• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability

    2022-01-10 14:51:24JianshengYAO姚建生YingkuiZHAO趙英奎DifaYE葉地發(fā)YiLI李毅LihuiCHAI柴立暉andJichengSUN孫繼承
    Plasma Science and Technology 2021年12期
    關(guān)鍵詞:李毅

    Jiansheng YAO (姚建生) , Yingkui ZHAO (趙英奎), Difa YE (葉地發(fā)),Yi LI (李毅), Lihui CHAI (柴立暉) and Jicheng SUN (孫繼承)

    1Institute of Applied Physics and Computational Mathematics,Beijing 100088,People’s Republic of China

    2 CAS Key Lab of Geospace Environment,School of Earth and Space Sciences,University of Science and Technology of China, Hefei 230026, People’s Republic of China

    3 Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics,Chinese Academy of Sciences, Beijing 100029, People’s Republic of China

    4 Key Laboratory of Polar Science,Ministry of Natural Resources,Shanghai 200020,People’s Republic of China

    5 MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, People’s Republic of China

    Abstract Most protons in the solar wind belong to one of two different populations, the less dense beam protons and the denser core protons.The beam protons, with a velocity of (1–2) VA (VA is the local Alfvén speed),always drift relative to the core protons;this kind of distribution is unstable and stimulates several kinds of wave mode.In this study, using a 2D hybrid simulation model,we find that the original right-handed elliptically polarized Alfvén waves become linearly polarized, and eventually become right-handed and circularly polarized.Given that linearly polarized waves are a superposition of left-handed and right-handed waves,cyclotron resonance in the right-handed/left-handed component heats beam/core protons perpendicularly.The resonance between beam protons and right-handed polarized waves is stronger when the beam relative density is lower, resulting in more dramatic perpendicular heating of beam protons,whereas the situation is reversed when the beam relative density is larger.

    Keywords: proton/proton instability, hybrid simulation, Alfvén waves

    1.Introduction

    In situmeasurements of the solar wind, especially for fast solar wind with a typical flow speedvSW>600 km s?1,have shown that the distribution of solar-wind protons is very different from a Maxwellian distribution [1–6].Two significantly different components populate proton distributions:the less-dense proton population (always referred to as the beam population)drifts with a velocity of(1–2)VA(VAis the local Alfvén speed) relative to the more dense population(called the core population) and parallel to the ambient magnetic fieldB0.Recently, the successful launch of contemporary inner heliospheric missions, i.e., NASA’s Parker Solar Probe,and ESA’s Solar Orbiter,has sparked a research boom on the topic of the fast solar wind [7–9].Using linear theory, previous studies [10–14] have proved that two types of wave mode are unstable in the ion-beam system: magnetosonic instability with a maximum growth rate along the ambient magnetic field and the Alfvén mode that propagates obliquely toB0.Further studies by Daughton and Gary [12]have shown that, compared with the magnetosonic wave, the Alfvén mode has a larger growth rate and a lower threshold at a sufficiently large beam density and a sufficiently small core plasma beta (the ratio of thermal pressure to magnetic pressure).

    According to their differences in ion type, electromagnetic ion–ion instabilities can be roughly classified into electromagnetic alpha–proton [15, 16], heavy-ion–proton[17],and electromagnetic proton–proton instabilities[18–22].An investigation into the electromagnetic alpha–proton instability showed that during nonlinear evolution, the wavenumber,frequency,and propagation angle of the oblique Alfvén mode all drift to smaller values.A study of heavy-ion–proton instability [17] revealed that the velocity threshold of the right-handed polarized ion–ion resonant instability decreases with a decrease in the gyrofrequency of the beam ions.

    Research [22] into proton–proton beam instability has shown that wave parallel wavenumbers and frequencies may grow during evolution, and that protons and heavy ions are heated perpendicularly [19, 22].Furthermore, a previous study[21]found that when the proton beam relative density is high enough,the frequencies of the oblique Alfvén mode can exceed the proton gyrofrequency.Since Alfvén waves generated by electromagnetic proton–proton instability may be closely related to solar-wind heating, many researchers [19,23–27] have been devoted to studying the heating of core protons and heavy ions.In this study, we find an interesting phenomenon: beam perpendicular heating is stronger when the relative beam density is higher, while core perpendicular heating is stronger when the relative beam density is lower.Further investigation has revealed that perpendicular heating in these two situations corresponds to different polarized wave modes.

    In this paper, a 2D hybrid simulation model [28–30] is applied in order to investigate the perpendicular heating of protons by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability.This paper consists of four sections: the simulation model is described in section 2, the simulation results are illustrated in section 3,and the summary and discussion are presented in section 4.

    2.Simulation model

    A 2D hybrid simulation model is applied in this paper.In the hybrid simulation model, ions are treated as macroparticles,while electrons are treated as a massless fluid and follow the motion of ions.The simulation is performed in thex-yplane.According to observations in the solar wind [1–6], doublepeak-distributed protons consist of two components: a core population marked with the subscript ‘c’ and a less dense beam component drifting along the ambient magnetic field marked with the subscript‘b’.In the simulation,the direction of the drift velocity is along the ambient magnetic fieldB0and all along thex-axis.Initially, the core protons satisfy a Maxwellian distribution and the beam protons drift relative to the core protons with a velocityUbc=1.55VA.Previous studies have proved that electromagnetic ion–ion instability is dominant in the region with smallβcand reasonable beam velocities.Thus,in this study,the initial plasma beta for core and beam protons is set toβc=βb= 0.01and the plasma beta of electrons isβe= 0.01.Two runs with different beam relative densitiesnb/neare reported in this paper, wherene=nb+nc:run 1 usesnb/ne=0.15and run 2 usesnb/ne=0.4.These two scenarios depict situations with small and large beam relative densities, respectively.

    In the simulation, the unit of length is the proton inertial length,which is defined asdi=c/ωp,wherecandωpare the speed of light and the proton plasma frequency, respectively.The unit of time is the reciprocal of the proton gyrofrequency.Therefore, the velocity is normalized todiΩp,which is equivalent to the Alfvén speedVA.The total number of grid cells isnx×ny=256 ×256and the size of each cell is 0.8di×0.8di.To guarantee the stability of the simulation,the time step is set toΔt=0.025and the electron resistive length is set toTo reduce numerical disturbance, the average proton number in each cell is 100.The periodic boundary condition is applied in this simulation.The resolutions of the wavenumber and the wave frequency are 3.927 (c/ωp)?1and 3.14,respectively.

    3.Simulation results

    Figures 1(a)and(b)correspond to the temperature evolutions of runs 1 and 2, respectively.Figures 1(c) and (d) show the evolutions of the beam drift velocity(displayed with red lines)and the core proton drift velocity(displayed with blue lines)for runs 1 and 2.The parallel and perpendicular temperatures are calculated following this procedure: first, we calculate the parallel temperatureand the perpendicular temperaturefor the ion speciesj(i.e., core protons and beam protons) in every grid cell (the bracket〈〉denotes an average over one grid cell),whereandkBis the Boltzmann constant; the temperatures are then averaged over all grids.Using this method, the effect of the bulk velocity at each location on the temperature can be eliminated.The beam velocity is the average velocity of the protons over all the grid cells.

    Figure 1.(a)Temperature evolutions of the beam and core protons for run 1.(b)Temperature evolutions of the beam and core protons for run 2.Parallel and perpendicular temperatures are denoted by the subscripts ‘‖’ and ‘⊥’, respectively.The temperatures of the beam and core protons are denoted by the subscripts‘b’and‘c’.T0 is the initial temperature.(c)The evolution of the drift velocities of the beam(displayed with red lines)and core protons(displayed with blue lines)for run 1.(d)The evolution of the drift velocities of the beam and core protons for run 2.The black lines represent the relative drift velocities between the core and beam protons.

    Figure 2.The evolution of the power of the disturbing magnetic fieldsδB2/ B02 (represented by solid lines),δBz/B02 (represented by dotted lines), and δBx 2 , y/B02 (represented by dashed lines, whereδB x 2 , y= δB x 2+δBy2 ) for (a) run 1 with a 15% beam relative density, and (b) run 2 with a 40% beam relative density.

    Figure 3.The contours of the characteristics of the k x ?ky diagram for run 1,as obtained from a fast Fourier transform (FFT)ofδBz at(a)Ω pt =80,(b)Ω p t=280,and(c)Ω p t=960,respectively.The wavevectors k=(k x, ky,0)of the dominant wave(the wave mode with the maximum power) for these three figures are (a) k=(1.05, 1.35, 0) , (b) k=(1.12, 1.08, 0) , and (c) k=( 1 .38, 1.02, 0) , respectively.

    Figure 4.The contours of the characteristics of the k x ?ky diagram for run 2 obtained from the fast Fourier transform (FFT) ofδBz at(a)Ω pt =40,(b)Ω p t=150,and(c)Ω p t=960.The wavevectors k=(k x, ky,0)of the dominant wave(the wave mode with the maximum amplitude) for these three figures are (a) k=(0.95, 1.12, 0) , (b) k=(1.02, 1.05, 0) , and (c) k=(1.52, 0.93, 0) , respectively.

    Figure 5.Hodograms in the planeδB x , y ?δBz for run 1 for the intervals (a) t Ωp =40 ?50,(b) t Ωp=280 ?295,and (c) t Ωp=960?975.The excited waves have a right-handed elliptical polarization and then become linearly polarized;eventually,they adopt a right-handed circular polarization.Here, δBx ,y= ( ? δ Bxk y + δB y k x ) /‘+’ and ‘-’ represent the start and end points, respectively.

    As shown in figure 1,protons are primarily heated in the direction perpendicular to the background magnetic field at velocities between Ωpt≈200 ?500and the parallel temperatures of the beam and core protons decrease during Ωpt≈200 ?300and gradually rise after that.As shown in figure 1(b), the perpendicular temperatures of the core and beam protons increase at velocities between Ωpt≈100?400.It is worth noting that the perpendicular heating of beam protons is stronger than that of core protons in figure 1(a),but that the perpendicular heating of core protons is stronger in figure 1(b).This intriguing phenomenon will be studied further in the following sections.It should be emphasized that while this research focuses on the evolution of the perpendicular temperature, the complicated evolution of the parallel temperature is a fascinating problem that warrants additional examination in future work.

    As proved by previous studies[19, 22],the perpendicular heating of protons is closely related to cyclotron resonance with oblique Alfvén waves excited by electromagnetic proton–proton instability.This resonant interaction between waves and protons can be described quantitatively by the resonant factor[9, 16], which is defnied asζ±=(ω?k x Uj±nΩp)/k x vjth∣∣(n=0, 1, 2...) (where the superscripts+ and – correspond to the resonances of the right- and left-handed polarized waves, respectively.Ujandvjth∣∣are the drift and parallel thermal velocities of particle speciesj,respectively).When the cyclotron resonant factor satisfies the condition∣ ∣ζ<±3,cyclotron resonance can be considered to have occurred between waves and particles,and the smaller the value of∣ζ±∣,the stronger the resonant interaction between waves and protons.Since the calculation of∣ ∣ζ±involves waves with different polarizations, we need to study the polarization of excited waves before the calculation.

    A previous study [19] has demonstrated that Alfvén waves produced by electromagnetic proton–proton instability are linearly polarized during evolution.This can be represented by the evolution of the powers ofandAs illustrated in figure 2, the power of the outof-plane componentδBz2/B02is much larger than that of the in-plane componentduring Ωpt≈250 ?400for run 1 (Ωpt≈150 ?300for run 2).This indicates that the excited Alfvén waves have a nearly linear polarization during this period.After that,the power ofδBz2/B02decreases rapidly and approaches that ofThis indicates that the excited Alfvén waves become circularly polarized at this stage.

    The evolution of the hodogram can be used to visually represent the polarization of excited waves.For waves propagating obliquely relative to the magnetic field in our simulation,the polarization of waves should be viewed in the direction of the wavevector.Considering that our simulation is performed in the ?x yplane, we can directly get the wavevectork=(kx,ky,0)of the dominant wave (the wave mode with the maximum power) via a 2D fast Fourier transform(FFT)of the magnetic field.After that,the magnetic field is projected onto the plane perpendicular tok.Assuming that the wavevectorkdoes not change over a short period,the polarization of waves can be viewed in the planeδBx,y?δBz,where

    The contours of the characteristics of thekx?kydiagram for run 1 obtained from the FFT at different moments is presented in figure 3.Three time periods are selected in order to study the wave polarization beforeδBz2/B02increases(tΩp=80 ?90and 40–50 for run 1 and run 2,respectively),whenδBz2/B02reaches saturation (tΩp=280 ?295and 150–165 for run 1 and run 2,respectively),and afterδBz2/B02decreases in figure 2(tΩp=960 ?975for run 1 and run 2),respectively.The start times of these three durations are marked with vertical dashed lines in blue,green,and purple in figures 1 and 2,respectively.The wavevectorsk=(kx,ky, 0)of the dominant wave (the wave mode with the maximum power) that correspond to these three durations are =k(1.05, 1.35, 0) ,k=(1.12, 1.08, 0) ,andk=(1.38, 1.02, 0) ,respectively.Similarly, as illustrated in figure 4, we obtained the contour of characteristics of thekx?kydiagram for run 2.

    The wavevectorsk=(kx,ky,0)of the dominant wave in figures 4(a)–(c) arek=(0.95, 1.12, 0) ,k=(1.02, 1.05, 0) , andk=(1.52, 0.93, 0) , respectively.By substituting a wavevector into equation (1), we can map the fluctuating magnetic field onto the plane perpendicular tok,and obtain the hodogram in the planeδBx,y?δBz.

    Figures 5(a)–(c) show the hodograms in the planeδBx,y?δBzfor run 1 attΩp=80 ?90,tΩp=280 ?295,andtΩp=960 ?975,respectively.As shown in figure 5,the amplitude ofδBzis greater than that ofδBx,yduringtΩp=80 ?90,indicating that the excited waves have roughly right-handed elliptical polarization.DuringtΩp=280 ?295, the amplitude ofδBzis much greater than that ofδBx,y,meaning that the excited waves become linearly polarized.Linearly polarized waves can be seen as the superposition of left-handed and right-handed polarized waves.As presented in figure 5(c), waves change to a righthanded circular polarization duringtΩp=960 ?975.The polarization of the waves presented in figure 5 is compatible with what is seen in figure 2.Similarly,figures 6(a)–(c)show the evolution of the vectorδBfor run 2 in the planeδBx,y?δBzattΩp=40 ?50,tΩp=150 ?165,andtΩp=960 ?975,respectively.The original right-handed circular waves evolve to a linear polarization, and eventually to a right-hand circular polarization.In conclusion,regardless of the beam’s relative density, initial elliptical right-handed waves gradually become linearly polarized, and ultimately take on a right-handed circular polarization.The change in polarization may be caused by changes in temperature or drift velocities; however, this interesting phenomenon is beyond the scope of this paper and warrants further investigation in future work.

    Figure 6.Hodograms in the planeδB x , y ?δBz for run 2 for the intervals (a) t Ωp =40 ?50,(b) t Ωp=150 ?165,and (c) t Ωp=960?975.The excited waves have a right-handed elliptical polarization and then become linearly polarized;eventually,they adopt a right-handed circular polarization.Here, δBx ,y=‘+’ and ‘-’ represent the start and end points, respectively.

    Figure 7.(a) Evolution of the parallel wavenumber kx for run 1, (b) evolution of the parallel wavenumber kx for run 2.Both figures are derived via FFT.

    Figure 8.(a) The power ofδBz in the ω?kx plane for run 1,(b) the power ofδBz in the ω?kx plane for run 2.Both figures are obtained via FFT.

    Waves become linearly polarized when the perpendicular temperature of protons rises dramatically.This indicates that proton heating is related to the interaction between protons and left/right-handed waves.In the following section,we will study this interaction using the resonant factor.The resonant factor∣ζ±∣, defined asζ±=(ω?k x Uj±nΩp)/k x vjth∣∣,can quantify the resonant interaction between waves and protons.The wave frequency involved,ω,the parallel wavenumberkx,the drift velocityUj,and the parallel thermal velocityvjth∣∣can be determined via following process.

    Firstly,we obtainkxat a specific time via the evolution ofkx(shown in figure 7),and then find the correspondingωvia thekx?ωrelation (shown in figure 8); the drift velocityUjcan be obtained from figures 1(c)–(d), the parallel thermal velocity is calculated via the parallel temperature shown in figures 1(a) and (b), andwherevth0is the initial thermal velocity andvth0=0.1vA.These parameters at the moment of Ωpt=300for run 1(Ωpt=250 for run 2) are presented in table 1.Using these parameters,we can quantify the cyclotron resonant factor∣ζ±∣for the beam and core protons in runs 1 and 2,respectively.It should be noted that the values of the Landau resonance factorand the second-order resonance factor

    Table 1.Different parameters for run 1 at t =300 Ω?p1 and run 2 att=250 Ω?p1a.

    vthc∣∣andvthc⊥are the parallel and perpendicular thermal velocities of the core protons, respectively;vthb∣∣andvthb⊥are the parallel and perpendicular thermal velocities of the beam protons, respectively.vb∣∣andvc∣∣are the drift velocities of the beam and core protons, respectively.are greater than three;this indicates that these two resonances do not contribute to proton heating.Therefore, in this paper, the resonance factor∣ζ±∣jdefaults to the first-order cyclotron resonance factor.

    Table 2.Values of the cyclotron resonant factor for beam and core protons for run 1 at t =300 Ω?p1 and run 2 at t =250 Ω?p1.

    Substituting these parameters intok x vjth∣∣,we get the ranges of∣ζ±∣ for run 1 and run 2.As shown in the second row of table 2, the cyclotron resonance factor∣ξ+∣is much smaller than∣ξ?∣ for beam protons, indicating that the wave-mode cyclotron resonance with beam protons has righthanded polarization.For core protons,as can be seen in the third row of table 2,∣ξ+∣is much larger than∣ξ?∣, meaning that the wave-mode cyclotron resonance with core protons has left-handed polarization.In addition,the value of∣ξ+∣ for beam protons is smaller than that of∣ξ?∣ for core protons, indicating that the cyclotron resonance between beam protons and right-handed waves is greater in run 1.Therefore,the perpendicular heating of beam protons is more pronounced than that of core protons,which agrees with what was presented in figure 1(a).The situation is different in the case of a larger beam relative density(run 2).As illustrated by the fourth and fifth rows of table 2,the value of∣ξ?∣ for core protons is smaller than that of∣ξ+∣ for beam protons.This implies that the cyclotron resonance between core protons and left-handed waves is stronger.As a result, the perpendicular heating of core protons is greater than that of beam protons,which is consistent with what is shown in figure 1(b).In conclusion, beam (core) protons cyclotron resonate with righthanded (left-handed) polarized waves.The resonance between beam protons and right-hand polarized waves is greater, as the relative density of the beam is less, hence the perpendicular heating of beam protons is stronger.In a larger beam relative density,the reverse condition occurs:the resonance between core protons and left-handed polarized waves is greater, resulting in greater perpendicular heating of core protons.

    4.Summary and conclusions

    In this paper, using a 2D hybrid simulation model, we investigated the temperature evolution of core and beam protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability.We demonstrated that initial right-handed elliptically polarized waves gradually become linearly polarized, and eventually take on right-handed circular polarization.Considering that linearly polarized waves are a superposition of left-handed and righthanded polarized waves,the perpendicular heating of protons is caused by cyclotron resonance with left/right-handed waves.Using cyclotron resonant factor, we have proved that left-handed(right-handed polarized)waves resonate with core(beam) protons.When the beam relative density is low, the cyclotron resonance between beam protons and right-handed polarized waves is stronger, resulting in more significant perpendicular heating of beam protons; however, when the beam relative density is large, the condition is reversed.In addition, we found that the wavenumbers and frequencies of the excited waves grew during the evolution.

    The change of polarization of the excited waves during the evolution is an interesting phenomenon;it may be closely related to changes in temperature anisotropy or proton drift velocities,and merits further investigation in a future work.In addition, the complicated evolution of the parallel temperature of beam and core protons is an intriguing phenomenon that deserves further investigation in our future research.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.11822401, 41674177 and 41874208).

    Data statement

    The simulation data will be preserved on a long-term storage system and will be made available upon request to the corresponding author.

    ORCID iDs

    猜你喜歡
    李毅
    單循環(huán)制賽棋
    Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
    超早期微創(chuàng)傷性顱內(nèi)血腫清除術(shù)治療高齡腦出血的臨床療效研究
    The Iditarod
    Collective excitations and quantum size effects on the surfaces of Pb(111)films: An experimental study*
    Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer?
    “網(wǎng)紅”李毅的足球人生
    北廣人物(2020年47期)2020-12-09 06:24:10
    Hunter—Gatherers
    Advantages and Disadvantages of Studying Abroad
    李毅:很多事超出主教練掌控 我是當(dāng)?shù)之?dāng)媽
    亚洲av日韩在线播放| 蜜桃在线观看..| 欧美日韩亚洲国产一区二区在线观看 | 国产精品欧美亚洲77777| 最近中文字幕2019免费版| 男女无遮挡免费网站观看| 国产 精品1| 99久久综合免费| 午夜老司机福利片| 国产探花极品一区二区| www.自偷自拍.com| 久久久久精品性色| 精品国产国语对白av| svipshipincom国产片| 电影成人av| 一级毛片黄色毛片免费观看视频| 亚洲国产精品999| 999久久久国产精品视频| 国产精品熟女久久久久浪| 国产亚洲最大av| 亚洲色图 男人天堂 中文字幕| 亚洲人成77777在线视频| 国产成人午夜福利电影在线观看| 波多野结衣av一区二区av| 国产乱来视频区| 2021少妇久久久久久久久久久| 国产亚洲最大av| 久久这里只有精品19| 日韩人妻精品一区2区三区| 日本黄色日本黄色录像| 男女无遮挡免费网站观看| 国产成人系列免费观看| 女的被弄到高潮叫床怎么办| 国产精品一区二区精品视频观看| 精品一区二区三区av网在线观看 | 国产精品香港三级国产av潘金莲 | 97人妻天天添夜夜摸| av卡一久久| 国产精品欧美亚洲77777| 超色免费av| 亚洲国产欧美一区二区综合| 亚洲国产精品一区二区三区在线| 中文字幕人妻丝袜制服| 尾随美女入室| 免费黄频网站在线观看国产| 国产精品久久久久久久久免| 曰老女人黄片| 曰老女人黄片| 人妻人人澡人人爽人人| 中国国产av一级| 操出白浆在线播放| 日韩av不卡免费在线播放| 大香蕉久久网| 蜜桃在线观看..| 午夜福利视频在线观看免费| 日韩制服丝袜自拍偷拍| 韩国av在线不卡| 777久久人妻少妇嫩草av网站| 嫩草影院入口| 亚洲婷婷狠狠爱综合网| 嫩草影院入口| 精品国产国语对白av| 天美传媒精品一区二区| 9色porny在线观看| 日本爱情动作片www.在线观看| 国产精品三级大全| 99久久精品国产亚洲精品| 天美传媒精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产极品粉嫩免费观看在线| av福利片在线| 又大又黄又爽视频免费| 午夜av观看不卡| 久久精品亚洲av国产电影网| 亚洲国产欧美一区二区综合| 欧美xxⅹ黑人| 岛国毛片在线播放| 日韩,欧美,国产一区二区三区| 亚洲在久久综合| 午夜福利一区二区在线看| 在线观看一区二区三区激情| 熟妇人妻不卡中文字幕| 亚洲精品成人av观看孕妇| 老司机亚洲免费影院| 久久 成人 亚洲| 综合色丁香网| 卡戴珊不雅视频在线播放| 99久久99久久久精品蜜桃| 国精品久久久久久国模美| 美女福利国产在线| 婷婷色综合www| 一级a爱视频在线免费观看| 黄网站色视频无遮挡免费观看| 天堂俺去俺来也www色官网| 久久久久久免费高清国产稀缺| 麻豆乱淫一区二区| 黄色视频在线播放观看不卡| 亚洲欧美中文字幕日韩二区| 亚洲一区中文字幕在线| 9热在线视频观看99| 欧美日韩av久久| 少妇 在线观看| 老司机靠b影院| 亚洲国产成人一精品久久久| 青春草国产在线视频| 欧美 日韩 精品 国产| 国产精品久久久久久精品古装| 亚洲精品第二区| 青春草国产在线视频| 久久精品国产a三级三级三级| 亚洲精品中文字幕在线视频| 亚洲成人一二三区av| 黑人巨大精品欧美一区二区蜜桃| 久久久久久人妻| 欧美成人精品欧美一级黄| 亚洲av成人不卡在线观看播放网 | 亚洲av国产av综合av卡| 一级,二级,三级黄色视频| 中文欧美无线码| 最黄视频免费看| 午夜老司机福利片| 国产精品秋霞免费鲁丝片| 精品久久蜜臀av无| 午夜激情久久久久久久| 制服人妻中文乱码| 久久精品久久精品一区二区三区| 精品国产国语对白av| 亚洲一区中文字幕在线| 一级黄片播放器| 欧美 日韩 精品 国产| 伊人久久国产一区二区| 欧美在线黄色| 男女无遮挡免费网站观看| 一区福利在线观看| 亚洲精品美女久久久久99蜜臀 | 巨乳人妻的诱惑在线观看| tube8黄色片| 亚洲人成网站在线观看播放| 国产不卡av网站在线观看| 国产又色又爽无遮挡免| avwww免费| 高清视频免费观看一区二区| 91精品三级在线观看| 91精品三级在线观看| 最近中文字幕2019免费版| 亚洲成人av在线免费| 色网站视频免费| 99精国产麻豆久久婷婷| 看十八女毛片水多多多| 色网站视频免费| 亚洲av欧美aⅴ国产| 电影成人av| 日韩大码丰满熟妇| 如日韩欧美国产精品一区二区三区| 免费观看a级毛片全部| 99精品久久久久人妻精品| 日本一区二区免费在线视频| 亚洲免费av在线视频| 高清av免费在线| 国产精品免费大片| 校园人妻丝袜中文字幕| 无限看片的www在线观看| 丰满饥渴人妻一区二区三| 国产乱人偷精品视频| 多毛熟女@视频| 天天操日日干夜夜撸| 成年美女黄网站色视频大全免费| 日韩av不卡免费在线播放| 中文字幕人妻熟女乱码| 少妇的丰满在线观看| av天堂久久9| 一区二区三区乱码不卡18| 久热爱精品视频在线9| 欧美国产精品va在线观看不卡| 亚洲欧美精品自产自拍| 午夜福利视频精品| 国产精品熟女久久久久浪| 亚洲欧美中文字幕日韩二区| 欧美国产精品一级二级三级| av网站在线播放免费| 天美传媒精品一区二区| a级毛片黄视频| 美女视频免费永久观看网站| 日韩一区二区视频免费看| 夫妻性生交免费视频一级片| 国产精品偷伦视频观看了| 成人国产av品久久久| 欧美精品人与动牲交sv欧美| 在线观看免费日韩欧美大片| 亚洲av男天堂| 国产日韩一区二区三区精品不卡| 我要看黄色一级片免费的| 另类精品久久| 精品一区二区三卡| 日本黄色日本黄色录像| 国产成人精品久久久久久| 男人操女人黄网站| 美女扒开内裤让男人捅视频| 99久久综合免费| 热99国产精品久久久久久7| 婷婷成人精品国产| 国产野战对白在线观看| 蜜桃在线观看..| 久久人妻熟女aⅴ| 国产 一区精品| 高清av免费在线| 精品卡一卡二卡四卡免费| 天堂俺去俺来也www色官网| 久久精品熟女亚洲av麻豆精品| 看免费成人av毛片| av网站免费在线观看视频| 亚洲欧美成人综合另类久久久| 男女国产视频网站| 色婷婷久久久亚洲欧美| 亚洲国产欧美日韩在线播放| 国产免费又黄又爽又色| 国产在线免费精品| 久久精品亚洲av国产电影网| 亚洲国产欧美在线一区| 啦啦啦在线免费观看视频4| 九色亚洲精品在线播放| 精品亚洲乱码少妇综合久久| 欧美黄色片欧美黄色片| 欧美日韩亚洲综合一区二区三区_| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩av免费高清视频| 日韩欧美精品免费久久| 亚洲精品在线美女| 日韩一区二区视频免费看| 国产男女超爽视频在线观看| 在线观看免费日韩欧美大片| 免费av中文字幕在线| 日本欧美国产在线视频| 纯流量卡能插随身wifi吗| 熟女av电影| 亚洲精品自拍成人| 欧美日韩亚洲国产一区二区在线观看 | 伦理电影免费视频| 久久国产亚洲av麻豆专区| 婷婷成人精品国产| 久久久精品免费免费高清| 久久99一区二区三区| 啦啦啦在线观看免费高清www| 嫩草影院入口| 亚洲国产精品成人久久小说| 国产在线一区二区三区精| 国产一卡二卡三卡精品 | bbb黄色大片| 两个人看的免费小视频| 水蜜桃什么品种好| 成年动漫av网址| 国产免费福利视频在线观看| 亚洲精品在线美女| 精品久久久精品久久久| 日韩一区二区三区影片| 波多野结衣av一区二区av| 人人妻人人澡人人爽人人夜夜| 日韩一本色道免费dvd| 亚洲精品国产一区二区精华液| 高清欧美精品videossex| 亚洲欧洲国产日韩| 一边亲一边摸免费视频| 精品久久久精品久久久| 18禁观看日本| 啦啦啦 在线观看视频| 日韩一本色道免费dvd| 午夜激情久久久久久久| 久久精品国产综合久久久| 亚洲国产成人一精品久久久| 亚洲第一青青草原| 国产女主播在线喷水免费视频网站| 日本一区二区免费在线视频| 最近中文字幕高清免费大全6| 如何舔出高潮| 欧美黑人欧美精品刺激| 免费人妻精品一区二区三区视频| 亚洲欧洲日产国产| 美国免费a级毛片| 老司机靠b影院| 欧美黄色片欧美黄色片| 街头女战士在线观看网站| 天堂8中文在线网| 秋霞在线观看毛片| av视频免费观看在线观看| 欧美精品人与动牲交sv欧美| 又粗又硬又长又爽又黄的视频| 热99国产精品久久久久久7| 久久国产精品男人的天堂亚洲| 人体艺术视频欧美日本| 极品人妻少妇av视频| 午夜福利视频精品| 亚洲专区中文字幕在线 | 国产97色在线日韩免费| 高清不卡的av网站| 天天躁夜夜躁狠狠躁躁| 久久久久精品人妻al黑| 人人妻人人澡人人看| 在线观看免费高清a一片| 如何舔出高潮| 老汉色av国产亚洲站长工具| 欧美日韩一级在线毛片| 丁香六月欧美| 18禁动态无遮挡网站| 欧美黑人欧美精品刺激| 91国产中文字幕| 国产高清国产精品国产三级| 丝袜脚勾引网站| 午夜福利视频在线观看免费| 亚洲中文av在线| 亚洲色图 男人天堂 中文字幕| 欧美日韩视频高清一区二区三区二| 久久久久国产精品人妻一区二区| 久久久精品免费免费高清| 国产精品 国内视频| 久久午夜综合久久蜜桃| 天堂俺去俺来也www色官网| 亚洲久久久国产精品| 成人手机av| 制服人妻中文乱码| 欧美日韩国产mv在线观看视频| 老熟女久久久| 伦理电影大哥的女人| 99精品久久久久人妻精品| 国产av国产精品国产| 久久久久久人妻| 亚洲中文av在线| 可以免费在线观看a视频的电影网站 | av女优亚洲男人天堂| 久久久国产欧美日韩av| 国产av码专区亚洲av| 中文字幕色久视频| 国产老妇伦熟女老妇高清| avwww免费| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| 国产一级毛片在线| 亚洲成色77777| 国产成人免费观看mmmm| 热99国产精品久久久久久7| 精品一区二区三卡| 久久免费观看电影| 黄片播放在线免费| 中文字幕制服av| 色网站视频免费| 日韩制服骚丝袜av| 国产成人a∨麻豆精品| 国产亚洲av高清不卡| 亚洲图色成人| 成人亚洲欧美一区二区av| 满18在线观看网站| av又黄又爽大尺度在线免费看| 老司机影院成人| 一区二区日韩欧美中文字幕| 男的添女的下面高潮视频| 中文字幕最新亚洲高清| 飞空精品影院首页| 欧美日韩亚洲综合一区二区三区_| 大片电影免费在线观看免费| 欧美人与性动交α欧美软件| 波多野结衣av一区二区av| 高清黄色对白视频在线免费看| 免费久久久久久久精品成人欧美视频| 国产精品99久久99久久久不卡 | 亚洲一级一片aⅴ在线观看| 女性被躁到高潮视频| 国产成人午夜福利电影在线观看| 国产 一区精品| 精品卡一卡二卡四卡免费| 欧美97在线视频| 91国产中文字幕| av卡一久久| 亚洲国产看品久久| 亚洲av中文av极速乱| 国产av国产精品国产| 国产亚洲精品第一综合不卡| 欧美精品一区二区大全| 午夜免费鲁丝| 伊人久久国产一区二区| 男的添女的下面高潮视频| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三区在线| 免费高清在线观看日韩| 午夜激情久久久久久久| 久久精品久久久久久久性| 久久久国产精品麻豆| 777米奇影视久久| 巨乳人妻的诱惑在线观看| 大香蕉久久成人网| 国产成人a∨麻豆精品| 天天影视国产精品| 国产精品 国内视频| 91老司机精品| 亚洲伊人色综图| 日韩av在线免费看完整版不卡| 精品第一国产精品| 嫩草影视91久久| 国产有黄有色有爽视频| 搡老乐熟女国产| 中文字幕制服av| 成人毛片60女人毛片免费| 看免费av毛片| 国产一区有黄有色的免费视频| 亚洲av国产av综合av卡| 色视频在线一区二区三区| 亚洲美女搞黄在线观看| 一级片免费观看大全| 黄色毛片三级朝国网站| 午夜影院在线不卡| 亚洲精品aⅴ在线观看| 国产伦人伦偷精品视频| 日本av免费视频播放| 色播在线永久视频| 欧美黑人精品巨大| 在线观看免费午夜福利视频| 久久久久网色| 中文字幕人妻丝袜一区二区 | a级毛片黄视频| 亚洲成人国产一区在线观看 | 日韩精品有码人妻一区| 女性被躁到高潮视频| 亚洲精品美女久久av网站| e午夜精品久久久久久久| 亚洲三区欧美一区| 精品免费久久久久久久清纯 | 欧美人与善性xxx| 国产麻豆69| 最近的中文字幕免费完整| 成人免费观看视频高清| √禁漫天堂资源中文www| 欧美成人精品欧美一级黄| 欧美在线一区亚洲| 黄色怎么调成土黄色| tube8黄色片| 久久精品亚洲av国产电影网| 女人爽到高潮嗷嗷叫在线视频| 欧美变态另类bdsm刘玥| 观看av在线不卡| 亚洲欧美中文字幕日韩二区| 午夜福利免费观看在线| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久精品电影小说| 欧美在线黄色| 少妇被粗大猛烈的视频| 午夜福利影视在线免费观看| 亚洲第一青青草原| 中国三级夫妇交换| 国产无遮挡羞羞视频在线观看| 一级毛片黄色毛片免费观看视频| 久久ye,这里只有精品| 高清在线视频一区二区三区| 国产极品天堂在线| 美国免费a级毛片| 中文字幕人妻丝袜一区二区 | 黄片无遮挡物在线观看| 日韩中文字幕视频在线看片| 亚洲成人一二三区av| 国产成人精品久久二区二区91 | 丰满饥渴人妻一区二区三| 精品国产一区二区三区久久久樱花| 多毛熟女@视频| 亚洲国产成人一精品久久久| 一级毛片黄色毛片免费观看视频| 两个人看的免费小视频| 国产精品麻豆人妻色哟哟久久| 91aial.com中文字幕在线观看| 久久久久网色| 欧美最新免费一区二区三区| 久久影院123| 搡老岳熟女国产| 亚洲天堂av无毛| 国产精品熟女久久久久浪| 看十八女毛片水多多多| 丰满迷人的少妇在线观看| 欧美97在线视频| 免费在线观看黄色视频的| a级毛片黄视频| 国产av精品麻豆| 我的亚洲天堂| 另类亚洲欧美激情| 亚洲精品国产一区二区精华液| 精品亚洲成a人片在线观看| 日韩制服骚丝袜av| 18禁动态无遮挡网站| 青草久久国产| 欧美日韩av久久| 在线天堂最新版资源| 少妇猛男粗大的猛烈进出视频| 免费在线观看完整版高清| 搡老乐熟女国产| 午夜免费观看性视频| 大码成人一级视频| 亚洲国产精品国产精品| 少妇人妻 视频| 欧美成人精品欧美一级黄| 青草久久国产| 久热爱精品视频在线9| 国产福利在线免费观看视频| 亚洲国产最新在线播放| 亚洲av日韩精品久久久久久密 | 日韩人妻精品一区2区三区| 咕卡用的链子| 男女床上黄色一级片免费看| 2018国产大陆天天弄谢| 无遮挡黄片免费观看| 亚洲国产av新网站| 国产爽快片一区二区三区| 国产 一区精品| 麻豆乱淫一区二区| 久久久久久久久久久久大奶| 国产在视频线精品| 欧美另类一区| 久久精品国产a三级三级三级| av福利片在线| av福利片在线| 国产亚洲一区二区精品| 99国产综合亚洲精品| 欧美日韩视频高清一区二区三区二| 赤兔流量卡办理| 免费av中文字幕在线| 精品视频人人做人人爽| 国产国语露脸激情在线看| 欧美 日韩 精品 国产| 青草久久国产| 亚洲熟女毛片儿| 国产精品国产三级专区第一集| 97精品久久久久久久久久精品| 叶爱在线成人免费视频播放| 久久 成人 亚洲| 黄色一级大片看看| 精品少妇久久久久久888优播| 人妻一区二区av| 黑人猛操日本美女一级片| 日韩电影二区| 久久久精品国产亚洲av高清涩受| 999久久久国产精品视频| 欧美日韩视频精品一区| 国产精品久久久久久久久免| 欧美精品一区二区免费开放| 久久久久久免费高清国产稀缺| 丝袜人妻中文字幕| 国产精品免费视频内射| 精品福利永久在线观看| 夜夜骑夜夜射夜夜干| 亚洲成人av在线免费| 咕卡用的链子| 肉色欧美久久久久久久蜜桃| 最近手机中文字幕大全| 中文字幕人妻丝袜制服| 一本大道久久a久久精品| 亚洲欧美精品自产自拍| 99久国产av精品国产电影| 男女之事视频高清在线观看 | 亚洲av福利一区| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站 | 亚洲精华国产精华液的使用体验| 国产亚洲最大av| 久久久欧美国产精品| 国产亚洲午夜精品一区二区久久| 日韩一区二区视频免费看| 免费av中文字幕在线| 亚洲视频免费观看视频| 久久ye,这里只有精品| a级片在线免费高清观看视频| 搡老乐熟女国产| 亚洲国产精品999| 久久综合国产亚洲精品| 亚洲成人国产一区在线观看 | 久久久久人妻精品一区果冻| 尾随美女入室| 观看美女的网站| 日本黄色日本黄色录像| 久久99热这里只频精品6学生| 日本黄色日本黄色录像| 91老司机精品| 在线天堂中文资源库| 91精品国产国语对白视频| 看十八女毛片水多多多| 欧美乱码精品一区二区三区| 黄频高清免费视频| 亚洲精品日本国产第一区| 母亲3免费完整高清在线观看| 美女国产高潮福利片在线看| 交换朋友夫妻互换小说| 国产 精品1| 亚洲av国产av综合av卡| 韩国av在线不卡| 日本av免费视频播放| 女的被弄到高潮叫床怎么办| 国产麻豆69| 午夜福利视频在线观看免费| 在线观看三级黄色| 亚洲精品久久成人aⅴ小说| 国产片内射在线| 欧美人与善性xxx| 卡戴珊不雅视频在线播放| 亚洲成人av在线免费| 亚洲自偷自拍图片 自拍| 欧美在线一区亚洲| 99热全是精品| 免费观看a级毛片全部| 亚洲精品一区蜜桃| 中国三级夫妇交换| 欧美97在线视频| 亚洲国产精品一区三区| 亚洲国产日韩一区二区| 久久精品国产综合久久久| 国产免费福利视频在线观看| 国产精品久久久久久精品电影小说| 亚洲精品自拍成人| 热re99久久精品国产66热6| 少妇被粗大猛烈的视频| 精品人妻一区二区三区麻豆| 国产一区亚洲一区在线观看| 欧美变态另类bdsm刘玥|