• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collective excitations and quantum size effects on the surfaces of Pb(111)films: An experimental study*

    2021-07-30 07:35:38YadeWang王亞德ZijianLin林子薦SiweiXue薛思瑋JiadeLi李佳德YiLi李毅XuetaoZhu朱學(xué)濤andJiandongGuo郭建東
    Chinese Physics B 2021年7期
    關(guān)鍵詞:亞德李毅林子

    Yade Wang(王亞德) Zijian Lin(林子薦) Siwei Xue(薛思瑋) Jiade Li(李佳德)Yi Li(李毅) Xuetao Zhu(朱學(xué)濤) and Jiandong Guo(郭建東)

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: Pb films,plasmons,quantum size effects,high-resolution electron energy loss spectroscopy

    1. Introduction

    The collective excitations of electrons,i.e., plasmons,in metal films are important not only for the understanding of electron-electron interactions in low-dimensional systems[1,2]but also promising in plasmonic electro-optic applications,[3-11]The properties of plasmons in metal films are mainly determined by the electronic band structure of the metal as well as the dielectric properties of the substrate.[1]The spatial confinement of electrons in the metal films may also generate an essential influence on the plasmon behavior.[12,13]The spatial confinement of metal films in the normal direction will generate the quantization of the electronic states,which can be depicted as the quantum well states(QWS).Due to the discrete energy levels and the electron confinement in the QWS, the properties of metal films, such as the work functions[14]and the transport coefficients,[15]may strongly depend on the thickness,known as the quantum size effect(QSE).The plasmons in metal films sometimes also exhibit obvious QSE, mainly resulting from the inherent QWS.For example, the surface plasmon of Ag films shows negative dispersion in the small momentum range due to enhanced screening effect,[16]and the wave of the QWS can reach the substrate and give rise to the hybridized interaction between the film surface and substrate.[12]Consequently, the damping of the surface plasmon in Ag films displays significant thickness dependence.[17]QSE is a crucial issue to take into account in the research of the surface plasmons of thin films.

    Fig.1.A classic model of the surface plasmons in thin films.(a)A schematic diagram of the thin film epitaxy on the substrate,showing two interfaces. (b)A schematic plot of the surface plasmon in the film split into ω± branches.The green background illustrates the change of the width of the plasmon branch,with the qc defined at the position of the splitting or at the position of the minimum width. The dashed lines of ω± represent that the splitting may not be experimentally measured.

    The most striking metal film system showing the QSE is the Pb(111) film, where the superconducting critical temperature, work function, and the Kondo effect exhibit strong thickness-dependent oscillations.[22-27]Different from other metal films in which the QSE vanishes when the thickness is beyond~10 monolayers (ML),[28-30]the QSE in Pb(111)films is so much stronger that it persists over 30 ML.[24]The plasmons in Pb(111)films are expected to show much stronger QSE than other metal films. However,the manifestation of the strong QSE in the plasmons of Pb(111)films has not been observed so far.

    In this article, using high-resolution electron energy loss spectroscopy (HREELS) with the capability of twodimensional (2D) energy-momentum mapping,[31]we measured and analyzed the plasmon dispersions on the surface of Pb(111) films with different film thicknesses. We discovered that the QSE in Pb(111)films has a very strong effect on one of the surface plasmons,manifested as strong damping in the small momentum range. The damping is still noticeable even in 40-ML-thick Pb(111)films,clearly demonstrating the strong QSE in the perspective of the collective excitations.

    2. Methods

    3. Results and discussion

    As one of the heavy metal elements in the periodical table,Pb possesses large spin-orbit coupling,which may induce topological phases in systems associated with Pb films.[34-37]From theoretical calculations,the spin-orbit effect is also predicted to have a great influence on the plasmons of Pb,e.g.,resulting in anisotropy of the plasmons or generating new excitation modes.[38,39]Previous HREELS experiment[40]of Pb(111) films grown on Si(111) focused on a plasmon mode around 2 eV(q →0),which was assigned to be a surface plasmon. While there was a huge disagreement with the theoretical calculations,where the mode around 2 eV was proved to be a bulk mode related to the spin-orbit coupling of Pb.[38]To clarify the issue, we performed systematical HREELS measurements to show the full dispersions of the plasmons in Pb(111) films and analyzed the possible manifestation of the QSE in the collective excitations.

    Fig.2. The momentum-dependent energy loss curves of Pb(111)films with different thicknesses. (a)-(f)corresponding to film thickness of 40,30,20,13,7,and 4/3 ML,respectively. The dispersions of different branches are represented by dotted lines as guides to the eye.

    Figure 2 shows the momentum-dependent energy loss curves(ELCs)of Pb(111)films with different thicknesses,extracted from the 2D HREELS mapping (see Fig. B1 in Appendix B). In the 4/3-ML sample, only two loss peaks can be discerned due to the strong effect of the substrate, since it is actually the Pb-induced reconstruction of the Si(111)surface, with details discussed in the appendix. Except for the 4/3-ML sample, all the other samples show four peaks in the ELCs, marked by the dashed lines and labeled as TE,α1,α2,α3, respectively. In order to check the details about the thickness-dependence,we plot the stacking ELCs of different thicknesses atq=0.07 ?A-1andq=0.2 ?A-1,in Figs.3(a)and 3(b),respectively. The line profiles of these modes at different thicknesses are clearly demonstrated. The exact energies of the peaks can be obtained by fitting the ELCs using Lorentz functions. Two typical fitting cases are shown in Figs. 3(c)and 3(d)as examples. The fitting results are plotted in Fig.4 to show the dispersions of the observed features. The assignments of these features are obtained by comparison with theoretical calculations,[38,41]with the results summarized in Table 1.

    Table 1. Summary of the four observed features in the HREELS measurement of the Pb(111)films.

    The TE branch represents the photoemission threshold excitation, usually manifested as a single-particle excitation peak in HREELS.[42,43]In Pb(111) films, the TE branch is located at about 4 eV, very close to the work function of Pb(4.25 eV).

    Theα1,α2,α3branches are the collective excitations of Pb(111) films.α1is a bulk plasmon, with the energy of~1.8 eV atq=0 and dispersing up to~2.1 eV atq~0.1 ?A-1.The dispersion matches well(shown in Fig.C1(a)in Appendix C)with the calculated bulk plasmon,[38]which is strongly related to the spin-orbit coupling effect of Pb.α2is a surface plasmon,with the energy of~7.0 eV atq=0 and being dispersionless up toq=0.4 ?A-1. The comparison with the calculation (shown in Fig. C1(b) in Appendix C) indicates thatα2is closely related to the interband transitions.[41]The predicted acoustic plasmons in theoretical calculations[38]were not observed in our measurements,possibly because its crosssection,i.e.,the intensity in loss functions is too low to show obvious peaks in the ELCs.

    α3is another surface plasmon,strongly related to the film thickness,which will be the focus in this study. The comparison betweenα3and the calculated surface plasmon dispersion(shown in Fig. C1(b) in Appendix C) indicates that the overall energy ofα3is slightly lower than the calculated results.This difference should be resulting from the screening effect of the d-electrons,which is difficult to be fully considered in the calculations due to the strong electron-electron interactions.It can be roughly understood by a phenomenological model,where the reduction of the surface plasmon energy due to the additional screening from the d-electrons can be described by Liebsch’s theory.[44]

    Fig. 3. Comparison of the energy loss curves with different thicknesses and the curve fitting process: (a) the comparison at q=0.7 ?A-1; (b) the comparison at q=0.2 ?A-1. The dispersion of different branches is represented by dotted lines for guides to the eye; (c) and (d) typical peak fitting process of the 40-ML sample at q=0.07 ?A-1 and q=0.2 ?A-1,respectively.

    A prominent feature ofα3is the damping in the small momentum range,as shown in Figs.4 and C1(b). In all the films,regardless of the thickness,α3cannot be measured aroundq=0.With increasingq,α3gradually appears after the critical momentum valueqc. This phenomenon has not been reported in previous experimental studies of Pb(111) films. There are two possible reasons for the damping of surface plasmons at the small momentum range: (i)the interaction with other collective excitations or (ii) the interaction between the top and bottom interfaces of the thin films.

    The first scenario has been reported in two metal film systems, Cs films on Si(111) substrate[20]and Ag films on Cu(111) substrate.[16]In the case of ultrathin Cs films, there is a crossover between the multipole plasmon and the regular surface plasmon.[20]The regular surface plasmon cannot be measured whenq <0.1 ?A-1due to the influence of the multipole plasmon.[20]In the case of thin Ag films, the surface plasmon cannot be measured as well whenq <0.1 ?A-1,where only bulk plasmon can be measured.[16]In both cases,two plasmon modes cannot coexist,i.e., only one mode can be observed at each specificq. As an analogy, in our measurement, it seemsα3in Pb(111) films at small momentum range could be damped due to the influence ofα2. However,different from the cases of Cs and Ag films, it is clear from Fig. 2 thatα3andα2always coexist whenq >qc. These results rule out the possibility that the damping ofα3at the small momentum range is due to the interaction with other collective excitations.

    Fig.4. Dispersions of the measured plasmons obtained from the fitting of loss curves: (a)-(f)corresponding to film thickness of 40,30,20,13,7,and 4/3 ML,respectively.

    The second scenario,i.e.,the interaction between the top and bottom interfaces,is essentially a size effect due to the finite film thickness, as illustrated in Fig. 1. This scenario for Pb(111) films has been theoretically calculated in Ref. [41]and the overall damping feature ofα3observed in our experiment agrees well with this picture. The main difference is that the expected spitting ofα3in the small momentum range was not clear in the experiment, similar to the case of the surface plasmon in Ag films.[17]Instead,the damping was reflected by the change of the FWHM as a function ofq. As described in the scheme of Fig.1(b),qccan be determined as the momentum position of the minimum FWHM.To obtain the quantitative value of theqcfor each Pb(111)film with different thickness, the FWHMs ofα3at differentqare obtained from the fitting method shown in Figs.3(c)and 3(d). The fitting results are plotted in Fig.5(a). For each thickness,the FWHM gradually decreases with increasingquntil reaching the minimum,after which the FWHM starts increasing withq.

    As shown in Fig.5(b),the experimentalqcof Pb(111)is almost maintained around 0.2 ?A-1with the film thickness less than 30 ML; and it decays slowly to about 0.15 ?A-1when the film thickness is up to 40 ML. The weak and slow decay of the experimentally measuredqcin Pb(111)is significantly different from the case of Ag(111) as well as the calculated of Pb(111), both showing an exponential decay with the increasing film thickness. The observed phenomenon provides a manifestation of the strong QSE in Pb(111)films in the perspective of collective excitations.

    The origin of the surprisingly strong QSE in Pb(111)films has been theoretically investigated in Ref. [45]. Compared with other metals, the QSE in Pb(111) films are more prominent due to the slow decay of Friedel oscillations in the electron density from the Pb(111) surfaces, which is related to the strong nesting of the Fermi surface along the Pb(111) direction.[45]The Friedel oscillations at the Pb(111)surface decay as 1/xwith the distancexfrom the surface,different from the conventional 1/x2power law at other metal surfaces.[45]Rather than the mere presence of QWS, the interference in the electron density by the strong Friedel oscillations associated with the strong nesting of the Fermi surface along the Pb(111) direction,[45]would inevitably affect the plasmon behaviors. These effects are usually not considered in theab initiocalculations, resulting in the possible overestimation of the decay ofqcupon film thickness.[41]The indepth mechanism of the enhanced interface interactions in the surface plasmons by QSE is still not clear. More studies including both experiments and theories are needed in the future investigations.

    Fig.5. The critical momentum qc of different thicknesses: (a)the variation of the FWHW with different film thicknesses of Pb(111). The stars on the horizontal axis mark the positions of the qc. (b) Comparison of the decay of qc between different systems. The experimental values of Pb(111) are obtained from panel(a). The theoretical values of Pb(111),[41] experimental values of Ag(111),[17] and theoretical values of Ag(111)[18] are extracted from previous studies.

    4. Summary

    We have measured the electronic collective excitations in Pb(111) films with different thicknesses. The dispersions of three different plasmons modes have been observed and analyzed. We discovered that one of the surface plasmons shows strong damping in the small momentum range whenq <qc,manifesting the strong QSE effect in Pb(111) films. Different from other metal films in which the critical momentumqcdecays exponentially with increasing film thickness,theqcin Pb(111)films decays much slower,and the strong damping is still observable even in 40-ML-thick Pb(111)films. These observations indicate that the interactions between the surface and interface of the Pb(111) films can be enhanced by the strong Friedel oscillations in the electron density and significantly affect the behaviors of the collective excitations. This work further proves that the QSE is an important issue that should be considered in the analysis of the surface plasmons of thin metal films. Moreover,the thickness-dependent damping behavior originated from the QSE may have potential applications in plasmonics based on metal films.

    Acknowledgment

    The authors would like to thank Prof. E V Chulkov and Prof. V M Silkin for discussions about the plasmon assignments.

    Appendix A:Characterization of the films

    Fig.A1. (a)-(f)The LEED patterns of Pb(111)films with different thicknesses,with the incident electron beam energy of 90 eV.(g)and(h)The STM images(V =-2 V,I=100 pA)of 30-ML-thick Pb(111)films and 4/3-ML-thick Pb(111)films,respectively.

    Appendix B:Original 2D HREELS data

    The original data obtained from our 2D HREELS system are the energy-momentum mappings, as shown in Fig.B1. The momentum-dependent energy loss curves(ELCs),i.e.,the scattering intensity as a function of energy loss for a given momentum value,shown in Fig.2 of the main manuscript,are extracted from these 2D HREELS mappings.

    Fig.B1. (a)-(f)2D HREELS mappings showing the relationship between the energy loss and the momentum of Pb(111)films with different thicknesses.

    Appendix C:Comparison of the measured plasmons with theoretical calculations

    The assignments of the observed HREELS features are obtained by comparison with theoretical calculations.The colored background in Fig.C1(a)is adopted from the calculated loss functions of bulk Pb,[38]while the colored background in Fig. C1(b) is adopted from the calculated loss functions of Pb(111) films.[41]With our measured energy-momentum points superimposed on the theoretical backgrounds, we can obtain the assignments of the experimentally observed plasmon branches. The results are summarized in Table 1 in the main manuscript. The dispersions ofα1andα2matches well with the calculated results, while the overall energy ofα3is slightly lower than the calculated results. This difference should be resulting from the screening effect of the delectrons,which is difficult to be fully captured in the calculations.

    In Fig.C1(c),we plot the dispersions ofα3for the films with different thicknesses in one panel,to show that the overall energy is consistent with the dispersion of the calculated surface plasmon.

    Fig. C1. (a) Comparison of the experimental dispersion (dots) of α1 (40 ML) with the calculated loss functions (colored background, reprinted by permission from Ref.[38]. Copyright by the American Physical Society.) of bulk Pb. (b)Comparison of the experimental dispersion(dots)of α2 and α3(20 ML)with the calculated loss functions(colored background,reprinted by permission from Ref.[41]. Copyright by the American Physical Society.)of the 21-ML Pb(111)film. (c)The experimental dispersions of the α3 branch with different thicknesses.

    Appendix D: Comparison of the HREELS results between the 4/3-ML-Pb(111) film and Si substrate

    As shown in Fig. 2, different from the thicker films in which four energy loss peaks are clearly observed, the 4/3-ML-Pb(111) films can only roughly show two peaks. Especially,the bulk plasmonα1can no longer be observed in the ultrathin 4/3-ML-Pb(111)films. Here,in Fig.D1,the HREELS results of the 4/3-ML-Pb(111) films and the Si substrate are compared to show the possible influence from the substrate. It is clear that the ELCs of the 4/3-ML-Pb(111) films are more similar to the substrate than the thicker films,indicating strong substrate effects in the ultrathin films. Similar substrate effects have been previously reported in ultrathin Al films on Si(111).[48]Consequently,the dispersion of theα3branch and the correspondingqcof the 4/3 ML-Pb(111) are not as clear as those of the thick films. Theqcof the 4/3-ML-Pb(111) is roughly estimated from the momentum-dependent ELCs, as shown in Fig.D1(c). All other films with larger thicknesses in our study do not show obvious substrate effects, as shown in Fig.2.

    Fig. D1. (a) and (b) The 2D HREELS mappings of 4/3-ML-Pb(111) films and the Si substrate, respectively. (c) and (d) The momentum-dependent ELCs of the 4/3-ML-Pb(111)films and the Si substrate extracted from the 2D HREELS mappings.

    Appendix E: HREELS measurements at low temperature

    In order to study the influence of temperature on the plasmons of Pb(111)films,we also performed the HREELS measurements on the 30-ML-Pb(111) films at 35 K, with the results shown in Fig.E1. The plasmons of Pb(111)films at 35 K marked in Fig.E1(b)do not show an obvious difference with the results obtained at room temperature.

    Fig.E1. (a)The 2D HREELS of 30-ML-Pb(111)films measured at 35 K.(b)The corresponding momentum-dependent ELCs.

    猜你喜歡
    亞德李毅林子
    A simulation study of protons heated by left/right-handed Alfvén waves generated by electromagnetic proton–proton instability
    The Iditarod
    Hunter—Gatherers
    Advantages and Disadvantages of Studying Abroad
    冬日的林子
    Summer Vacation
    曉出凈慈寺送林子方
    如果
    特殊技能
    特殊技能
    故事會(2016年21期)2016-11-10 21:18:05
    久久中文字幕一级| 成年免费大片在线观看| 少妇裸体淫交视频免费看高清 | 两个人免费观看高清视频| 国产野战对白在线观看| 一进一出抽搐gif免费好疼| av免费在线观看网站| 免费观看精品视频网站| 欧美国产日韩亚洲一区| 成熟少妇高潮喷水视频| 欧美中文日本在线观看视频| 精品欧美一区二区三区在线| 两人在一起打扑克的视频| 欧美色欧美亚洲另类二区| 最近在线观看免费完整版| 久久精品91无色码中文字幕| av超薄肉色丝袜交足视频| 在线观看午夜福利视频| 两性夫妻黄色片| 中文资源天堂在线| www.精华液| 国产久久久一区二区三区| 国产av又大| 亚洲五月婷婷丁香| 大型av网站在线播放| 中亚洲国语对白在线视频| 高清毛片免费观看视频网站| 两性夫妻黄色片| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成电影免费在线| aaaaa片日本免费| 欧美3d第一页| 精品久久久久久成人av| 观看免费一级毛片| 国产精品久久久久久精品电影| 国产69精品久久久久777片 | 日本一区二区免费在线视频| 成人国语在线视频| 久久久久国产一级毛片高清牌| 成人三级做爰电影| 亚洲国产精品久久男人天堂| xxx96com| 日日摸夜夜添夜夜添小说| 国产精品野战在线观看| 成人欧美大片| 无限看片的www在线观看| 欧美精品亚洲一区二区| 亚洲成人久久性| 97碰自拍视频| 国产av一区二区精品久久| 久久久久久久午夜电影| 日韩av在线大香蕉| 人成视频在线观看免费观看| 欧美黑人巨大hd| 国产成人精品无人区| 日本一二三区视频观看| 大型av网站在线播放| 亚洲精品中文字幕一二三四区| 免费搜索国产男女视频| 日韩av在线大香蕉| 1024手机看黄色片| 99久久综合精品五月天人人| 国产精品 欧美亚洲| 国产99久久九九免费精品| 啦啦啦观看免费观看视频高清| 中文字幕高清在线视频| 夜夜躁狠狠躁天天躁| 国产成+人综合+亚洲专区| av福利片在线观看| 不卡一级毛片| 色在线成人网| 男女下面进入的视频免费午夜| 国产精品免费一区二区三区在线| 亚洲国产欧洲综合997久久,| 欧美黑人欧美精品刺激| 亚洲精品美女久久av网站| 国产不卡一卡二| 久热爱精品视频在线9| 夜夜躁狠狠躁天天躁| 国产亚洲欧美98| 最近最新免费中文字幕在线| 一a级毛片在线观看| 一边摸一边做爽爽视频免费| 怎么达到女性高潮| 无人区码免费观看不卡| 欧美日韩乱码在线| 丰满人妻一区二区三区视频av | av免费在线观看网站| 黑人欧美特级aaaaaa片| 精品久久蜜臀av无| 精品第一国产精品| 成人精品一区二区免费| 又黄又爽又免费观看的视频| 亚洲精品在线美女| 日韩精品免费视频一区二区三区| 午夜福利免费观看在线| 欧美成人一区二区免费高清观看 | 真人一进一出gif抽搐免费| 久久久精品国产亚洲av高清涩受| 久久这里只有精品19| 美女扒开内裤让男人捅视频| 怎么达到女性高潮| 91在线观看av| 国产精品免费视频内射| 免费在线观看影片大全网站| av国产免费在线观看| 宅男免费午夜| 露出奶头的视频| 天天添夜夜摸| 欧美成人性av电影在线观看| 午夜精品在线福利| 国产69精品久久久久777片 | 日韩大尺度精品在线看网址| 一本大道久久a久久精品| 女同久久另类99精品国产91| 大型黄色视频在线免费观看| 亚洲精品一区av在线观看| 波多野结衣高清无吗| 欧美黑人精品巨大| 中文字幕人妻丝袜一区二区| 国产伦人伦偷精品视频| 一级作爱视频免费观看| 成年女人毛片免费观看观看9| 成人18禁在线播放| 人人妻人人看人人澡| 亚洲一区中文字幕在线| 身体一侧抽搐| 日韩精品免费视频一区二区三区| 亚洲国产欧美人成| 视频区欧美日本亚洲| 国产成年人精品一区二区| 欧美又色又爽又黄视频| 亚洲中文字幕日韩| 欧美绝顶高潮抽搐喷水| 精品久久久久久久久久免费视频| xxxwww97欧美| 欧美成人一区二区免费高清观看 | 久久亚洲精品不卡| 国产精品综合久久久久久久免费| 欧美日韩精品网址| 国产精品野战在线观看| 丰满人妻熟妇乱又伦精品不卡| 欧美色视频一区免费| 99国产精品一区二区蜜桃av| 视频区欧美日本亚洲| 国产精品一区二区三区四区久久| 成人三级黄色视频| 一级a爱片免费观看的视频| 一进一出抽搐gif免费好疼| 在线观看www视频免费| 老司机在亚洲福利影院| 色综合婷婷激情| 777久久人妻少妇嫩草av网站| 国内少妇人妻偷人精品xxx网站 | 国产精品久久久av美女十八| 黄色视频不卡| 亚洲aⅴ乱码一区二区在线播放 | 日本黄大片高清| av国产免费在线观看| 视频区欧美日本亚洲| www.www免费av| 少妇的丰满在线观看| 免费一级毛片在线播放高清视频| 国产精品98久久久久久宅男小说| 此物有八面人人有两片| 黄片小视频在线播放| 亚洲精品中文字幕一二三四区| tocl精华| 国产在线精品亚洲第一网站| 熟妇人妻久久中文字幕3abv| 国产一级毛片七仙女欲春2| 亚洲片人在线观看| 一个人免费在线观看的高清视频| 久久午夜亚洲精品久久| 日韩欧美国产在线观看| 久久久久国产精品人妻aⅴ院| 伊人久久大香线蕉亚洲五| 欧美黄色片欧美黄色片| 国产成人精品无人区| 热99re8久久精品国产| 91老司机精品| 亚洲熟女毛片儿| av在线播放免费不卡| 91成年电影在线观看| 午夜精品在线福利| 一卡2卡三卡四卡精品乱码亚洲| 999久久久国产精品视频| 色在线成人网| 听说在线观看完整版免费高清| 久久精品91无色码中文字幕| www国产在线视频色| 看片在线看免费视频| 精品福利观看| 一级a爱片免费观看的视频| 久久久久国产精品人妻aⅴ院| 天堂√8在线中文| 久久 成人 亚洲| 三级国产精品欧美在线观看 | 日本三级黄在线观看| 久久伊人香网站| netflix在线观看网站| 久久久久久免费高清国产稀缺| 午夜a级毛片| 亚洲人成77777在线视频| 麻豆成人午夜福利视频| 日韩欧美在线二视频| 一本大道久久a久久精品| 神马国产精品三级电影在线观看 | 一级毛片女人18水好多| 午夜激情av网站| 人人妻,人人澡人人爽秒播| 九九热线精品视视频播放| 日本一二三区视频观看| 亚洲avbb在线观看| 色综合婷婷激情| 色综合婷婷激情| netflix在线观看网站| 中文字幕高清在线视频| 国产精品一区二区免费欧美| 级片在线观看| 日韩欧美国产在线观看| 国产又黄又爽又无遮挡在线| 91麻豆av在线| 校园春色视频在线观看| 校园春色视频在线观看| 欧美中文综合在线视频| 美女扒开内裤让男人捅视频| 亚洲av电影不卡..在线观看| 高清在线国产一区| 欧美性长视频在线观看| 亚洲乱码一区二区免费版| 美女免费视频网站| 我要搜黄色片| xxxwww97欧美| 亚洲av成人一区二区三| 亚洲专区中文字幕在线| 黄色视频不卡| 国产av又大| 久久久久精品国产欧美久久久| 手机成人av网站| 在线观看一区二区三区| 亚洲五月天丁香| 国产成人啪精品午夜网站| 国产乱人伦免费视频| 日韩 欧美 亚洲 中文字幕| av视频在线观看入口| 成人国语在线视频| 黑人操中国人逼视频| 国产精品影院久久| 中文字幕熟女人妻在线| 成人av在线播放网站| 日日摸夜夜添夜夜添小说| 老熟妇仑乱视频hdxx| 黄色视频不卡| 午夜激情福利司机影院| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品中文字幕在线视频| 99精品欧美一区二区三区四区| 亚洲成av人片免费观看| 国产人伦9x9x在线观看| 国产精品免费视频内射| 国产欧美日韩一区二区三| 免费看十八禁软件| 欧美另类亚洲清纯唯美| 久久久久久久久中文| 成人三级黄色视频| 51午夜福利影视在线观看| 成人亚洲精品av一区二区| 国产精品99久久99久久久不卡| 国产精品香港三级国产av潘金莲| cao死你这个sao货| 欧美中文综合在线视频| 亚洲 欧美 日韩 在线 免费| 91麻豆精品激情在线观看国产| 毛片女人毛片| 国产精品一区二区免费欧美| 亚洲一区二区三区色噜噜| 亚洲av美国av| 国产精品美女特级片免费视频播放器 | 日韩免费av在线播放| 琪琪午夜伦伦电影理论片6080| 无人区码免费观看不卡| 91九色精品人成在线观看| 美女午夜性视频免费| 夜夜爽天天搞| 正在播放国产对白刺激| 动漫黄色视频在线观看| 国产午夜精品久久久久久| 久久久精品国产亚洲av高清涩受| 好看av亚洲va欧美ⅴa在| 国产精品香港三级国产av潘金莲| 在线观看午夜福利视频| 国产成人av激情在线播放| 亚洲真实伦在线观看| av视频在线观看入口| 高清在线国产一区| 999精品在线视频| 黄频高清免费视频| 久久久久精品国产欧美久久久| 小说图片视频综合网站| 久久久水蜜桃国产精品网| 久久天躁狠狠躁夜夜2o2o| 91老司机精品| 2021天堂中文幕一二区在线观| 在线a可以看的网站| 免费电影在线观看免费观看| 久99久视频精品免费| 女人爽到高潮嗷嗷叫在线视频| 国产私拍福利视频在线观看| 亚洲精品久久国产高清桃花| 久久热在线av| 精品人妻1区二区| 午夜福利在线观看吧| 黄色毛片三级朝国网站| 少妇人妻一区二区三区视频| 欧美黑人巨大hd| 免费在线观看日本一区| 国产av在哪里看| 麻豆av在线久日| 一级毛片高清免费大全| 国产一区在线观看成人免费| 免费看十八禁软件| 精品国产乱子伦一区二区三区| 婷婷精品国产亚洲av在线| 欧美日韩乱码在线| 一本精品99久久精品77| 又紧又爽又黄一区二区| 九色成人免费人妻av| 国产成人aa在线观看| 天天一区二区日本电影三级| 一进一出好大好爽视频| 一进一出抽搐动态| 国产精品一区二区三区四区免费观看 | 国产成年人精品一区二区| 美女 人体艺术 gogo| 久久久久国产精品人妻aⅴ院| 日本精品一区二区三区蜜桃| 亚洲人与动物交配视频| 老司机深夜福利视频在线观看| 日韩 欧美 亚洲 中文字幕| 两性夫妻黄色片| 国产亚洲精品综合一区在线观看 | 一个人免费在线观看电影 | 欧美日韩福利视频一区二区| 麻豆一二三区av精品| 在线视频色国产色| 成人手机av| 亚洲av中文字字幕乱码综合| 亚洲国产精品999在线| 香蕉国产在线看| 又黄又粗又硬又大视频| 两个人免费观看高清视频| 麻豆国产av国片精品| 又黄又爽又免费观看的视频| 亚洲国产欧洲综合997久久,| 国产69精品久久久久777片 | 大型黄色视频在线免费观看| 国产高清有码在线观看视频 | 国产三级中文精品| 亚洲精华国产精华精| 国产成人精品久久二区二区免费| 中文字幕人成人乱码亚洲影| tocl精华| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧洲综合997久久,| 久久久国产成人精品二区| 国产亚洲精品久久久久久毛片| 久久久久久大精品| 中文在线观看免费www的网站 | 三级毛片av免费| 亚洲一区中文字幕在线| 亚洲精品美女久久av网站| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美 国产精品| 两个人视频免费观看高清| 99国产精品99久久久久| 久久亚洲精品不卡| 无人区码免费观看不卡| 777久久人妻少妇嫩草av网站| 深夜精品福利| 性欧美人与动物交配| 夜夜看夜夜爽夜夜摸| 国产精品爽爽va在线观看网站| 特大巨黑吊av在线直播| 一区二区三区激情视频| 丝袜美腿诱惑在线| 男女那种视频在线观看| 国产三级在线视频| 午夜福利视频1000在线观看| 欧美精品啪啪一区二区三区| 亚洲av成人av| 欧美黄色淫秽网站| 在线观看www视频免费| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站 | 在线观看日韩欧美| 国产精品乱码一区二三区的特点| 女生性感内裤真人,穿戴方法视频| 色av中文字幕| 伊人久久大香线蕉亚洲五| 久久精品成人免费网站| 麻豆一二三区av精品| 久久99热这里只有精品18| 亚洲成a人片在线一区二区| 亚洲第一欧美日韩一区二区三区| 黄色成人免费大全| 国产精品日韩av在线免费观看| 亚洲第一欧美日韩一区二区三区| 久久久久久免费高清国产稀缺| 69av精品久久久久久| 亚洲国产欧美网| 在线免费观看的www视频| 少妇的丰满在线观看| 国产一级毛片七仙女欲春2| 日本a在线网址| 一级毛片精品| 国产欧美日韩一区二区三| 国产精品亚洲av一区麻豆| 老司机靠b影院| 国产精品久久视频播放| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩欧美免费精品| 久久人妻av系列| 国产高清激情床上av| 最新在线观看一区二区三区| 国产99白浆流出| 久久亚洲真实| 在线观看舔阴道视频| 亚洲熟妇熟女久久| 日本三级黄在线观看| 国产在线观看jvid| bbb黄色大片| 人妻夜夜爽99麻豆av| 亚洲精华国产精华精| 91九色精品人成在线观看| 亚洲国产欧洲综合997久久,| 蜜桃久久精品国产亚洲av| 神马国产精品三级电影在线观看 | 国产乱人伦免费视频| 听说在线观看完整版免费高清| 日日爽夜夜爽网站| 在线永久观看黄色视频| 久久久久久亚洲精品国产蜜桃av| 天天躁夜夜躁狠狠躁躁| 91国产中文字幕| 国产精品免费视频内射| 99国产极品粉嫩在线观看| 男人舔奶头视频| 久久久久国内视频| 国产亚洲精品一区二区www| 亚洲精品色激情综合| 国产精品久久电影中文字幕| 嫩草影视91久久| 久久性视频一级片| 国产1区2区3区精品| 国产精品一及| 亚洲精品国产一区二区精华液| 色在线成人网| 黄色片一级片一级黄色片| 欧美三级亚洲精品| 久久天躁狠狠躁夜夜2o2o| 好看av亚洲va欧美ⅴa在| 九色成人免费人妻av| 成人18禁高潮啪啪吃奶动态图| 国产精品香港三级国产av潘金莲| 非洲黑人性xxxx精品又粗又长| 国产亚洲精品久久久久久毛片| 日韩av在线大香蕉| 久久久久久久久中文| 国产午夜精品久久久久久| 亚洲人成网站高清观看| 国产精品久久久人人做人人爽| 亚洲第一欧美日韩一区二区三区| 亚洲真实伦在线观看| 午夜老司机福利片| ponron亚洲| 麻豆国产av国片精品| 日本成人三级电影网站| 亚洲人成77777在线视频| 成人一区二区视频在线观看| 日本精品一区二区三区蜜桃| 亚洲欧洲精品一区二区精品久久久| 婷婷六月久久综合丁香| 人妻久久中文字幕网| 在线视频色国产色| aaaaa片日本免费| 伊人久久大香线蕉亚洲五| 最近在线观看免费完整版| 午夜两性在线视频| 麻豆av在线久日| 老司机在亚洲福利影院| 欧美zozozo另类| 99国产精品一区二区三区| 91av网站免费观看| 女人爽到高潮嗷嗷叫在线视频| 久久久国产精品麻豆| 精品久久久久久久人妻蜜臀av| 长腿黑丝高跟| 黑人欧美特级aaaaaa片| 草草在线视频免费看| 老司机福利观看| 巨乳人妻的诱惑在线观看| 久久久久久亚洲精品国产蜜桃av| 国内少妇人妻偷人精品xxx网站 | a在线观看视频网站| 白带黄色成豆腐渣| 欧美日韩乱码在线| 国产熟女xx| 99国产综合亚洲精品| 成人精品一区二区免费| 国产亚洲欧美在线一区二区| 国产激情欧美一区二区| 久久久水蜜桃国产精品网| 免费观看精品视频网站| 长腿黑丝高跟| 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 亚洲人成网站高清观看| 88av欧美| 精品国产乱子伦一区二区三区| 欧美黑人欧美精品刺激| 精品国产乱子伦一区二区三区| 国产私拍福利视频在线观看| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 淫妇啪啪啪对白视频| 久久久水蜜桃国产精品网| 国产精品电影一区二区三区| 麻豆国产97在线/欧美 | 此物有八面人人有两片| 亚洲色图 男人天堂 中文字幕| 日本黄大片高清| 国产av又大| 国内少妇人妻偷人精品xxx网站 | 成人国语在线视频| 午夜福利18| 在线观看日韩欧美| 天天躁夜夜躁狠狠躁躁| 久久久精品国产亚洲av高清涩受| 97碰自拍视频| aaaaa片日本免费| 久久国产乱子伦精品免费另类| 欧美3d第一页| 国产一区二区在线观看日韩 | 精品人妻1区二区| www国产在线视频色| 午夜福利欧美成人| 亚洲国产中文字幕在线视频| avwww免费| 级片在线观看| 中文字幕人妻丝袜一区二区| 免费在线观看日本一区| 亚洲精品国产精品久久久不卡| 精品久久久久久久人妻蜜臀av| a级毛片a级免费在线| 中文资源天堂在线| 少妇裸体淫交视频免费看高清 | 国产真人三级小视频在线观看| 精品日产1卡2卡| av欧美777| 级片在线观看| 天堂动漫精品| 国产精品野战在线观看| 国产精品爽爽va在线观看网站| 成人永久免费在线观看视频| 日日干狠狠操夜夜爽| 国语自产精品视频在线第100页| 麻豆av在线久日| 亚洲成人免费电影在线观看| 两性夫妻黄色片| 悠悠久久av| 免费在线观看成人毛片| 亚洲乱码一区二区免费版| 色综合欧美亚洲国产小说| 午夜福利18| 校园春色视频在线观看| 99久久精品热视频| 九色国产91popny在线| 国产三级黄色录像| 色综合婷婷激情| 亚洲av第一区精品v没综合| 久久国产精品影院| 一本一本综合久久| 久久欧美精品欧美久久欧美| 桃色一区二区三区在线观看| 久久国产乱子伦精品免费另类| 亚洲精品国产一区二区精华液| 国产91精品成人一区二区三区| 99精品在免费线老司机午夜| 精品久久久久久久毛片微露脸| 熟妇人妻久久中文字幕3abv| 啪啪无遮挡十八禁网站| 亚洲成人免费电影在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲真实伦在线观看| 一卡2卡三卡四卡精品乱码亚洲| 精品国产美女av久久久久小说| 中文字幕最新亚洲高清| 床上黄色一级片| 久久精品国产综合久久久| 日本a在线网址| 又紧又爽又黄一区二区| 麻豆成人午夜福利视频| 2021天堂中文幕一二区在线观| 欧洲精品卡2卡3卡4卡5卡区| 男女床上黄色一级片免费看| 色综合婷婷激情| 亚洲国产精品成人综合色| 精品一区二区三区视频在线观看免费| 国产成人一区二区三区免费视频网站| 色噜噜av男人的天堂激情| 亚洲欧美日韩高清在线视频| 男女下面进入的视频免费午夜| 成人18禁在线播放| 床上黄色一级片|