• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric

    2022-08-01 05:59:24XiaotingSun孫小婷YadongZhang張亞東KunpengJia賈昆鵬GuoliangTian田國良JiahanYu余嘉晗JinjuanXiang項金娟RuixiaYang楊瑞霞ZhenhuaWu吳振華andHuaxiangYin殷華湘
    Chinese Physics B 2022年7期
    關(guān)鍵詞:亞東

    Xiaoting Sun(孫小婷), Yadong Zhang(張亞東), Kunpeng Jia(賈昆鵬), Guoliang Tian(田國良),3, Jiahan Yu(余嘉晗),Jinjuan Xiang(項金娟), Ruixia Yang(楊瑞霞), Zhenhua Wu(吳振華),3,?, and Huaxiang Yin(殷華湘),3,?

    1School of Information Engineering,Hebei University of Technology,Tianjin 300401,China

    2Key Laboratory of Microelectronics Device and Integrated Technology,Institute of Microelectronics Chinese Academy of Sciences,Beijing 100029,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: MoS2,Al2O3 dielectric,NH3 in-situ doping,oxygen vacancy

    1. Introduction

    In 2004, the discovery of graphene attracted much research attention to two-dimensional (2D) materials.[1]Graphene has an ultra-high mobility of up to 2×105cm2·V-1·s-1,[2]but its gapless nature limits its applications in the field of electronic transistors. Alternative transition metal dichalcogenides(TMDs)with atomic thickness and a tunable bandgap can overcome the shortcomings of graphene and demonstrate unique optical and electrical properties.[3–6]Molybdenum disulfide (MoS2), one of the most widely studied TMDs,shows a variety of bandgaps from 1.2 eV to 1.9 eV with films from bulk to monolayer.[7]The fabricated MoS2field-effect transistors (FETs) show high carrier mobility,[8]high on–off ratios[9]and excellent subthreshold swing,[10]and have great possibilities for application in a variety of electronic devices, such as sensors,[11]photodetectors,[12]and logic devices.[13]

    Theoretically, the intrinsic mobility of MoS2FETs can reach 410 cm2·V-1·s-1,[14]but in practice the reported mobility is far less than that. There are many scattering mechanisms in the devices,including charged impurity(CI)scattering,one of the most important factors that degrades mobility.[15]For a back-gate structure FET, the interface states between the 2D channel material and the gate dielectric can be improved by using a high-κdielectric instead of SiO2to provide a special passivation process for effectively screening CI scattering. Many experimental results also show that MoS2FETs with high-κgate dielectrics, such as HfO2,[16]ZrO2,[17]and Al2O3,[18]exhibit good electrical performance. However,the oxygen vacancies and dangling bonds distributed on the surface of high-κdielectrics lead to the interface-state density of dielectrics/MoS2reaching 1011–1012cm-1·eV-1.[19]Recently, much effort has been made to decrease the interfacial defects,such as various plasma treatments(O2,N2,NH3,and CF4/O2),[20–23]rapid thermal annealing (RTA)[24,25]and dielectric-mediated doping[26]after the deposition of high-κfilms. Proper nitrogen doping into the dielectrics during the deposition process supplies an effective way to improve the quality of the dielectrics.[27]Compared with treatments after growth,in situdoping is easier and effective. However,no research has yet been reported onin situNH3doped Al2O3as a gate dielectric in MoS2FETs. In this work, MoS2FETs with NH3doped atomic layer deposition (ALD) Al2O3are systemically explored. Through x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) characterization and electrical tests,the effects of different sequences of NH3doping into the gate dielectric on device performance are investigated. The results show that MoS2FETs with ALD Al2O3doped with NH3during the final stages demonstrate the best performance;this is consistent with the results of dielectric analysis.

    2. Experiments

    In the FET experiments, a heavily doped p++ Si (100)8inch wafer was used as the back gate. The gate dielectric was formed from an ALD Al2O3thin film grown at 300°C using trimethylaluminum(TMA;Al(CH)3)and H2O as Al and oxygen precursors, respectively. Firstly, TMA vapors are pulsed into the chamber and adsorb on the substrate surface,followed by pulsing of N2into the chamber to purge the unabsorbed TMA.Then H2O vapors are pulsed to react with TMA to generate Al2O3and other by-products. At the end of the cycle,N2is pumped in to remove excess gas and any other gases produced. The control of the film thickness is achieved by changing the number of cycles. In this work, the growth rate of the undoped Al2O3film is 1.05 ?A/cycle and a 20 nm thick film is grown after 190 cycles. To realize nitrogen doping in the Al2O3dielectric layer, different sequences for introducing NH3into the growth cycle were designed in this experiment, as shown in Fig. 1. The growth sequence TMA–N2–H2O–N2–NH3–N2is called AlON (0.89 ?A/cycle, 224 cycles for 20 nm)and the sequence TMA–N2–NH3–N2–H2O–N2is called AlNO(1.05 ?A/cycle,190 cycles for 20 nm).

    Fig. 1. Schematic diagrams of one cycle with different NH3 doping sequences.

    The MoS2flake channel material was mechanically exfoliated from bulk MoS2crystal(purchased from Six Carbon Technology,Shenzhen)using scotch tape and then transferred onto the target substrate by PDMS. Next, lithography with a negative polymer resist was used to define the source/drain region. Then, the metal electrode (Ti/Au=10/40 nm) was deposited by electron beam evaporation, and the metal was stripped by lift-off to form a separate metal electrode.

    Figure 2(a) is a schematic diagram of a few-layer MoS2FET with a 20 nm Al2O3gate dielectric and Ti/Au electrodes.The prepared MoS2FET is shown in Fig.2(b),and the length and width of the channel are 3 μm and 10.86 μm,respectively.The thickness of MoS2measured by AFM is 6 nm,as shown in Fig. 2(c). Figure 2(d) shows the Raman spectra of the MoS2flake and the Raman shift between the E12gpeak (384 cm-1)and the A1gpeak(408 cm-1)is 24 cm-1.

    Fig.2. (a)Schematic of a few-layer MoS2 FET with a 20 nm Al2O3 gate dielectric and Ti/Au electrodes. (b)Optical photograph of the prepared MoS2 transistor. (c)AFM image of the MoS2 transistor with the inset showing the thickness of the MoS2 flake measured by AFM.(d)Raman spectra of MoS2 flake.

    The high-frequency(1 MHz)capacitance–voltage(C–V)curves and the electrical characteristics of MoS2FETs were measured using a Keithley 4200-SCS and an Agilent 4156C,respectively, at room temperature in an atmospheric environment.

    3. Results and discussion

    The influence ofin situNH3doping on the dielectric was explored with theC–Vtest. A metal,a gate dielectric(Al2O3,AlON, AlNO) and Si form a metal–oxide–semiconductor(MOS) capacitor structure. TheC–Vcurves of MOS capacitors measured at 1 MHz are shown in Fig.3(a). For the gate dielectrics Al2O3, AlON and AlNO, the MOS oxide capacitances per unit area (Cox) are 0.337 μF/cm2, 0.381 μF/cm2,and 0.357 μF/cm2, respectively.Coxis increased by the use of NH3doping, indicating improvement of the gate control capability. Figure 3(b) shows thekvalues of the three dielectrics and capacitance equivalent thicknesses. Based onk=(Coxtox)/ε,in whichεis the vacuum permittivity andtoxis the thickness of the gate dielectric, thekvalues for Al2O3,AlON and AlNO are 7.6,8.6,and 8.1,respectively. It is found that NH3doping can improve thekvalue of the dielectric layer due to the incorporation of nitrogen. Meanwhile, the capacitance equivalent thicknesses are decreased,which is conducive to a reduction of device size without affecting the gate control ability. Figure 3(c)shows the gate leakage current under gate voltages from-1 V to 1 V. After NH3doping, the dielectric leakage current decreases and the leakage current of AlON is one order of magnitude lower than that of Al2O3. From the electrical characterization,it is obvious that various electrical parameters are improved after NH3is doped into Al2O3. This is mainly because NH3doping reduces the defects caused by oxygen vacancies.[28]However,the degree to which vacancies are suppressed is dependent on the sequence of NH3doping.When the film grows not as AlNO but as AlON,a better gate dielectric is obtained. An explanation for this is that the NH3doping sequence affects the bonding state of elements during the ALD process.

    The surface roughness of the gate dielectric reflects the quality of the film.The roughness can affect the surface roughness scattering and thus the mobility of the carriers.[29,30]In this work, AFM is used to evaluate the root-mean square(RMS)roughness of the samples,as shown in Figs.4(a)–4(c).The RMS roughness of Al2O3,AlON and AlNO is 0.217 nm,0.169 nm, and 0.192 nm, respectively. Compared with the control sample Al2O3,samples with NH3doping have smaller RMS roughness. The AlON film has the best surface with the smallest surface roughness. This is consistent with the previous assumption that NH3doping and the sequence of doping have an impact on the quality of the dielectric layer.The flat surface is beneficial to improving the mobility of the carriers.[31]

    Fig.3. (a)The C–V curves of MOS capacitors. (b)Relevant k values and capacitance equivalent thicknesses. (c)Gate leakage current(Jg)–Vg characteristics.

    Fig.4.AFM height image(5 μm×5 μm)of the surface of the gate dielectric:(a)Al2O3,(b)AlON,(c)AlNO.

    To further clarify the mechanism of NH3doping, XPS was used to analyze the chemical bonds of the three samples.In Fig.5,O 1s has various binding energies of common chemical states, among which the low binding energy (531.2 eV)corresponds to lattice oxygen derived from O–Al in Al2O3and non-lattice and surface oxygen have a higher binding energy(532.5 eV).[32]As shown in Figs. 5(a)–5(c), the red line represents lattice oxygen and the blue line represents non-lattice oxygen. The ratio of O-Al/Odefectin the film is reflected by the spectral peak intensity ratio and is 2.59, 4.42, and 3.91 in Al2O3,AlON and AlNO,respectively. Compared with the control sample Al2O3,the dielectric layers doped by NH3have a larger peak intensity ratio,representing the fewer oxygen vacancy defects which are repaired by nitrogen.

    The XPS Al 2p spectra was extracted to analyze the bonding states of nitrogen and aluminum.As presented in Fig.5(d),there is only one spectral peak derived from the Al–O bond at 74.55 eV in the Al2O3dielectric layer. After the NH3doping, the peak of Al–N is visible at 73.31 eV, which indicates that nitrogen has been incorporated into Al2O3and formed Al–N bonds. The peak intensity of Al–N represents the number of bonds formed and the peak intensity in the AlON layer is stronger than that in the AlNO layer, which is shown in Figs. 5(e)and 5(f). Corresponding to the peak intensity ratio in Figs. 5(b) and 5(c), there are more Al–N bonds in AlON,which means that more vacancies are repaired. These results show the influence of different nitrogen doping sequences on the dielectric.

    Furthermore,the electrical characteristics of MoS2FETs were measured to study the effect of NH3doping on device performance. Figure 6(a) shows the output characteristics of the three samples, and the scanning gate voltage ranges from-2 V to 4 V in steps of 2 V. The samples with NH3doping achieve a higher drain current and the device has the highest drain current (8.0 μA/μm) atVg=4 V with AlON as the dielectric layer. Due to the effect of NH3doping on the repair of oxygen vacancies, carrier scattering at the interface of the channel and the dielectric layer is reduced,resulting in higher carrier transport efficiency and a larger current.

    Figure 6(b)shows the transfer characteristics of the three samples with normalized drain current in order to avoid the influence of channel width on the output current. The threshold voltagesVthextracted in Fig.6(b)are-0.74 V,-0.12 V,and-0.4 V for the samples with Al2O3,AlON and AlNO gate dielectric layers. It is obvious that theVthof a MoS2FET has a positive drift with a NH3-doped dielectric. Using Al2O3as the dielectric layer,a mass of oxygen vacancies with positive charges exist in the film, causing negativeVth.[33]After NH3doping into the high-κlayer,charge traps are repaired andVthhas a positive drift.[34]The sample with AlON has the smallest|Vth|, which also indicates that the MoS2/AlON interface has the fewest defective states.

    Fig.5. Deconvolution of XPS O 1s and Al 2p spectra of the three samples.

    Figure 6(c) demonstrates the transfer characteristics in a semilog scale withVds=0.2 V,from whichIon/Ioffcan be extracted to be 1.33×105,3.56×106,and 1.06×106for samples with Al2O3,AlON and AlNO,respectively. TheIon/Ioffof the sample with NH3doping is one order of magnitude larger than the sample without NH3doping. According to the above analysis,the repair of oxygen vacancy defects is helpful to reduce the carrier scattering capability,which can increaseIonand decreaseIoffof transistors. From Fig. 6(c), the value of subthreshold swing(SS)can also be extracted; it is 139 mV/dec,105 mV/dec,and 117 mV/dec for samples with Al2O3,AlON and AlNO,respectively. The sample with an AlON dielectric has the smallest SS,which is due to improvement of the interface quality after NH3doping.

    In order to explore the carrier mobility trend of the device channel,decades of devices using Al2O3,AlON and AlNO as the gate dielectric are selected and the value is calculated by using the following equation:

    in whichCoxis the oxide capacitance per unit area of the gate dielectric,LandWare the channel length and width, respectively,and ΔIds/ΔVgsis the slope of the transfer characteristic curve on a linear scale.As shown in Fig.6(d),it is obvious that the MoS2FETs with NH3-doped Al2O3have a higher carrier mobility.

    In the process of Al2O3deposition it is inevitable that oxygen vacancies will be generated because of the low crystallization temperature of Al2O3.[35]The existence of vacancies tends to form charge centers,and thus the charge scattering effect of the dielectric layer is affected. By doping nitrogen into the dielectric layer,oxygen vacancies are substituted by nitrogen atoms, which effectively screen the CI scattering in the dielectric layer and thekvalue of the dielectric is increased.In addition, the introduction of NH3during ALD growth of Al2O3can also reduce the interface roughness of dielectric and channel materials,drastically decreasing the effect of interface scattering on channel carrier transport.

    Fig. 6. (a) The Id–Vds curves in the linear region for the three samples. (b)Transfer characteristics of the three samples on a linear scale with Vds =0.2 V. (c) Transfer characteristics of the three samples on a semilog scale with Vds=0.2 V.(d)Average value of mobility of the three samples.

    Figure 7 shows the off-state current and subthreshold swings of MoS2transistors produced using different treatment methods. Compared with other processes, the device in our work exhibits better performance and achieves a smaller SS(105 mV/dec)while maintaining a low off-state current.

    Fig. 7. A plot of off-state current versus the subthreshold swings from this work compared with MoS2 FETs treated with other reported processes.

    4. Conclusion

    In summary, the processing method and the impacts of NH3in situdoping into an Al2O3gate dielectric on MoS2FETs have been systematically investigated. Two different doping sequences were investigated in experiments. Through XPS and AFM characterization and the MOS capacitor electrical test, it was found that final doping of NH3during the ALD growth cycles demonstrates the best results. The oxygen vacancy defects in the Al2O3dielectric are repaired by thisin situNH3doping, and the carrier scattering of the interfaces between the gate dielectric and TMD channel material is obviously reduced. As a result, the performance of the MoS2FET is effectively improved,and the threshold voltage shift to an ideal state close to 0 V.Thein situdielectric treatment reported in this paper provides an effective and simple method to improve performance as well as the threshold control in the development of future TMD integrated circuits.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.61774168 and 11764008)and the Opening Project of Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics,Chinese Academy of Sciences.

    猜你喜歡
    亞東
    Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
    汪孟鄒與亞東圖書館
    文史春秋(2022年4期)2022-06-16 07:12:50
    GLOBAL NONEXISTENCE FOR A VISCOELASTIC WAVE EQUATION WITH ACOUSTIC BOUNDARY CONDITIONS?
    胡適與亞東本《紅樓夢》標(biāo)點之關(guān)系
    BLOW-UP PHENOMENA FOR A CLASS OF GENERALIZED DOUBLE DISPERSION EQUATIONS?
    補衣
    點擊反證法
    聽風(fēng)看云喝茶
    兩人之間的往事(短篇小說)
    人間(2015年14期)2015-09-29 21:35:30
    2015年高考數(shù)學(xué)模擬試題(一)
    搡老妇女老女人老熟妇| 熟妇人妻久久中文字幕3abv| 91在线观看av| 国产在线精品亚洲第一网站| av黄色大香蕉| 亚洲精品乱码久久久v下载方式 | 中文在线观看免费www的网站| 精品国内亚洲2022精品成人| av在线蜜桃| 国产精品,欧美在线| 亚洲黑人精品在线| e午夜精品久久久久久久| 淫妇啪啪啪对白视频| 一级黄色大片毛片| 国产精品一及| 久久九九热精品免费| www.熟女人妻精品国产| 在线观看免费视频日本深夜| 久久婷婷人人爽人人干人人爱| 狠狠狠狠99中文字幕| 一进一出抽搐动态| 国产熟女xx| 麻豆久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 午夜福利18| 他把我摸到了高潮在线观看| 99热只有精品国产| 国产精品精品国产色婷婷| 久久久国产精品麻豆| 欧美日韩乱码在线| 成在线人永久免费视频| 香蕉丝袜av| 男女视频在线观看网站免费| 午夜精品在线福利| 亚洲人成电影免费在线| 黄色成人免费大全| 嫩草影视91久久| 精品久久久久久,| 成人av一区二区三区在线看| 日韩欧美一区二区三区在线观看| 中文字幕熟女人妻在线| 亚洲欧美日韩卡通动漫| 国产精品 国内视频| 一本久久中文字幕| 熟女人妻精品中文字幕| 亚洲成人久久爱视频| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦韩国在线观看视频| 免费无遮挡裸体视频| av天堂中文字幕网| 亚洲国产精品合色在线| 91九色精品人成在线观看| 激情在线观看视频在线高清| 国产亚洲av高清不卡| 女同久久另类99精品国产91| 国产精品久久久久久亚洲av鲁大| 国产精品一及| or卡值多少钱| 国产精品av久久久久免费| 亚洲av熟女| 麻豆国产av国片精品| 99久国产av精品| 男女那种视频在线观看| 欧美日韩国产亚洲二区| 亚洲国产欧美网| 色精品久久人妻99蜜桃| 成年人黄色毛片网站| 1024手机看黄色片| 精品日产1卡2卡| xxxwww97欧美| 国内精品久久久久久久电影| 最近最新免费中文字幕在线| 中文字幕精品亚洲无线码一区| 90打野战视频偷拍视频| 亚洲片人在线观看| 精品一区二区三区视频在线观看免费| 无限看片的www在线观看| x7x7x7水蜜桃| 成人午夜高清在线视频| 国产精品久久视频播放| 18禁国产床啪视频网站| 全区人妻精品视频| 两个人的视频大全免费| 丁香欧美五月| 91av网站免费观看| 久久午夜亚洲精品久久| 国产高清三级在线| 在线a可以看的网站| 热99在线观看视频| 欧美在线一区亚洲| 人妻久久中文字幕网| 一个人看视频在线观看www免费 | 亚洲乱码一区二区免费版| 亚洲av电影在线进入| 国产麻豆成人av免费视频| 看片在线看免费视频| 欧美一区二区精品小视频在线| 亚洲激情在线av| 一个人免费在线观看电影 | 免费在线观看视频国产中文字幕亚洲| 757午夜福利合集在线观看| 两个人的视频大全免费| 在线观看一区二区三区| 久久久水蜜桃国产精品网| 亚洲av日韩精品久久久久久密| 狠狠狠狠99中文字幕| 99久久无色码亚洲精品果冻| 麻豆成人午夜福利视频| 婷婷丁香在线五月| 啦啦啦韩国在线观看视频| 岛国在线观看网站| 1000部很黄的大片| 亚洲成人中文字幕在线播放| 国产三级黄色录像| 精品一区二区三区视频在线 | 国产高清视频在线播放一区| 精品国产乱码久久久久久男人| 欧美中文日本在线观看视频| 曰老女人黄片| 哪里可以看免费的av片| 在线看三级毛片| 国产成+人综合+亚洲专区| 中文字幕人成人乱码亚洲影| 两性夫妻黄色片| 日日夜夜操网爽| 国产精品影院久久| 国产精品久久视频播放| 亚洲av片天天在线观看| 久久这里只有精品中国| 成年人黄色毛片网站| 波多野结衣巨乳人妻| 国产精品久久久久久亚洲av鲁大| 欧美一区二区国产精品久久精品| 亚洲精品中文字幕一二三四区| 日日干狠狠操夜夜爽| 久久精品91蜜桃| 久久欧美精品欧美久久欧美| 国产熟女xx| 亚洲精品乱码久久久v下载方式 | 久9热在线精品视频| 久久久久久大精品| 五月伊人婷婷丁香| 不卡一级毛片| 一个人看视频在线观看www免费 | 国产精品乱码一区二三区的特点| 午夜两性在线视频| 色在线成人网| 国产亚洲欧美在线一区二区| 午夜福利在线观看吧| 国产视频内射| 久久久久久久久免费视频了| 天天一区二区日本电影三级| 老熟妇仑乱视频hdxx| 国产91精品成人一区二区三区| 51午夜福利影视在线观看| 真人一进一出gif抽搐免费| 99久久精品国产亚洲精品| 看免费av毛片| 亚洲美女黄片视频| a在线观看视频网站| 真人做人爱边吃奶动态| 久久这里只有精品中国| 在线看三级毛片| 国产黄片美女视频| 亚洲av电影在线进入| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲av高清不卡| 床上黄色一级片| 色视频www国产| 变态另类成人亚洲欧美熟女| 欧美性猛交╳xxx乱大交人| 校园春色视频在线观看| 日韩人妻高清精品专区| 成人午夜高清在线视频| 看黄色毛片网站| 亚洲国产看品久久| 午夜激情欧美在线| 国产精品亚洲一级av第二区| 亚洲性夜色夜夜综合| 欧美一级毛片孕妇| 欧美绝顶高潮抽搐喷水| 国产精品一区二区精品视频观看| 国产av麻豆久久久久久久| 久久草成人影院| 亚洲欧美日韩高清专用| 亚洲七黄色美女视频| 国产蜜桃级精品一区二区三区| 亚洲真实伦在线观看| 亚洲无线观看免费| xxx96com| 在线看三级毛片| 国产v大片淫在线免费观看| 99热这里只有是精品50| 岛国在线观看网站| www.自偷自拍.com| АⅤ资源中文在线天堂| 欧美激情在线99| 免费在线观看成人毛片| 国产精品电影一区二区三区| 一级黄色大片毛片| 亚洲一区二区三区色噜噜| av国产免费在线观看| 禁无遮挡网站| 婷婷亚洲欧美| 舔av片在线| svipshipincom国产片| 每晚都被弄得嗷嗷叫到高潮| 久久精品91无色码中文字幕| 91九色精品人成在线观看| 午夜免费观看网址| 色av中文字幕| 国产精品影院久久| 亚洲色图 男人天堂 中文字幕| 老司机深夜福利视频在线观看| 国产精品,欧美在线| 亚洲欧美激情综合另类| 一区二区三区高清视频在线| www.www免费av| 国产亚洲精品av在线| 久久精品aⅴ一区二区三区四区| 国产美女午夜福利| 亚洲国产高清在线一区二区三| 久久久精品欧美日韩精品| 国产人伦9x9x在线观看| 国产真人三级小视频在线观看| 午夜精品在线福利| 又紧又爽又黄一区二区| 男女之事视频高清在线观看| 精品久久久久久久人妻蜜臀av| 国产不卡一卡二| 可以在线观看的亚洲视频| 欧美日韩精品网址| 国产精品女同一区二区软件 | 久久香蕉国产精品| 国产精品永久免费网站| 搡老岳熟女国产| 在线观看午夜福利视频| 亚洲av成人精品一区久久| 免费看光身美女| 国产成人精品久久二区二区免费| 精品一区二区三区av网在线观看| 久久精品91蜜桃| 精品国产亚洲在线| 三级国产精品欧美在线观看 | 狂野欧美白嫩少妇大欣赏| 亚洲avbb在线观看| 少妇的丰满在线观看| 美女高潮的动态| 少妇的丰满在线观看| 欧美3d第一页| 国产精品永久免费网站| 一本综合久久免费| 久久国产乱子伦精品免费另类| 一个人免费在线观看的高清视频| 99久久国产精品久久久| 久久人妻av系列| 国产精品久久久久久久电影 | 99热只有精品国产| tocl精华| 国产伦精品一区二区三区四那| 老汉色∧v一级毛片| 久久香蕉国产精品| 中文字幕精品亚洲无线码一区| 韩国av一区二区三区四区| 最好的美女福利视频网| 亚洲精品中文字幕一二三四区| 午夜成年电影在线免费观看| 婷婷精品国产亚洲av在线| 日本一二三区视频观看| 精品不卡国产一区二区三区| 精品免费久久久久久久清纯| 国产亚洲精品综合一区在线观看| 国产午夜精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 人人妻人人澡欧美一区二区| 热99re8久久精品国产| 熟女电影av网| 国产精品久久久久久人妻精品电影| 精品久久久久久久人妻蜜臀av| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式 | 欧美黑人巨大hd| 91在线观看av| 午夜福利免费观看在线| 国产av麻豆久久久久久久| 国产91精品成人一区二区三区| 婷婷丁香在线五月| 国产精品久久久av美女十八| 国产97色在线日韩免费| av中文乱码字幕在线| 国产真实乱freesex| 亚洲人成网站在线播放欧美日韩| 夜夜爽天天搞| 亚洲色图av天堂| av在线天堂中文字幕| 日韩大尺度精品在线看网址| 中文字幕人妻丝袜一区二区| 国产精品久久电影中文字幕| 一区二区三区激情视频| 精品国产三级普通话版| 琪琪午夜伦伦电影理论片6080| 久久久国产精品麻豆| 亚洲中文av在线| 成年女人永久免费观看视频| 午夜亚洲福利在线播放| 国产精品av视频在线免费观看| 国产极品精品免费视频能看的| 午夜精品一区二区三区免费看| 亚洲av电影不卡..在线观看| 欧美日本视频| 国产野战对白在线观看| 亚洲九九香蕉| 亚洲第一欧美日韩一区二区三区| 久久国产精品影院| 亚洲18禁久久av| 狂野欧美激情性xxxx| 精品福利观看| 免费电影在线观看免费观看| 精品熟女少妇八av免费久了| 老司机深夜福利视频在线观看| 日韩欧美一区二区三区在线观看| 久久性视频一级片| 中文字幕高清在线视频| 99re在线观看精品视频| 嫁个100分男人电影在线观看| 成人欧美大片| 欧美日本亚洲视频在线播放| 久久精品91无色码中文字幕| 可以在线观看毛片的网站| 亚洲自拍偷在线| 麻豆av在线久日| 人人妻人人看人人澡| 国产精品av视频在线免费观看| 国产v大片淫在线免费观看| 男女午夜视频在线观看| 欧美3d第一页| 巨乳人妻的诱惑在线观看| 最新在线观看一区二区三区| 国产野战对白在线观看| 国产成人欧美在线观看| www日本黄色视频网| 窝窝影院91人妻| 老汉色av国产亚洲站长工具| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 国产精品电影一区二区三区| 国产亚洲欧美在线一区二区| 亚洲国产欧美网| 色综合站精品国产| 中文字幕高清在线视频| 天天添夜夜摸| 特级一级黄色大片| 亚洲欧美日韩卡通动漫| 成人国产综合亚洲| 久久精品91无色码中文字幕| 亚洲熟女毛片儿| 精品久久久久久久末码| 亚洲成av人片在线播放无| 国产私拍福利视频在线观看| 日本 欧美在线| 天堂网av新在线| 久久精品国产综合久久久| 国产黄片美女视频| 亚洲电影在线观看av| 亚洲自拍偷在线| 亚洲av成人av| 国产一区二区三区在线臀色熟女| 久久久国产成人免费| 麻豆成人午夜福利视频| 在线播放国产精品三级| 久久国产精品人妻蜜桃| 色综合婷婷激情| 中文亚洲av片在线观看爽| 国产一区在线观看成人免费| 毛片女人毛片| 韩国av一区二区三区四区| 色吧在线观看| 夜夜夜夜夜久久久久| 亚洲欧美日韩东京热| 亚洲激情在线av| 非洲黑人性xxxx精品又粗又长| 欧美不卡视频在线免费观看| 免费高清视频大片| 欧美另类亚洲清纯唯美| 每晚都被弄得嗷嗷叫到高潮| 欧美成人性av电影在线观看| 午夜精品一区二区三区免费看| 天天躁狠狠躁夜夜躁狠狠躁| 日韩高清综合在线| 欧美日本视频| 波多野结衣高清作品| 久久草成人影院| 最新在线观看一区二区三区| 国产精品久久久久久亚洲av鲁大| 国产精品亚洲av一区麻豆| 亚洲成人精品中文字幕电影| www国产在线视频色| 美女大奶头视频| 久久久久国产一级毛片高清牌| 啦啦啦免费观看视频1| 一卡2卡三卡四卡精品乱码亚洲| 久久亚洲精品不卡| 久久午夜综合久久蜜桃| 中文字幕人妻丝袜一区二区| 成人精品一区二区免费| 午夜亚洲福利在线播放| 一个人看的www免费观看视频| 欧美xxxx黑人xx丫x性爽| 国产亚洲精品久久久久久毛片| 给我免费播放毛片高清在线观看| 国产高清视频在线播放一区| 国产视频内射| 国产精品香港三级国产av潘金莲| av黄色大香蕉| АⅤ资源中文在线天堂| 亚洲av成人一区二区三| 两个人视频免费观看高清| 曰老女人黄片| 免费观看的影片在线观看| 全区人妻精品视频| 女警被强在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品 欧美亚洲| 美女黄网站色视频| 真人做人爱边吃奶动态| 国产伦人伦偷精品视频| 国产黄片美女视频| 香蕉国产在线看| 日韩免费av在线播放| 在线看三级毛片| 美女免费视频网站| 亚洲天堂国产精品一区在线| 麻豆国产97在线/欧美| 午夜日韩欧美国产| 亚洲狠狠婷婷综合久久图片| 国产精品一区二区三区四区免费观看 | 亚洲一区二区三区色噜噜| 国产成人aa在线观看| 国产男靠女视频免费网站| 久久草成人影院| 久久精品国产亚洲av香蕉五月| 日本一本二区三区精品| 露出奶头的视频| 日本熟妇午夜| 这个男人来自地球电影免费观看| 老熟妇仑乱视频hdxx| 夜夜夜夜夜久久久久| 国产精品香港三级国产av潘金莲| 黑人欧美特级aaaaaa片| 成人特级av手机在线观看| 香蕉久久夜色| 国产精品 国内视频| 亚洲熟女毛片儿| 亚洲人成电影免费在线| 久久久国产欧美日韩av| 国产av一区在线观看免费| 亚洲熟妇中文字幕五十中出| 国产熟女xx| 男女视频在线观看网站免费| 中文字幕人成人乱码亚洲影| 国产欧美日韩精品亚洲av| 18禁黄网站禁片午夜丰满| 无限看片的www在线观看| 日韩欧美一区二区三区在线观看| 亚洲一区高清亚洲精品| 国产极品精品免费视频能看的| 午夜福利在线观看吧| 亚洲va日本ⅴa欧美va伊人久久| 色综合站精品国产| 国产av麻豆久久久久久久| 波多野结衣高清作品| 久久热在线av| 久久天堂一区二区三区四区| www.熟女人妻精品国产| 国产真人三级小视频在线观看| 久久九九热精品免费| 熟女电影av网| a级毛片在线看网站| 欧美激情久久久久久爽电影| 51午夜福利影视在线观看| 国产精品99久久久久久久久| 叶爱在线成人免费视频播放| 国产亚洲精品av在线| 一个人免费在线观看的高清视频| 亚洲 欧美一区二区三区| 欧美黄色片欧美黄色片| 国产 一区 欧美 日韩| 国产伦精品一区二区三区视频9 | 两人在一起打扑克的视频| 男女下面进入的视频免费午夜| 真实男女啪啪啪动态图| 90打野战视频偷拍视频| h日本视频在线播放| 午夜福利在线观看免费完整高清在 | 久久中文看片网| 美女被艹到高潮喷水动态| 少妇裸体淫交视频免费看高清| 三级男女做爰猛烈吃奶摸视频| 午夜精品久久久久久毛片777| 男女午夜视频在线观看| 级片在线观看| 嫩草影院精品99| 亚洲精品一卡2卡三卡4卡5卡| 最近在线观看免费完整版| 无遮挡黄片免费观看| 欧美大码av| 一个人免费在线观看的高清视频| 国产精品1区2区在线观看.| 欧美日韩福利视频一区二区| 18禁黄网站禁片免费观看直播| 久久人妻av系列| 国产精品自产拍在线观看55亚洲| 国产精品一区二区精品视频观看| 国产精品美女特级片免费视频播放器 | 舔av片在线| 99久久99久久久精品蜜桃| 亚洲精品美女久久av网站| 99热这里只有是精品50| 亚洲成人中文字幕在线播放| 可以在线观看的亚洲视频| 国产视频一区二区在线看| 日韩高清综合在线| 日本黄大片高清| 天天躁日日操中文字幕| 亚洲av成人一区二区三| 国产精品一区二区三区四区久久| 亚洲男人的天堂狠狠| 男女午夜视频在线观看| 别揉我奶头~嗯~啊~动态视频| 久久香蕉精品热| 69av精品久久久久久| 亚洲av片天天在线观看| 亚洲av免费在线观看| 99热这里只有精品一区 | 国产精品一区二区三区四区久久| 国产久久久一区二区三区| 日韩成人在线观看一区二区三区| 老司机午夜十八禁免费视频| 一区二区三区高清视频在线| 熟女人妻精品中文字幕| 精品电影一区二区在线| 久久这里只有精品19| 最好的美女福利视频网| 又爽又黄无遮挡网站| 一a级毛片在线观看| 国产成人啪精品午夜网站| 香蕉av资源在线| 国产精品一区二区免费欧美| 国产欧美日韩精品亚洲av| 麻豆一二三区av精品| 噜噜噜噜噜久久久久久91| 国产伦一二天堂av在线观看| 两个人视频免费观看高清| 国语自产精品视频在线第100页| 中国美女看黄片| 亚洲 欧美 日韩 在线 免费| 最近在线观看免费完整版| 久久欧美精品欧美久久欧美| 97超级碰碰碰精品色视频在线观看| 久久人人精品亚洲av| 成年女人毛片免费观看观看9| avwww免费| 国产又黄又爽又无遮挡在线| 天堂√8在线中文| 亚洲中文日韩欧美视频| 日韩av在线大香蕉| 此物有八面人人有两片| 制服人妻中文乱码| 搡老妇女老女人老熟妇| 黄色 视频免费看| 欧美极品一区二区三区四区| 国产一区二区在线av高清观看| 国产黄片美女视频| 在线看三级毛片| 亚洲精品色激情综合| 欧美日韩瑟瑟在线播放| 狂野欧美白嫩少妇大欣赏| 1024香蕉在线观看| 国产精品99久久久久久久久| 麻豆成人午夜福利视频| 久久精品国产亚洲av香蕉五月| 在线观看舔阴道视频| 香蕉国产在线看| 男女下面进入的视频免费午夜| 看黄色毛片网站| 国产精华一区二区三区| 亚洲国产看品久久| 亚洲国产欧美网| 久久九九热精品免费| 色噜噜av男人的天堂激情| 久久久久久久久中文| 男插女下体视频免费在线播放| 18禁黄网站禁片免费观看直播| 国产伦精品一区二区三区四那| 又大又爽又粗| 亚洲欧美日韩无卡精品| 中文字幕久久专区| 久久精品91无色码中文字幕| 精品久久久久久,| 国产av麻豆久久久久久久| 免费搜索国产男女视频| 色哟哟哟哟哟哟| 成人鲁丝片一二三区免费| 午夜a级毛片| 日韩欧美国产在线观看| 国产av不卡久久| 国产1区2区3区精品| av在线天堂中文字幕| 亚洲最大成人中文| 欧美成人一区二区免费高清观看 | 亚洲aⅴ乱码一区二区在线播放| 手机成人av网站| 青草久久国产| 日韩人妻高清精品专区| 国产69精品久久久久777片 |