观看9 | 国产精品亚洲av一区麻豆| 亚洲中文日韩欧美视频| 亚洲专区中文字幕在线| 国产成人精品在线电影| 精品一区二区三区四区五区乱码| netflix在线观看网站| 午夜精品国产一区二区电影| 亚洲中文av在线| 一区在线观看完整版| 久久影院123| 日韩 亚洲 欧美在线| 精品国产一区二区三区四区第35| 国产精品久久久久久人妻精品电影 | 免费观看av网站的网址| 可以免费在线观看a视频的电影网站| 亚洲国产欧美网| 午夜精品国产一区二区电影| 黄色视频,在线免费观看| 久久这里只有精品19| 一级毛片精品| av线在线观看网站| 亚洲九九香蕉| 自拍欧美九色日韩亚洲蝌蚪91| 一本久久精品| 男女无遮挡免费网站观看| 久久精品国产亚洲av高清一级| 免费不卡黄色视频| 老司机亚洲免费影院| 少妇精品久久久久久久| 老鸭窝网址在线观看| 高清av免费在线| 老司机亚洲免费影院| 国产xxxxx性猛交| 51午夜福利影视在线观看| 18禁裸乳无遮挡动漫免费视频| 一区二区三区乱码不卡18| 日本五十路高清| 国产成人精品在线电影| 欧美一级毛片孕妇| 色老头精品视频在线观看| 午夜两性在线视频| 国产一区有黄有色的免费视频| 午夜福利乱码中文字幕| 成年人免费黄色播放视频| 国产成人精品在线电影| 久久免费观看电影| 久久久精品国产亚洲av高清涩受| 欧美中文综合在线视频| 日日摸夜夜添夜夜添小说| 精品卡一卡二卡四卡免费| 一区二区三区乱码不卡18| a级毛片黄视频| 亚洲精品成人av观看孕妇| 久久久精品区二区三区| 欧美97在线视频| 在线永久观看黄色视频| 国产在线视频一区二区| 99国产精品一区二区蜜桃av | 日本91视频免费播放| 在线观看一区二区三区激情| 一二三四社区在线视频社区8| 久久久国产精品麻豆| 天堂中文最新版在线下载| 母亲3免费完整高清在线观看| 又大又爽又粗| 精品国产乱码久久久久久小说| 国产成人av激情在线播放| 丰满饥渴人妻一区二区三| 黄片小视频在线播放| 嫁个100分男人电影在线观看| 正在播放国产对白刺激| 美女视频免费永久观看网站| 亚洲精品国产精品久久久不卡| 18禁黄网站禁片午夜丰满| 国产1区2区3区精品| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 亚洲免费av在线视频| 大片免费播放器 马上看| 老汉色∧v一级毛片| 国产精品久久久av美女十八| videosex国产| 如日韩欧美国产精品一区二区三区| 狂野欧美激情性xxxx| 亚洲av片天天在线观看| 日韩精品免费视频一区二区三区| 日本av免费视频播放| 亚洲欧美日韩高清在线视频 | 99re6热这里在线精品视频| 亚洲天堂av无毛| 黄色毛片三级朝国网站| 久久国产精品男人的天堂亚洲| 男女下面插进去视频免费观看| 十八禁高潮呻吟视频| 国内毛片毛片毛片毛片毛片| 亚洲欧洲精品一区二区精品久久久| 狂野欧美激情性bbbbbb| 99国产精品免费福利视频| 欧美日韩福利视频一区二区| www日本在线高清视频| 一区福利在线观看| 日韩大码丰满熟妇| 午夜日韩欧美国产| 久久亚洲精品不卡| 99热国产这里只有精品6| 精品卡一卡二卡四卡免费| 国产精品久久久av美女十八| 国产黄频视频在线观看| 天天躁日日躁夜夜躁夜夜| 在线观看一区二区三区激情| 亚洲黑人精品在线| 亚洲色图综合在线观看| 免费少妇av软件| 色精品久久人妻99蜜桃| 久久青草综合色| 美女视频免费永久观看网站| 国产成人精品在线电影| av一本久久久久| 999久久久精品免费观看国产| 国产精品九九99| 日本wwww免费看| 一本大道久久a久久精品| h视频一区二区三区| 免费高清在线观看视频在线观看| 欧美乱码精品一区二区三区| 亚洲成人国产一区在线观看| 女人精品久久久久毛片| 国产精品一二三区在线看| 精品人妻熟女毛片av久久网站| 国产一区二区在线观看av| 欧美人与性动交α欧美软件| 十八禁网站免费在线| 三级毛片av免费| av不卡在线播放| 国产精品国产av在线观看| 制服诱惑二区| 色老头精品视频在线观看| 亚洲精品一二三| 免费在线观看黄色视频的| 亚洲自偷自拍图片 自拍| 久热这里只有精品99| 免费人妻精品一区二区三区视频| 99久久99久久久精品蜜桃| 日韩 欧美 亚洲 中文字幕| 亚洲av国产av综合av卡| 久久精品国产综合久久久| 欧美97在线视频| 成人手机av| 美女福利国产在线| 久久久精品免费免费高清| 69精品国产乱码久久久| 老司机在亚洲福利影院| 午夜福利在线免费观看网站| 最新在线观看一区二区三区| 国产精品久久久久久精品古装| 日韩视频一区二区在线观看| 午夜成年电影在线免费观看| 亚洲国产成人一精品久久久| 51午夜福利影视在线观看| 亚洲av电影在线观看一区二区三区| 韩国精品一区二区三区| 亚洲人成电影观看| 一级毛片精品| 欧美+亚洲+日韩+国产| 在线亚洲精品国产二区图片欧美| 少妇的丰满在线观看| 中文字幕精品免费在线观看视频| 国产成人系列免费观看| 午夜福利在线免费观看网站| 日韩一卡2卡3卡4卡2021年| 中文字幕高清在线视频| 狠狠精品人妻久久久久久综合| 成年人免费黄色播放视频| 久久香蕉激情| 日本av手机在线免费观看| 一边摸一边抽搐一进一出视频| 国产亚洲av片在线观看秒播厂| 黄色视频,在线免费观看| 三级毛片av免费| 国精品久久久久久国模美| 777久久人妻少妇嫩草av网站| 亚洲成人免费av在线播放| 国产一区二区激情短视频 | 亚洲色图综合在线观看| 亚洲精品中文字幕在线视频| 久久狼人影院| 狠狠狠狠99中文字幕| 一本色道久久久久久精品综合| 午夜日韩欧美国产| 成人国产一区最新在线观看| 女人久久www免费人成看片| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色a级毛片大全视频| 蜜桃国产av成人99| 成年人免费黄色播放视频| 精品熟女少妇八av免费久了| 黄色怎么调成土黄色| 午夜视频精品福利| 久久久水蜜桃国产精品网| 亚洲人成电影免费在线| 亚洲成人手机| 亚洲精品国产av蜜桃| 亚洲精品美女久久久久99蜜臀| 中亚洲国语对白在线视频| av又黄又爽大尺度在线免费看| 91九色精品人成在线观看| www.自偷自拍.com| 国产成人精品在线电影| 两人在一起打扑克的视频| 一级毛片女人18水好多| 老司机午夜福利在线观看视频 | 欧美精品一区二区大全| 久久久精品94久久精品| 精品少妇一区二区三区视频日本电影| 日本精品一区二区三区蜜桃| 久久久精品国产亚洲av高清涩受| 亚洲色图综合在线观看| 成人国产一区最新在线观看| 天天添夜夜摸| 免费久久久久久久精品成人欧美视频| 欧美日韩av久久| 国产在线视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| 夜夜骑夜夜射夜夜干| 91成人精品电影| 亚洲成人国产一区在线观看| 成年美女黄网站色视频大全免费| 欧美成狂野欧美在线观看| 久久综合国产亚洲精品| 啦啦啦在线免费观看视频4| 亚洲av成人一区二区三| 欧美日韩精品网址| 欧美成人午夜精品| 18禁观看日本| 精品一区二区三卡| 国产xxxxx性猛交| 亚洲视频免费观看视频| 一二三四社区在线视频社区8| 人人妻人人澡人人爽人人夜夜| 69av精品久久久久久 | 亚洲男人天堂网一区| 精品久久久久久久毛片微露脸 | 一本—道久久a久久精品蜜桃钙片| 又黄又粗又硬又大视频| 久久狼人影院| 免费高清在线观看视频在线观看| 97人妻天天添夜夜摸| 亚洲性夜色夜夜综合| 欧美久久黑人一区二区| 国产一卡二卡三卡精品| 午夜久久久在线观看| 国产亚洲精品第一综合不卡| 午夜老司机福利片| 国产欧美日韩一区二区三区在线| 波多野结衣一区麻豆| 国产精品99久久99久久久不卡| 日韩欧美免费精品| 99九九在线精品视频| 欧美日本中文国产一区发布| 精品一区二区三区av网在线观看 | 一区二区日韩欧美中文字幕| 成人三级做爰电影| 免费黄频网站在线观看国产| 伊人亚洲综合成人网| 丰满人妻熟妇乱又伦精品不卡| 精品国产超薄肉色丝袜足j| 人人妻人人爽人人添夜夜欢视频| 亚洲五月婷婷丁香| 我的亚洲天堂| 日韩制服丝袜自拍偷拍| 亚洲欧美一区二区三区黑人| 2018国产大陆天天弄谢| 侵犯人妻中文字幕一二三四区| 国产欧美日韩精品亚洲av| 黄色片一级片一级黄色片| 亚洲自偷自拍图片 自拍| 两个人免费观看高清视频| 波多野结衣一区麻豆| netflix在线观看网站| 啦啦啦免费观看视频1| 亚洲精华国产精华精| 色视频在线一区二区三区| 国产精品影院久久| 51午夜福利影视在线观看| 久久ye,这里只有精品| 亚洲 国产 在线| 性色av乱码一区二区三区2| 久久午夜综合久久蜜桃| 亚洲全国av大片| 亚洲欧美一区二区三区黑人| 国产区一区二久久| 麻豆乱淫一区二区| 91麻豆精品激情在线观看国产 | 亚洲精品国产色婷婷电影| 丝袜在线中文字幕| 狠狠婷婷综合久久久久久88av| 法律面前人人平等表现在哪些方面 | av不卡在线播放| 飞空精品影院首页| 国产av一区二区精品久久| 国产男女超爽视频在线观看| 中文欧美无线码| 欧美中文综合在线视频| 国产成人a∨麻豆精品| 国产精品免费视频内射| 亚洲国产毛片av蜜桃av| 老汉色av国产亚洲站长工具| 久久久久国内视频| 国产成人a∨麻豆精品| 天天影视国产精品| 香蕉国产在线看| 黄色毛片三级朝国网站| 午夜免费观看性视频| 后天国语完整版免费观看| 在线观看舔阴道视频| 亚洲精品久久成人aⅴ小说| 大香蕉久久成人网| 高清欧美精品videossex| 欧美午夜高清在线| av片东京热男人的天堂| 久久久精品区二区三区| 99精国产麻豆久久婷婷| 欧美大码av| 日韩制服丝袜自拍偷拍| 丝袜人妻中文字幕| 亚洲欧美清纯卡通| 欧美黄色片欧美黄色片| 日韩中文字幕视频在线看片| 超碰97精品在线观看| 91av网站免费观看| av国产精品久久久久影院| 亚洲国产毛片av蜜桃av| 美女主播在线视频| 成年av动漫网址| 久久精品久久久久久噜噜老黄| 国产无遮挡羞羞视频在线观看| 亚洲五月婷婷丁香| 一区二区三区激情视频| 亚洲熟女精品中文字幕| 少妇粗大呻吟视频| 午夜老司机福利片| 精品亚洲成a人片在线观看| 色婷婷av一区二区三区视频| 丝袜喷水一区| 一级片'在线观看视频| 欧美在线黄色| 欧美国产精品一级二级三级| 另类亚洲欧美激情| 久久综合国产亚洲精品| 亚洲国产日韩一区二区| 精品少妇内射三级| 免费高清在线观看日韩| 老司机深夜福利视频在线观看 | 一级a爱视频在线免费观看| 美女大奶头黄色视频| 午夜激情av网站| 国产精品 国内视频| av免费在线观看网站| 亚洲激情五月婷婷啪啪| 丰满饥渴人妻一区二区三| 久久精品亚洲av国产电影网| 欧美日韩亚洲高清精品| 女警被强在线播放| 亚洲伊人色综图| 亚洲av男天堂| 日韩视频在线欧美| www.精华液| av欧美777| 欧美黄色淫秽网站| 欧美在线黄色| 国产高清videossex| 精品人妻在线不人妻| 精品一区在线观看国产| 一本一本久久a久久精品综合妖精| 女人久久www免费人成看片| 窝窝影院91人妻| 女人久久www免费人成看片| 热re99久久国产66热| 亚洲人成77777在线视频| 黑人操中国人逼视频| 叶爱在线成人免费视频播放| 国产老妇伦熟女老妇高清| 伊人亚洲综合成人网| 一级黄色大片毛片| 亚洲天堂av无毛| 天天躁夜夜躁狠狠躁躁| 国产成人免费观看mmmm| 久久久久久久国产电影| 成人国语在线视频| 成年动漫av网址| av一本久久久久| 国产伦理片在线播放av一区| 啦啦啦中文免费视频观看日本| 性高湖久久久久久久久免费观看| 天天躁日日躁夜夜躁夜夜| 男女之事视频高清在线观看| 欧美日韩av久久| 丝袜人妻中文字幕| 久久久久久久大尺度免费视频| 国产成人一区二区三区免费视频网站| 狠狠精品人妻久久久久久综合| 欧美午夜高清在线| 久久久久国产一级毛片高清牌| 蜜桃国产av成人99| 老鸭窝网址在线观看| 午夜91福利影院| 91精品三级在线观看| 国产精品欧美亚洲77777| 国产精品影院久久| 国产色视频综合| 手机成人av网站| 人人妻人人澡人人爽人人夜夜| 9色porny在线观看| 精品视频人人做人人爽| 99热网站在线观看| 国产欧美日韩一区二区三区在线| 亚洲激情五月婷婷啪啪| 夜夜骑夜夜射夜夜干| 国产亚洲欧美在线一区二区| 搡老乐熟女国产| 国产精品影院久久| 满18在线观看网站| 伦理电影免费视频| 国产成人欧美| 老司机影院毛片| 成人三级做爰电影| 一二三四在线观看免费中文在| 亚洲精品一二三| 麻豆国产av国片精品| 少妇猛男粗大的猛烈进出视频| 欧美+亚洲+日韩+国产| 亚洲九九香蕉| 夫妻午夜视频| 啦啦啦啦在线视频资源| 啦啦啦 在线观看视频| 亚洲国产av影院在线观看| 99九九在线精品视频| 午夜福利乱码中文字幕| 如日韩欧美国产精品一区二区三区| 午夜日韩欧美国产| 亚洲欧美色中文字幕在线| 免费人妻精品一区二区三区视频| 久久国产亚洲av麻豆专区| 精品一区二区三卡| 国产黄频视频在线观看| 看免费av毛片| 国产精品久久久av美女十八| a在线观看视频网站| 欧美日韩福利视频一区二区| 亚洲精品国产色婷婷电影| 天天影视国产精品| 成年女人毛片免费观看观看9 | 激情视频va一区二区三区| 99精品欧美一区二区三区四区| 精品一区二区三区av网在线观看 | 精品亚洲乱码少妇综合久久| 精品熟女少妇八av免费久了| 91字幕亚洲| 日韩制服骚丝袜av| 女人被躁到高潮嗷嗷叫费观| 制服诱惑二区| 美女视频免费永久观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲 国产 在线| 国产成人免费观看mmmm| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 午夜福利一区二区在线看| 夫妻午夜视频| 人妻一区二区av| 国精品久久久久久国模美| av有码第一页| 亚洲av片天天在线观看| 久久久久精品人妻al黑| 久久午夜综合久久蜜桃| 一区福利在线观看| 两人在一起打扑克的视频| 成人国产一区最新在线观看| 久久香蕉激情| 伊人久久大香线蕉亚洲五| 最黄视频免费看| 久久久久久久大尺度免费视频| 国产一区二区三区av在线| 99热全是精品| 电影成人av| 狂野欧美激情性bbbbbb| 狠狠狠狠99中文字幕| 欧美国产精品va在线观看不卡| 欧美激情高清一区二区三区| 一区二区三区四区激情视频| 日本精品一区二区三区蜜桃| 久久久久久久久免费视频了| 高清视频免费观看一区二区| 我的亚洲天堂| 成年人免费黄色播放视频| 亚洲 欧美一区二区三区| 十八禁网站免费在线| 中国国产av一级| 国产精品二区激情视频| 日本av手机在线免费观看| 日本精品一区二区三区蜜桃| 亚洲精品国产色婷婷电影| 久久天堂一区二区三区四区| 亚洲av电影在线观看一区二区三区| 国产91精品成人一区二区三区 | 脱女人内裤的视频| 黄频高清免费视频| 婷婷成人精品国产| 亚洲国产欧美在线一区| 日韩三级视频一区二区三区| 在线 av 中文字幕| 国产欧美日韩综合在线一区二区| h视频一区二区三区| 少妇猛男粗大的猛烈进出视频| av超薄肉色丝袜交足视频| 黄色 视频免费看| 亚洲avbb在线观看| 91成年电影在线观看| 亚洲精品成人av观看孕妇| 国产精品秋霞免费鲁丝片| 久久毛片免费看一区二区三区| 9191精品国产免费久久| 亚洲五月婷婷丁香| 天天影视国产精品| 丁香六月欧美| 中国美女看黄片| 涩涩av久久男人的天堂| 黄片播放在线免费| 国产成人精品久久二区二区91| 中文字幕制服av| 免费av中文字幕在线| 久久国产精品大桥未久av| 建设人人有责人人尽责人人享有的| 亚洲精品乱久久久久久| 国产精品久久久av美女十八| www.熟女人妻精品国产| 中文字幕人妻丝袜一区二区| 在线观看免费高清a一片| 欧美激情高清一区二区三区| 岛国在线观看网站| 国产精品九九99| 免费一级毛片在线播放高清视频 | 国产在线一区二区三区精| 日韩大片免费观看网站| av欧美777| 亚洲国产精品一区三区| 十八禁网站免费在线| 丝袜美足系列| 亚洲欧美一区二区三区黑人| 一二三四在线观看免费中文在| 成人手机av| 久久精品国产a三级三级三级| 亚洲精品乱久久久久久| h视频一区二区三区| 欧美久久黑人一区二区| 成人免费观看视频高清| 亚洲自偷自拍图片 自拍| 国产精品 国内视频| 不卡一级毛片| 色婷婷av一区二区三区视频| 久久狼人影院| 黄片播放在线免费| 90打野战视频偷拍视频| 色老头精品视频在线观看| 免费人妻精品一区二区三区视频| 日韩制服丝袜自拍偷拍| 国产男女内射视频| 大陆偷拍与自拍| 在线观看www视频免费| 熟女少妇亚洲综合色aaa.| 国产免费现黄频在线看| 亚洲精品在线美女| 成人三级做爰电影| 老司机影院毛片| 老司机靠b影院| 伦理电影免费视频| 亚洲国产精品一区二区三区在线| 欧美+亚洲+日韩+国产|