• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collective excitations and quantum size effects on the surfaces of Pb(111)films: An experimental study*

    2021-07-30 07:35:38YadeWang王亞德ZijianLin林子薦SiweiXue薛思瑋JiadeLi李佳德YiLi李毅XuetaoZhu朱學(xué)濤andJiandongGuo郭建東
    Chinese Physics B 2021年7期
    關(guān)鍵詞:亞德李毅林子

    Yade Wang(王亞德) Zijian Lin(林子薦) Siwei Xue(薛思瑋) Jiade Li(李佳德)Yi Li(李毅) Xuetao Zhu(朱學(xué)濤) and Jiandong Guo(郭建東)

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: Pb films,plasmons,quantum size effects,high-resolution electron energy loss spectroscopy

    1. Introduction

    The collective excitations of electrons,i.e., plasmons,in metal films are important not only for the understanding of electron-electron interactions in low-dimensional systems[1,2]but also promising in plasmonic electro-optic applications,[3-11]The properties of plasmons in metal films are mainly determined by the electronic band structure of the metal as well as the dielectric properties of the substrate.[1]The spatial confinement of electrons in the metal films may also generate an essential influence on the plasmon behavior.[12,13]The spatial confinement of metal films in the normal direction will generate the quantization of the electronic states,which can be depicted as the quantum well states(QWS).Due to the discrete energy levels and the electron confinement in the QWS, the properties of metal films, such as the work functions[14]and the transport coefficients,[15]may strongly depend on the thickness,known as the quantum size effect(QSE).The plasmons in metal films sometimes also exhibit obvious QSE, mainly resulting from the inherent QWS.For example, the surface plasmon of Ag films shows negative dispersion in the small momentum range due to enhanced screening effect,[16]and the wave of the QWS can reach the substrate and give rise to the hybridized interaction between the film surface and substrate.[12]Consequently, the damping of the surface plasmon in Ag films displays significant thickness dependence.[17]QSE is a crucial issue to take into account in the research of the surface plasmons of thin films.

    Fig.1.A classic model of the surface plasmons in thin films.(a)A schematic diagram of the thin film epitaxy on the substrate,showing two interfaces. (b)A schematic plot of the surface plasmon in the film split into ω± branches.The green background illustrates the change of the width of the plasmon branch,with the qc defined at the position of the splitting or at the position of the minimum width. The dashed lines of ω± represent that the splitting may not be experimentally measured.

    The most striking metal film system showing the QSE is the Pb(111) film, where the superconducting critical temperature, work function, and the Kondo effect exhibit strong thickness-dependent oscillations.[22-27]Different from other metal films in which the QSE vanishes when the thickness is beyond~10 monolayers (ML),[28-30]the QSE in Pb(111)films is so much stronger that it persists over 30 ML.[24]The plasmons in Pb(111)films are expected to show much stronger QSE than other metal films. However,the manifestation of the strong QSE in the plasmons of Pb(111)films has not been observed so far.

    In this article, using high-resolution electron energy loss spectroscopy (HREELS) with the capability of twodimensional (2D) energy-momentum mapping,[31]we measured and analyzed the plasmon dispersions on the surface of Pb(111) films with different film thicknesses. We discovered that the QSE in Pb(111)films has a very strong effect on one of the surface plasmons,manifested as strong damping in the small momentum range. The damping is still noticeable even in 40-ML-thick Pb(111)films,clearly demonstrating the strong QSE in the perspective of the collective excitations.

    2. Methods

    3. Results and discussion

    As one of the heavy metal elements in the periodical table,Pb possesses large spin-orbit coupling,which may induce topological phases in systems associated with Pb films.[34-37]From theoretical calculations,the spin-orbit effect is also predicted to have a great influence on the plasmons of Pb,e.g.,resulting in anisotropy of the plasmons or generating new excitation modes.[38,39]Previous HREELS experiment[40]of Pb(111) films grown on Si(111) focused on a plasmon mode around 2 eV(q →0),which was assigned to be a surface plasmon. While there was a huge disagreement with the theoretical calculations,where the mode around 2 eV was proved to be a bulk mode related to the spin-orbit coupling of Pb.[38]To clarify the issue, we performed systematical HREELS measurements to show the full dispersions of the plasmons in Pb(111) films and analyzed the possible manifestation of the QSE in the collective excitations.

    Fig.2. The momentum-dependent energy loss curves of Pb(111)films with different thicknesses. (a)-(f)corresponding to film thickness of 40,30,20,13,7,and 4/3 ML,respectively. The dispersions of different branches are represented by dotted lines as guides to the eye.

    Figure 2 shows the momentum-dependent energy loss curves(ELCs)of Pb(111)films with different thicknesses,extracted from the 2D HREELS mapping (see Fig. B1 in Appendix B). In the 4/3-ML sample, only two loss peaks can be discerned due to the strong effect of the substrate, since it is actually the Pb-induced reconstruction of the Si(111)surface, with details discussed in the appendix. Except for the 4/3-ML sample, all the other samples show four peaks in the ELCs, marked by the dashed lines and labeled as TE,α1,α2,α3, respectively. In order to check the details about the thickness-dependence,we plot the stacking ELCs of different thicknesses atq=0.07 ?A-1andq=0.2 ?A-1,in Figs.3(a)and 3(b),respectively. The line profiles of these modes at different thicknesses are clearly demonstrated. The exact energies of the peaks can be obtained by fitting the ELCs using Lorentz functions. Two typical fitting cases are shown in Figs. 3(c)and 3(d)as examples. The fitting results are plotted in Fig.4 to show the dispersions of the observed features. The assignments of these features are obtained by comparison with theoretical calculations,[38,41]with the results summarized in Table 1.

    Table 1. Summary of the four observed features in the HREELS measurement of the Pb(111)films.

    The TE branch represents the photoemission threshold excitation, usually manifested as a single-particle excitation peak in HREELS.[42,43]In Pb(111) films, the TE branch is located at about 4 eV, very close to the work function of Pb(4.25 eV).

    Theα1,α2,α3branches are the collective excitations of Pb(111) films.α1is a bulk plasmon, with the energy of~1.8 eV atq=0 and dispersing up to~2.1 eV atq~0.1 ?A-1.The dispersion matches well(shown in Fig.C1(a)in Appendix C)with the calculated bulk plasmon,[38]which is strongly related to the spin-orbit coupling effect of Pb.α2is a surface plasmon,with the energy of~7.0 eV atq=0 and being dispersionless up toq=0.4 ?A-1. The comparison with the calculation (shown in Fig. C1(b) in Appendix C) indicates thatα2is closely related to the interband transitions.[41]The predicted acoustic plasmons in theoretical calculations[38]were not observed in our measurements,possibly because its crosssection,i.e.,the intensity in loss functions is too low to show obvious peaks in the ELCs.

    α3is another surface plasmon,strongly related to the film thickness,which will be the focus in this study. The comparison betweenα3and the calculated surface plasmon dispersion(shown in Fig. C1(b) in Appendix C) indicates that the overall energy ofα3is slightly lower than the calculated results.This difference should be resulting from the screening effect of the d-electrons,which is difficult to be fully considered in the calculations due to the strong electron-electron interactions.It can be roughly understood by a phenomenological model,where the reduction of the surface plasmon energy due to the additional screening from the d-electrons can be described by Liebsch’s theory.[44]

    Fig. 3. Comparison of the energy loss curves with different thicknesses and the curve fitting process: (a) the comparison at q=0.7 ?A-1; (b) the comparison at q=0.2 ?A-1. The dispersion of different branches is represented by dotted lines for guides to the eye; (c) and (d) typical peak fitting process of the 40-ML sample at q=0.07 ?A-1 and q=0.2 ?A-1,respectively.

    A prominent feature ofα3is the damping in the small momentum range,as shown in Figs.4 and C1(b). In all the films,regardless of the thickness,α3cannot be measured aroundq=0.With increasingq,α3gradually appears after the critical momentum valueqc. This phenomenon has not been reported in previous experimental studies of Pb(111) films. There are two possible reasons for the damping of surface plasmons at the small momentum range: (i)the interaction with other collective excitations or (ii) the interaction between the top and bottom interfaces of the thin films.

    The first scenario has been reported in two metal film systems, Cs films on Si(111) substrate[20]and Ag films on Cu(111) substrate.[16]In the case of ultrathin Cs films, there is a crossover between the multipole plasmon and the regular surface plasmon.[20]The regular surface plasmon cannot be measured whenq <0.1 ?A-1due to the influence of the multipole plasmon.[20]In the case of thin Ag films, the surface plasmon cannot be measured as well whenq <0.1 ?A-1,where only bulk plasmon can be measured.[16]In both cases,two plasmon modes cannot coexist,i.e., only one mode can be observed at each specificq. As an analogy, in our measurement, it seemsα3in Pb(111) films at small momentum range could be damped due to the influence ofα2. However,different from the cases of Cs and Ag films, it is clear from Fig. 2 thatα3andα2always coexist whenq >qc. These results rule out the possibility that the damping ofα3at the small momentum range is due to the interaction with other collective excitations.

    Fig.4. Dispersions of the measured plasmons obtained from the fitting of loss curves: (a)-(f)corresponding to film thickness of 40,30,20,13,7,and 4/3 ML,respectively.

    The second scenario,i.e.,the interaction between the top and bottom interfaces,is essentially a size effect due to the finite film thickness, as illustrated in Fig. 1. This scenario for Pb(111) films has been theoretically calculated in Ref. [41]and the overall damping feature ofα3observed in our experiment agrees well with this picture. The main difference is that the expected spitting ofα3in the small momentum range was not clear in the experiment, similar to the case of the surface plasmon in Ag films.[17]Instead,the damping was reflected by the change of the FWHM as a function ofq. As described in the scheme of Fig.1(b),qccan be determined as the momentum position of the minimum FWHM.To obtain the quantitative value of theqcfor each Pb(111)film with different thickness, the FWHMs ofα3at differentqare obtained from the fitting method shown in Figs.3(c)and 3(d). The fitting results are plotted in Fig.5(a). For each thickness,the FWHM gradually decreases with increasingquntil reaching the minimum,after which the FWHM starts increasing withq.

    As shown in Fig.5(b),the experimentalqcof Pb(111)is almost maintained around 0.2 ?A-1with the film thickness less than 30 ML; and it decays slowly to about 0.15 ?A-1when the film thickness is up to 40 ML. The weak and slow decay of the experimentally measuredqcin Pb(111)is significantly different from the case of Ag(111) as well as the calculated of Pb(111), both showing an exponential decay with the increasing film thickness. The observed phenomenon provides a manifestation of the strong QSE in Pb(111)films in the perspective of collective excitations.

    The origin of the surprisingly strong QSE in Pb(111)films has been theoretically investigated in Ref. [45]. Compared with other metals, the QSE in Pb(111) films are more prominent due to the slow decay of Friedel oscillations in the electron density from the Pb(111) surfaces, which is related to the strong nesting of the Fermi surface along the Pb(111) direction.[45]The Friedel oscillations at the Pb(111)surface decay as 1/xwith the distancexfrom the surface,different from the conventional 1/x2power law at other metal surfaces.[45]Rather than the mere presence of QWS, the interference in the electron density by the strong Friedel oscillations associated with the strong nesting of the Fermi surface along the Pb(111) direction,[45]would inevitably affect the plasmon behaviors. These effects are usually not considered in theab initiocalculations, resulting in the possible overestimation of the decay ofqcupon film thickness.[41]The indepth mechanism of the enhanced interface interactions in the surface plasmons by QSE is still not clear. More studies including both experiments and theories are needed in the future investigations.

    Fig.5. The critical momentum qc of different thicknesses: (a)the variation of the FWHW with different film thicknesses of Pb(111). The stars on the horizontal axis mark the positions of the qc. (b) Comparison of the decay of qc between different systems. The experimental values of Pb(111) are obtained from panel(a). The theoretical values of Pb(111),[41] experimental values of Ag(111),[17] and theoretical values of Ag(111)[18] are extracted from previous studies.

    4. Summary

    We have measured the electronic collective excitations in Pb(111) films with different thicknesses. The dispersions of three different plasmons modes have been observed and analyzed. We discovered that one of the surface plasmons shows strong damping in the small momentum range whenq <qc,manifesting the strong QSE effect in Pb(111) films. Different from other metal films in which the critical momentumqcdecays exponentially with increasing film thickness,theqcin Pb(111)films decays much slower,and the strong damping is still observable even in 40-ML-thick Pb(111)films. These observations indicate that the interactions between the surface and interface of the Pb(111) films can be enhanced by the strong Friedel oscillations in the electron density and significantly affect the behaviors of the collective excitations. This work further proves that the QSE is an important issue that should be considered in the analysis of the surface plasmons of thin metal films. Moreover,the thickness-dependent damping behavior originated from the QSE may have potential applications in plasmonics based on metal films.

    Acknowledgment

    The authors would like to thank Prof. E V Chulkov and Prof. V M Silkin for discussions about the plasmon assignments.

    Appendix A:Characterization of the films

    Fig.A1. (a)-(f)The LEED patterns of Pb(111)films with different thicknesses,with the incident electron beam energy of 90 eV.(g)and(h)The STM images(V =-2 V,I=100 pA)of 30-ML-thick Pb(111)films and 4/3-ML-thick Pb(111)films,respectively.

    Appendix B:Original 2D HREELS data

    The original data obtained from our 2D HREELS system are the energy-momentum mappings, as shown in Fig.B1. The momentum-dependent energy loss curves(ELCs),i.e.,the scattering intensity as a function of energy loss for a given momentum value,shown in Fig.2 of the main manuscript,are extracted from these 2D HREELS mappings.

    Fig.B1. (a)-(f)2D HREELS mappings showing the relationship between the energy loss and the momentum of Pb(111)films with different thicknesses.

    Appendix C:Comparison of the measured plasmons with theoretical calculations

    The assignments of the observed HREELS features are obtained by comparison with theoretical calculations.The colored background in Fig.C1(a)is adopted from the calculated loss functions of bulk Pb,[38]while the colored background in Fig. C1(b) is adopted from the calculated loss functions of Pb(111) films.[41]With our measured energy-momentum points superimposed on the theoretical backgrounds, we can obtain the assignments of the experimentally observed plasmon branches. The results are summarized in Table 1 in the main manuscript. The dispersions ofα1andα2matches well with the calculated results, while the overall energy ofα3is slightly lower than the calculated results. This difference should be resulting from the screening effect of the delectrons,which is difficult to be fully captured in the calculations.

    In Fig.C1(c),we plot the dispersions ofα3for the films with different thicknesses in one panel,to show that the overall energy is consistent with the dispersion of the calculated surface plasmon.

    Fig. C1. (a) Comparison of the experimental dispersion (dots) of α1 (40 ML) with the calculated loss functions (colored background, reprinted by permission from Ref.[38]. Copyright by the American Physical Society.) of bulk Pb. (b)Comparison of the experimental dispersion(dots)of α2 and α3(20 ML)with the calculated loss functions(colored background,reprinted by permission from Ref.[41]. Copyright by the American Physical Society.)of the 21-ML Pb(111)film. (c)The experimental dispersions of the α3 branch with different thicknesses.

    Appendix D: Comparison of the HREELS results between the 4/3-ML-Pb(111) film and Si substrate

    As shown in Fig. 2, different from the thicker films in which four energy loss peaks are clearly observed, the 4/3-ML-Pb(111) films can only roughly show two peaks. Especially,the bulk plasmonα1can no longer be observed in the ultrathin 4/3-ML-Pb(111)films. Here,in Fig.D1,the HREELS results of the 4/3-ML-Pb(111) films and the Si substrate are compared to show the possible influence from the substrate. It is clear that the ELCs of the 4/3-ML-Pb(111) films are more similar to the substrate than the thicker films,indicating strong substrate effects in the ultrathin films. Similar substrate effects have been previously reported in ultrathin Al films on Si(111).[48]Consequently,the dispersion of theα3branch and the correspondingqcof the 4/3 ML-Pb(111) are not as clear as those of the thick films. Theqcof the 4/3-ML-Pb(111) is roughly estimated from the momentum-dependent ELCs, as shown in Fig.D1(c). All other films with larger thicknesses in our study do not show obvious substrate effects, as shown in Fig.2.

    Fig. D1. (a) and (b) The 2D HREELS mappings of 4/3-ML-Pb(111) films and the Si substrate, respectively. (c) and (d) The momentum-dependent ELCs of the 4/3-ML-Pb(111)films and the Si substrate extracted from the 2D HREELS mappings.

    Appendix E: HREELS measurements at low temperature

    In order to study the influence of temperature on the plasmons of Pb(111)films,we also performed the HREELS measurements on the 30-ML-Pb(111) films at 35 K, with the results shown in Fig.E1. The plasmons of Pb(111)films at 35 K marked in Fig.E1(b)do not show an obvious difference with the results obtained at room temperature.

    Fig.E1. (a)The 2D HREELS of 30-ML-Pb(111)films measured at 35 K.(b)The corresponding momentum-dependent ELCs.

    猜你喜歡
    亞德李毅林子
    A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability
    The Iditarod
    Hunter—Gatherers
    Advantages and Disadvantages of Studying Abroad
    冬日的林子
    Summer Vacation
    曉出凈慈寺送林子方
    如果
    特殊技能
    特殊技能
    故事會(2016年21期)2016-11-10 21:18:05
    亚洲精品久久成人aⅴ小说| 欧美av亚洲av综合av国产av| 亚洲专区字幕在线| 在线十欧美十亚洲十日本专区| 日本av手机在线免费观看| 国产精品免费大片| 91麻豆av在线| 免费久久久久久久精品成人欧美视频| 欧美久久黑人一区二区| 欧美精品亚洲一区二区| 一区福利在线观看| 男女边摸边吃奶| 国产成人欧美在线观看 | 爱豆传媒免费全集在线观看| 夜夜骑夜夜射夜夜干| 天天躁夜夜躁狠狠躁躁| 在线永久观看黄色视频| 国产精品 国内视频| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜美足系列| av天堂在线播放| 啦啦啦 在线观看视频| 十八禁人妻一区二区| 国产激情久久老熟女| 欧美性长视频在线观看| 精品亚洲成国产av| 成年美女黄网站色视频大全免费| 爱豆传媒免费全集在线观看| 欧美日韩av久久| 免费少妇av软件| 俄罗斯特黄特色一大片| 狂野欧美激情性xxxx| 午夜91福利影院| 超碰97精品在线观看| 欧美老熟妇乱子伦牲交| 国产精品成人在线| 青春草亚洲视频在线观看| 两个人看的免费小视频| 9热在线视频观看99| 9热在线视频观看99| 巨乳人妻的诱惑在线观看| 国产有黄有色有爽视频| 各种免费的搞黄视频| 一区二区三区乱码不卡18| 久久精品国产a三级三级三级| 成年人免费黄色播放视频| 国产色视频综合| 亚洲国产精品一区三区| 欧美日韩亚洲高清精品| 亚洲av电影在线进入| 精品国产一区二区久久| 夜夜骑夜夜射夜夜干| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品av久久久久免费| 99热网站在线观看| 色婷婷久久久亚洲欧美| 亚洲精品一二三| 亚洲性夜色夜夜综合| 免费女性裸体啪啪无遮挡网站| 老司机影院毛片| 免费高清在线观看日韩| 国产欧美日韩精品亚洲av| 久久中文看片网| 1024香蕉在线观看| 蜜桃在线观看..| 国产淫语在线视频| 人人妻,人人澡人人爽秒播| 极品少妇高潮喷水抽搐| 热99国产精品久久久久久7| 精品少妇久久久久久888优播| 免费在线观看影片大全网站| 岛国毛片在线播放| 女警被强在线播放| 又黄又粗又硬又大视频| 男女无遮挡免费网站观看| 久久99一区二区三区| 大码成人一级视频| 亚洲五月色婷婷综合| 少妇被粗大的猛进出69影院| 亚洲人成电影观看| 啦啦啦在线免费观看视频4| 欧美 日韩 精品 国产| 亚洲国产日韩一区二区| e午夜精品久久久久久久| 91九色精品人成在线观看| 十八禁高潮呻吟视频| 人人妻人人澡人人爽人人夜夜| 国产国语露脸激情在线看| 午夜免费鲁丝| 成人国产一区最新在线观看| 日本a在线网址| 777米奇影视久久| 亚洲va日本ⅴa欧美va伊人久久 | 国产成人精品无人区| 久久久国产一区二区| 热99国产精品久久久久久7| 99久久人妻综合| videosex国产| 日韩大片免费观看网站| 日韩一区二区三区影片| 精品少妇黑人巨大在线播放| 日本vs欧美在线观看视频| 精品国产国语对白av| 国产精品麻豆人妻色哟哟久久| 大型av网站在线播放| 国产激情久久老熟女| 亚洲欧美日韩另类电影网站| 久久久水蜜桃国产精品网| 操出白浆在线播放| 天天躁日日躁夜夜躁夜夜| 午夜福利视频在线观看免费| a级毛片在线看网站| 精品一区在线观看国产| 丝袜在线中文字幕| 国产免费现黄频在线看| 熟女少妇亚洲综合色aaa.| 手机成人av网站| 少妇被粗大的猛进出69影院| 久久久精品国产亚洲av高清涩受| 欧美乱码精品一区二区三区| 在线观看一区二区三区激情| 亚洲黑人精品在线| 一级毛片女人18水好多| 精品亚洲成a人片在线观看| 国产伦人伦偷精品视频| 精品一区在线观看国产| 乱人伦中国视频| 国产精品自产拍在线观看55亚洲 | 中文欧美无线码| 成人18禁高潮啪啪吃奶动态图| 少妇 在线观看| 热99久久久久精品小说推荐| 制服诱惑二区| 在线 av 中文字幕| 亚洲精品粉嫩美女一区| 人人妻人人澡人人看| 国产在视频线精品| 青春草视频在线免费观看| 麻豆av在线久日| 亚洲情色 制服丝袜| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 亚洲欧美日韩高清在线视频 | 午夜福利免费观看在线| 午夜激情久久久久久久| 日韩 亚洲 欧美在线| 美女高潮喷水抽搐中文字幕| 一进一出抽搐动态| 国产老妇伦熟女老妇高清| 人妻 亚洲 视频| 麻豆av在线久日| 亚洲欧美日韩高清在线视频 | 叶爱在线成人免费视频播放| √禁漫天堂资源中文www| 国产亚洲av高清不卡| 亚洲成人国产一区在线观看| 精品久久久久久电影网| 午夜两性在线视频| 久久人妻福利社区极品人妻图片| 777米奇影视久久| 老司机亚洲免费影院| 欧美黑人精品巨大| 国产成人一区二区三区免费视频网站| 丝袜脚勾引网站| 欧美黄色片欧美黄色片| 久久这里只有精品19| 曰老女人黄片| 日韩熟女老妇一区二区性免费视频| 777米奇影视久久| 一区二区三区激情视频| 叶爱在线成人免费视频播放| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产毛片av蜜桃av| 黄片大片在线免费观看| 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院| 久久久精品国产亚洲av高清涩受| 久久人人爽人人片av| www.av在线官网国产| 十分钟在线观看高清视频www| 一级a爱视频在线免费观看| 中文字幕人妻丝袜一区二区| 中文精品一卡2卡3卡4更新| 麻豆乱淫一区二区| 亚洲九九香蕉| 国产亚洲午夜精品一区二区久久| 亚洲精品国产区一区二| 永久免费av网站大全| 两个人看的免费小视频| 亚洲成人免费av在线播放| 麻豆av在线久日| 精品高清国产在线一区| 人妻 亚洲 视频| 18禁黄网站禁片午夜丰满| 欧美 亚洲 国产 日韩一| 午夜福利,免费看| 最新在线观看一区二区三区| 国产日韩欧美视频二区| 久久久国产精品麻豆| 亚洲国产中文字幕在线视频| 国产深夜福利视频在线观看| 久久精品成人免费网站| 宅男免费午夜| 精品国产一区二区久久| 亚洲熟女毛片儿| 99国产综合亚洲精品| 黑人猛操日本美女一级片| 成人国产一区最新在线观看| 久久精品亚洲av国产电影网| 欧美精品啪啪一区二区三区 | 欧美国产精品一级二级三级| 99久久人妻综合| 又大又爽又粗| 国产亚洲精品一区二区www | 亚洲第一青青草原| 精品欧美一区二区三区在线| 亚洲国产成人一精品久久久| 麻豆av在线久日| 黑人操中国人逼视频| 午夜福利一区二区在线看| 日韩有码中文字幕| 韩国高清视频一区二区三区| 国产免费福利视频在线观看| 欧美日韩国产mv在线观看视频| 少妇被粗大的猛进出69影院| 18禁裸乳无遮挡动漫免费视频| 午夜两性在线视频| 亚洲欧美精品自产自拍| 国产成人精品久久二区二区免费| 欧美老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 午夜视频精品福利| 日韩大码丰满熟妇| 五月天丁香电影| 亚洲国产日韩一区二区| 精品第一国产精品| 成年动漫av网址| 三级毛片av免费| 精品少妇一区二区三区视频日本电影| 黄频高清免费视频| 热re99久久国产66热| 国产精品久久久人人做人人爽| 亚洲欧美成人综合另类久久久| 欧美日韩精品网址| 久久人妻福利社区极品人妻图片| 午夜福利视频精品| 亚洲av美国av| 国产片内射在线| 久久久国产欧美日韩av| 久久精品久久久久久噜噜老黄| 下体分泌物呈黄色| 中文字幕另类日韩欧美亚洲嫩草| 免费一级毛片在线播放高清视频 | 免费高清在线观看视频在线观看| 岛国在线观看网站| 国产男女超爽视频在线观看| 精品国产乱子伦一区二区三区 | 精品一区二区三区av网在线观看 | 欧美黑人欧美精品刺激| 法律面前人人平等表现在哪些方面 | 国产男女超爽视频在线观看| 一区二区三区四区激情视频| 久久中文看片网| 色综合欧美亚洲国产小说| 久久久久久人人人人人| 男人操女人黄网站| 麻豆乱淫一区二区| 亚洲精品自拍成人| 老司机深夜福利视频在线观看 | 色老头精品视频在线观看| 十八禁网站免费在线| 高清av免费在线| 欧美亚洲日本最大视频资源| av超薄肉色丝袜交足视频| 精品国产国语对白av| 99re6热这里在线精品视频| 老司机午夜福利在线观看视频 | 亚洲精品中文字幕在线视频| 黄片大片在线免费观看| 亚洲五月色婷婷综合| 日本a在线网址| 中文字幕av电影在线播放| 人妻 亚洲 视频| 中文字幕色久视频| 三上悠亚av全集在线观看| 亚洲一区二区三区欧美精品| 亚洲午夜精品一区,二区,三区| 视频区欧美日本亚洲| 亚洲国产精品一区三区| 国产一卡二卡三卡精品| www.精华液| 波多野结衣av一区二区av| 18禁黄网站禁片午夜丰满| 激情视频va一区二区三区| 国产成人精品无人区| 天天躁日日躁夜夜躁夜夜| 岛国毛片在线播放| 中文字幕av电影在线播放| 精品乱码久久久久久99久播| 久久影院123| 日韩欧美一区视频在线观看| 婷婷丁香在线五月| 巨乳人妻的诱惑在线观看| 色婷婷av一区二区三区视频| 精品亚洲乱码少妇综合久久| 国产欧美日韩综合在线一区二区| 纯流量卡能插随身wifi吗| 18在线观看网站| 久久精品亚洲熟妇少妇任你| 国产有黄有色有爽视频| 精品国产国语对白av| 国产在线免费精品| 国精品久久久久久国模美| kizo精华| 国产亚洲午夜精品一区二区久久| 欧美黑人精品巨大| 日韩大片免费观看网站| 一个人免费看片子| 老司机午夜福利在线观看视频 | 国产精品久久久av美女十八| 亚洲伊人久久精品综合| 韩国精品一区二区三区| 日本一区二区免费在线视频| 婷婷色av中文字幕| 国产成人影院久久av| 手机成人av网站| 亚洲欧美一区二区三区黑人| 中文字幕精品免费在线观看视频| 欧美日韩亚洲综合一区二区三区_| av在线播放精品| 精品乱码久久久久久99久播| 久久人人爽av亚洲精品天堂| 国产又色又爽无遮挡免| www.熟女人妻精品国产| 蜜桃在线观看..| 一级毛片电影观看| 1024香蕉在线观看| 欧美久久黑人一区二区| 在线精品无人区一区二区三| 久久久久久久久免费视频了| 十八禁网站免费在线| 国产精品一区二区免费欧美 | 亚洲中文日韩欧美视频| 欧美日韩中文字幕国产精品一区二区三区 | 热99re8久久精品国产| 丰满饥渴人妻一区二区三| 久久天躁狠狠躁夜夜2o2o| 国产老妇伦熟女老妇高清| 欧美xxⅹ黑人| 美国免费a级毛片| 91成年电影在线观看| 窝窝影院91人妻| 欧美老熟妇乱子伦牲交| 色视频在线一区二区三区| 国产免费av片在线观看野外av| 午夜激情久久久久久久| 久久久精品免费免费高清| 老司机福利观看| 国产一区有黄有色的免费视频| 视频区图区小说| 成年av动漫网址| 99热国产这里只有精品6| 国产成人欧美| 99精品久久久久人妻精品| 欧美日韩黄片免| 女人精品久久久久毛片| 天天影视国产精品| 午夜激情久久久久久久| av视频免费观看在线观看| 熟女少妇亚洲综合色aaa.| 日本欧美视频一区| av网站在线播放免费| 日韩 欧美 亚洲 中文字幕| 国产男人的电影天堂91| 男女无遮挡免费网站观看| 大片电影免费在线观看免费| 午夜福利一区二区在线看| svipshipincom国产片| 久久精品熟女亚洲av麻豆精品| 欧美一级毛片孕妇| 男女无遮挡免费网站观看| 国产男女内射视频| 久热这里只有精品99| 欧美少妇被猛烈插入视频| 热99久久久久精品小说推荐| 91老司机精品| 十八禁网站网址无遮挡| 国产成人a∨麻豆精品| 捣出白浆h1v1| 窝窝影院91人妻| 日韩熟女老妇一区二区性免费视频| 日日摸夜夜添夜夜添小说| 亚洲精品粉嫩美女一区| 午夜91福利影院| 老司机影院毛片| 国产亚洲精品一区二区www | 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 国产免费现黄频在线看| 一本大道久久a久久精品| 日本a在线网址| 男人爽女人下面视频在线观看| 久久久久久久久久久久大奶| 一区二区三区激情视频| 精品国产乱码久久久久久小说| 久久久久久人人人人人| av片东京热男人的天堂| 男女无遮挡免费网站观看| 黑人猛操日本美女一级片| 蜜桃在线观看..| 黄色a级毛片大全视频| 亚洲成av片中文字幕在线观看| 国产99久久九九免费精品| www.av在线官网国产| 大片免费播放器 马上看| 俄罗斯特黄特色一大片| 美女国产高潮福利片在线看| 十八禁人妻一区二区| 亚洲精品中文字幕在线视频| 久久这里只有精品19| 日本91视频免费播放| 午夜激情久久久久久久| 亚洲成人国产一区在线观看| 啦啦啦在线免费观看视频4| 久久久国产精品麻豆| 美国免费a级毛片| 久久99一区二区三区| 97精品久久久久久久久久精品| 亚洲五月婷婷丁香| 每晚都被弄得嗷嗷叫到高潮| 99久久国产精品久久久| 搡老岳熟女国产| 免费av中文字幕在线| 他把我摸到了高潮在线观看 | 亚洲成人免费电影在线观看| 国产精品成人在线| 日韩制服丝袜自拍偷拍| 在线av久久热| 精品视频人人做人人爽| 久久综合国产亚洲精品| 国产精品九九99| 91九色精品人成在线观看| 男女免费视频国产| 亚洲精品第二区| 国产色视频综合| 久久人人97超碰香蕉20202| 日本vs欧美在线观看视频| 国产又爽黄色视频| 国产一区二区 视频在线| 亚洲精品美女久久久久99蜜臀| 久久99热这里只频精品6学生| 国产日韩欧美亚洲二区| 国产色视频综合| 丝袜脚勾引网站| 欧美精品一区二区大全| av在线播放精品| 少妇被粗大的猛进出69影院| 一级片'在线观看视频| 丝袜在线中文字幕| 亚洲av国产av综合av卡| 国产成人免费无遮挡视频| 亚洲,欧美精品.| 多毛熟女@视频| 亚洲欧美色中文字幕在线| 久久久久国产一级毛片高清牌| 日韩电影二区| 久久久久久久久免费视频了| 天天添夜夜摸| 亚洲午夜精品一区,二区,三区| 久久免费观看电影| 欧美亚洲日本最大视频资源| 欧美黄色淫秽网站| 国产免费av片在线观看野外av| 国产成人av激情在线播放| 视频区欧美日本亚洲| 欧美精品啪啪一区二区三区 | 9191精品国产免费久久| 人成视频在线观看免费观看| 性色av一级| 女警被强在线播放| 亚洲第一av免费看| 久久影院123| 国产三级黄色录像| 热99国产精品久久久久久7| 中国美女看黄片| 狠狠精品人妻久久久久久综合| 色婷婷av一区二区三区视频| 少妇被粗大的猛进出69影院| 亚洲精品av麻豆狂野| 精品国产乱码久久久久久男人| 97人妻天天添夜夜摸| 如日韩欧美国产精品一区二区三区| 老熟妇仑乱视频hdxx| 日韩一卡2卡3卡4卡2021年| 精品一品国产午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 免费高清在线观看日韩| 777久久人妻少妇嫩草av网站| 一区在线观看完整版| av在线app专区| 精品一区在线观看国产| 国产亚洲欧美在线一区二区| 丝袜脚勾引网站| 亚洲熟女精品中文字幕| 丁香六月天网| 久久久精品94久久精品| 五月开心婷婷网| 精品国产国语对白av| 啪啪无遮挡十八禁网站| 欧美日韩亚洲高清精品| 日韩中文字幕视频在线看片| 亚洲,欧美精品.| 大片免费播放器 马上看| 纵有疾风起免费观看全集完整版| 亚洲精品第二区| 亚洲国产av影院在线观看| 丝袜喷水一区| 黄色a级毛片大全视频| 国产精品一区二区在线观看99| 成年人午夜在线观看视频| 嫁个100分男人电影在线观看| 亚洲全国av大片| 大片电影免费在线观看免费| 在线天堂中文资源库| netflix在线观看网站| 交换朋友夫妻互换小说| 亚洲精品中文字幕在线视频| 国产精品亚洲av一区麻豆| 久久av网站| 女人爽到高潮嗷嗷叫在线视频| 丝袜人妻中文字幕| 精品人妻1区二区| 欧美少妇被猛烈插入视频| 欧美日本中文国产一区发布| 两性午夜刺激爽爽歪歪视频在线观看 | 青青草视频在线视频观看| 成人亚洲精品一区在线观看| 男人爽女人下面视频在线观看| 午夜精品久久久久久毛片777| 亚洲伊人色综图| 一级毛片电影观看| 国产一区二区激情短视频 | 欧美日韩一级在线毛片| 午夜福利视频在线观看免费| 国产高清videossex| 久久精品人人爽人人爽视色| 国产精品熟女久久久久浪| 成人手机av| 成人国产一区最新在线观看| 国产精品欧美亚洲77777| 国产一区二区激情短视频 | 欧美人与性动交α欧美精品济南到| 国产亚洲精品第一综合不卡| 中国国产av一级| 俄罗斯特黄特色一大片| 亚洲精品在线美女| 女人精品久久久久毛片| 国产精品二区激情视频| 国产在视频线精品| 成人黄色视频免费在线看| 免费黄频网站在线观看国产| 日本av手机在线免费观看| 亚洲欧美一区二区三区黑人| 久久久久久人人人人人| 亚洲国产中文字幕在线视频| 国产精品.久久久| av免费在线观看网站| 交换朋友夫妻互换小说| 三上悠亚av全集在线观看| 免费av中文字幕在线| 亚洲中文av在线| 亚洲欧美日韩另类电影网站| av片东京热男人的天堂| a级片在线免费高清观看视频| netflix在线观看网站| 一区二区三区精品91| 99国产极品粉嫩在线观看| 成人影院久久| 黑丝袜美女国产一区| 妹子高潮喷水视频| 一本色道久久久久久精品综合| 男女床上黄色一级片免费看| 免费日韩欧美在线观看| 黄色片一级片一级黄色片| 男女无遮挡免费网站观看| 中文字幕高清在线视频| 免费看十八禁软件| av在线老鸭窝| 天堂8中文在线网| 久久人妻熟女aⅴ| 另类精品久久| 中文精品一卡2卡3卡4更新| 岛国毛片在线播放| 99热全是精品| 久久久久视频综合| 欧美日本中文国产一区发布| 黄色视频在线播放观看不卡| av片东京热男人的天堂| 深夜精品福利| 两性午夜刺激爽爽歪歪视频在线观看 | av国产精品久久久久影院| 亚洲一码二码三码区别大吗| 亚洲av成人不卡在线观看播放网 | 岛国毛片在线播放| 亚洲专区国产一区二区| 夜夜夜夜夜久久久久| 蜜桃在线观看..| 色婷婷久久久亚洲欧美| 99精品久久久久人妻精品| 亚洲视频免费观看视频| 91九色精品人成在线观看| 欧美人与性动交α欧美精品济南到| 美女中出高潮动态图| 国产成人精品久久二区二区免费| 桃红色精品国产亚洲av|