• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice

    2023-02-20 13:15:56QingSongYang楊清松BinBinRuan阮彬彬MengHuZhou周孟虎YaDongGu谷亞?wèn)|MingWeiMa馬明偉GenFuChen陳根富andZhiAnRen任治安
    Chinese Physics B 2023年1期
    關(guān)鍵詞:亞?wèn)|治安

    Qing-Song Yang(楊清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亞?wèn)|),Ming-Wei Ma(馬明偉), Gen-Fu Chen(陳根富), and Zhi-An Ren(任治安),?

    1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: ZrIr2,superconductivity,Laves phase,kagome lattice,spin–orbit coupling

    1. Introduction

    The well-known Laves phases with general formulasAB2constitute a large family in the intermetallic compounds.[1–3]Despite the relatively simple compositions, they hold various crystal structures,intriguing physical properties and hence wide applications, such as magnetic materials,[4,5]hydrogen storage materials,[6,7]and superconducting magnets.[8–10]Thermodynamically stable Laves phases mainly crystallize in three common structures,namely,the hexagonal C14-type(or MgZn2-type), the cubic C15-type (or MgCu2-type), and the hexagonal C36-type(or MgNi2-type). Among them, the C14 and C15 Laves phases were found to be more favorable for the occurrence of superconductivity.[1,11,12]For instance, the C15-type V-based superconductors (Zr1-xHfxV2) have been intensively studied as candidates for application in high-field superconducting magnets.[13–15]In addition,several C15-type superconductors such as CeRu2[16,17]and Au2Pb[18,19]were reported to host possible unconventional superconductivity.

    Recently, Ir-based C15-type Laves phasesAIr2(A=Ca,Sr, Ba, Th) have attracted much interest for the coexistence of superconductivity and strong spin–orbit coupling (SOC)effects.[20–26]Although superconductivity inAIr2(A=Ca,Sr,Th)had been discovered before the 1960s,[27]the normal-state and superconducting properties ofAIr2were not systematically studied until these recent reports. Electronic band structure calculations further revealed that the presence of SOC would strongly affect not only the topology of Fermi surfaces but also the lattice stability.[23]All these results suggest that the C15-typeAIr2are good platforms to study the interplay between SOC and superconductivity. However,studies on these compounds face challenges sinceAIr2(A=Ca,Sr,Ba,Th)are either unstable in air or contain toxic/radioactive elements.

    ZrIr2is also a C15-type superconductor,whose superconductivity was discovered by Matthiaset al. in 1961.[11]Subsequent studies focused on the magnetic states of rare-earth dopants in ZrIr2,[28–30]but reports on the superconducting nature of ZrIr2were scarce. To date, evidence for bulk superconductivity in ZrIr2has not been revealed,and details of the superconducting properties are still lacking.In particular,thermodynamic measurements on ZrIr2have never been reported,neither have been the superconducting parameters except for the transition temperature(Tc).Given that ZrIr2is stable in air,and the element Zr is friendly to both health and environment,it is necessary to examine the bulk superconductivity and to study the superconducting properties in detail.

    In this paper,we report the superconducting properties of ZrIr2based on the measurements of resistivity,magnetic susceptibility, and heat capacity. Bulk superconductivity is confirmed by the heat capacity measurements, and the superconducting parameters are determined for the first time. Moreover, ZrIr2is possibly an s-wave superconductor with strong electron–phonon coupling. First-principles calculations reveal the crucial role of SOC and the three-dimensional feature of Fermi surfaces in ZrIr2.

    2. Methods

    Polycrystalline samples of ZrIr2were prepared by an arcmelting method. The starting materials were zirconium(powder, 99.5%, may contain trace amount of Hf) and iridium(powder,99.99%). Zr and Ir were thoroughly mixed in a molar ratio of 1.08:2 before pressed into pellets. A slightly excess amount of Zr was used in order to prevent the formation of ZrIr3. The pellets were then arc-melted in high purity argon atmosphere for at least 8 times with intermediate turnovers.The weight losses after arc-melting were always less than 1%.The ingots obtained were subsequently wrapped with tantalum sheets, sealed into quartz tubes, and annealed at 1430 K for three weeks. The final products showed metallic lusters and were stable in air.

    X-ray diffraction (XRD) data were collected on a powdered sample using a PAN-analytical x-ray diffractometer(Cu-Kαradiation) at room temperature. Rietveld refinements of the XRD results were carried out using the GSAS package.[31]Measurements of electrical resistivity, as well as heat capacity of the sample were performed on a Quantum Design physical property measurement system (PPMS). While magnetization data were collected on a Quantum Design magnetic property measurement system (MPMS). More details about the measurements can be found elsewhere.[32]Note that all the data in this paper were collected on a sample from the same batch. The magnetization data were corrected by taking the demagnetization factors into account.[33]

    First-principles calculations were performed by using the density functional theory(DFT),as implemented in the Quantum ESPRESSO(QE)package.[34]Projector augmented wave pseudopotentials from the PSlibrary were chosen,[35]with exchange–correlation functionals of PBEsol based on the generalized gradient approximation (GGA).[36]The energy cutoffs for the wavefunctions were 70 Ry. A Monkhorst–Pack grid of 163k-points was used in the self-consistent calculation,while a grid of 493k-points was used to calculate the density of states(DOS)and the Fermi surfaces. Before the calculation of charge densities, the cells were fully relaxed till the force on each atom was less than 10-4Ry·Bohr-1. Both the scalar relativistic and the fully relativistic cases were considered in the calculation.

    3. Results

    3.1. Structural characterization

    Figure 1(a) demonstrates the powder XRD pattern of ZrIr2. The pattern can be well refined with a C15-type Laves phase structure (MgCu2-type, space group), indicating the formation of the target phase. The unindexed weak peaks in Fig. 1(a) arise from a small amount (9.8 wt.%) ofα-ZrIr impurity. The Rietveld refinement yields cell parametersa=b=c=7.3596(1) ?A, in good agreement with previous reports.[11]Details of the refinement results are summarized in Table 1. The cell parameters from DFT relaxations are also listed. The experimental value ofaagrees very well with the theoretical ones. When the SOC effects are taken into account,the discrepancy between experiment(7.3596 ?A)and theory(7.3614 ?A)is less than 0.03%.

    Table 1. Crystallographic parameters of ZrIr2 from Rietveld refinement of XRD.

    Fig.1. (a)Room-temperature powder XRD pattern of ZrIr2 and its Rietveld refinements. The conventional unit cell is shown as the inset. (b)Calculated valence charge density (bound between 0 and 0.2e/, where e is the electronic charge and a0 is the Bohr radius) on the (111) plane. The kagome lattice of Ir atoms is emphasized. (c) Calculated valence charge density on the(110)plane,in which the low-density region around Zr atoms is visible.

    The conventional unit cell of ZrIr2is shown as the inset of Fig. 1(a). The cell is constructed with Zr atoms filling the cavities of the Ir network. Notice the Ir atoms form a kagome lattice, which is clearly shown in the charge density map in Fig.1(b). We also note that the Zr–Ir bonds are partially ionic,as the calculated charge density shows “empty” regions surrounding the Zr atoms, as shown in Fig.1(c). These findings are similar with the cases in isostructural compounds such as SrIr2or SrRh2.[23]

    3.2. Superconducting properties

    Figure 2(a) shows the temperature dependence of resistivity (ρ) of ZrIr2from 1.8 K to 300 K. Metallic behavior can be inferred from the monotonous decrease ofρto lower temperature, yet the residual resistivity ratio (RRR) is relatively low compared with SrIr2[22,23]or ThIr2.[24]Under zero magnetic field,a sharp superconducting transition is observed below 4.0 K () andρbecomes zero at 3.8 K ().These values are consistent with previous reportedTc(4.1 K)of ZrIr2.[11,27]The transition width is about 0.2 K.In order to estimate the upper critical field (μ0Hc2(T)),ρ(T) was measured under various magnetic fields,as seen in Fig.2(b). The superconducting transition is gradually suppressed with the increase of magnetic field. We thus obtain theμ0Hc2(T) plot,which is shown in the inset of Fig.2(a). In the inset,Tcis defined as the midpoint of superconducting transition.μ0Hc2(0)is determined to be 4.78 T by a Ginzburg–Landau (G–L) fit:μ0Hc2(T)=μ0Hc2(0)[1-(T/Tc)2]/[1+(T/Tc)2].

    Fig.2. (a) Temperature dependence of resistivity (ρ) of ZrIr2 in zero magnetic field. Inset shows the temperature dependence of upper critical field(μ0Hc2(T)). (b)The superconducting transition region on ρ(T)under various magnetic fields up to 3.5 T.

    Zero-field-cooled(ZFC) and field-cooled(FC) DC magnetic susceptibility(4πχ)of ZrIr2from 7.0 K to 1.8 K,measured under 10 Oe magnetic field,is demonstrated in Fig.3(a).The strong diamagnetic signal below 3.8 K indicates the occurrence of superconductivity. The transition temperature is consistent with the one from theρ(T) measurement. The superconducting shielding fraction from the ZFC curves is~103%,confirming the bulk nature of superconductivity. The shielding fraction is larger than 100% because of the experimental errors of the sample dimensions. In addition, the existence of strong magnetic flux pinning effects is revealed by the much lower FC signals. The isothermal magnetization curves (M(H)) at various temperatures from 1.8 K to 3.6 K are shown in Fig.3(b). The fields at which the curves deviate 2.5%from the initial Meissner states are defined as the lower critical fields(μ0Hc1). As a result,the inset of Fig.3(a)shows the temperature dependence ofμ0Hc1,which can be well fitted with the G–L formula:μ0Hc1(T)=μ0Hc1(0)[1-(T/Tc)2],yieldingμ0Hc1(0)=12.8 mT.

    Fig.3. (a) Temperature-dependent DC magnetic susceptibility of ZrIr2 under 10 Oe. Inset shows the evolution of lower critical field μ0Hc1(T).(b)Isothermal magnetization at various temperatures below Tc.

    We are able to determine a series of superconducting parameters starting from the values ofHc1(0) andHc2(0). The G–L coherence length (ξGL) is determined to be 8.30 nm byμ0Hc2(0)=Φ0/(),whereΦ0is the magnetic flux quantum. From the relation[37]

    the penetration depth (λGL) and the G–L parameter (κGL=λGL/ξGL)are estimated to be 220.4 nm and 26.6,respectively.κGLis much larger than 1/, suggesting type-II superconductivity. The thermodynamic field (μ0Hc(0)) is thus estimated to be 0.14 T by(0)lnκGL=Hc1(0)Hc2(0). These superconducting parameters are summarized in Table 2.

    We also measured the specific heat of ZrIr2to examine the superconducting nature. Figure 4(a) shows the temperature dependence of specific heat(Cp)for ZrIr2within the temperature range of 1.8 K–7.0 K at magnetic fields of zero and 5 T.Notice theCpdata have been corrected by subtracting the contribution ofα-ZrIr impurity. The subtraction procedure is similar with that in our previous study.[32]Under zero magnetic field, there was an obvious anomaly onCp(T)at 3.8 K,validating the bulk nature of superconductivity. The anomaly could be completely suppressed when a field of 5 T was applied. The normal-stateCp(T) measured under 5 T can be well fitted with a Debye modelCp(T)/T=γ+βT2+δT4,in whichγis the Sommerfeld coefficient,while the other two terms stand for the phononic contributions. The fittedγandβvalues are 8.68 mJ·mol-1·K-2and 0.909 mJ·mol-1·K-4, respectively. And the fitting curve is shown in Fig. 4(a) as the black dash line. Debye temperature(ΘD)is thus calculated to be 186 K by

    in whichNis the number of atoms per formula unit(f.u.),andRis the ideal gas constant. The value ofΘDis comparable with that of SrIr2(180 K).[22]

    We can further estimate the electron–phonon coupling constantλepusing the McMillan relation[38]

    whereμ*is the Coulomb screening parameter (set to 0.13 in our case).λep= 0.68 is thus obtained, indicating that ZrIr2hosts a weak to moderate coupling strength. Moreover,the DOS at Fermi level(EF)is estimated usingN(EF)=3γ/[(1+λep)] based onγandλep, yieldingN(EF) =2.20 eV-1·f.u.-1.

    By subtracting the phononic contributions fromCp, the electronic contributionCeis obtained and shown in Fig.4(b).The normalizedCejump(ΔCe/γTc)is determined to be 1.86.This value is larger than the BCS weak-coupling ratio(1.43),suggesting enhanced electron–phonon coupling in ZrIr2.Ceat the superconducting state can be well fitted with the so-calledα-model,[39]whereCe=T?S/?T, and the entropySis expressed as

    f= 1/[1 +exp(], in whichΔ(T) =Δ0tanh(1.82[1.018(Tc/T-1)]0.51). These results mean that ZrIr2is possibly an s-wave superconductor with an isotropic gap,and the gap value at zero temperature(Δ0)is fitted to be 0.62 meV.Δ0/kBTcis thus estimated to be 1.92,again validating strong-coupling superconductivity.

    Fig.4. (a)Specific heat(Cp)for ZrIr2 within the temperature range of 1.8 K–7.0 K under zero and 5 T magnetic field. The black dash line is the fit with Debye model.(b)The electronic contribution of Cp below 6 K.The solid line shows the fit with α-model.

    3.3. First-principles calculations

    Figure 5(a)shows the electronic band structures of ZrIr2nearEFfrom first-principles calculations,in which the results without SOC are plotted as the dash lines, and the SOC results in solid lines. There are three bands crossingEFboth in the absence and presence of SOC,which is consistent with the metallic nature of ZrIr2from resistivity measurement. Notice the inclusion of SOC dramatically changes the band dispersion nearEF. In particular,band splits are obvious(~0.2 eV)at certaink-points, as emphasized by the green circles in Fig.5(a).

    The influences of SOC are also reflected in the DOS plots,as shown in Figs.5(b)and 5(c). In both cases(with and without SOC),the DOS nearEFare dominated by Ir-5d and Zr-4d orbitals. The strong hybridization between the two orbitals is indicated by the similar shapes of their corresponding contributions. The theoretical value ofN(EF) is 2.94 eV-1·f.u.-1with SOC. This value is slightly larger than the experimental one, which means that the actualEFis probably lower than calculated. This can be caused by a possible existence of Hf atoms and/or Zr vacancies on the Zr sites.

    The three sheets of calculated Fermi surfaces(with SOC)are illustrated in Fig. 5(d). Notice each sheet hosts a Krammers degeneracy. Compared to the isostructural superconductors SrIr2[23]or ThIr2,[24]the Fermi surface topology in ZrIr2is unexpectedly simple, although they all share threedimensional features. To be specific, ZrIr2hosts only one polyhedron-shaped hole-like pocket surrounding theΓpoint,plus one capsule-shaped electron-like pocket surrounding theXpoint.

    Fig.5. (a)Calculated electronic band structure of ZrIr2 without and with SOC near the Fermi level. The corresponding DOS plots are shown in(b)and(c),respectively. (d)The high symmetry points in Brillouin zone,and the calculated sheets of Fermi surfaces(with SOC).

    4. Discussion

    Now we move on to make a comparison between ZrIr2and C15-type superconductorsAIr2(A=Ca, Sr, Ba, Th). As shown in Table 2,N(EF)for ZrIr2is much lower than the other four members(except for CaIr2). However,Tcof ZrIr2is comparable with the others’. It is even higher than that of BaIr2despite the much lowerN(EF) (orγ). Interestingly, we notice thatΘDis positively correlated withTc. AsΘDreflects the phonon dispersion,these results suggest that phonon spectrum, rather thanN(EF), plays an important role in determination of the electron–phonon coupling strength. The modification of phonon spectrum(henceTc)is realized by changing the guest atomAin the kagome lattice ofAIr2. Indeed, the low-frequency vibrations of the Ir network (kagome lattice),modified by the insertion of Sr,have also been suggested to be the reason for strong electron–phonon coupling in SrIr2.[23]In this respect,future studies on phonon dispersion and electron–phonon interactions in ZrIr2are needed. Given that the Fermi surfaces of ZrIr2are quite different(and much simpler)compared withAIr2(A=Sr or Th),[23,24]it will possibly provide new thoughts for understanding the superconductivity in Irbased C15-type superconductors.

    Table 2. Superconducting and thermodynamic parameters of ZrIr2. Reference values for AIr2 (A=Ca,Sr,Ba,Th)are also listed for comparison.

    5. Conclusion

    In summary, we have systematically investigated superconductivity in the C15-type Laves phase superconductor ZrIr2. Bulk superconductivity withTcof 4.0 K is confirmed.Our measurements indicate that ZrIr2is a type-II s-wave superconductor with upper and lower critical fields of 4.78 T and 12.8 mT, respectively. In addition, strong electron–phonon coupling is revealed by the large values ofΔCe/γTc(1.86)andΔ0/kBTc(1.92). First-principles calculations indicate that the SOC effects are prominent,while the Fermi surface topologies are simple. ZrIr2is a stable compound under ambient conditions, with health and environmental friendly Zr. Therefore,it serves as a suitable platform,both experimentally and theoretically,to study the interplay between superconductivity and strong SOC in Ir-based C15-type superconductors.

    Acknowledgments

    Project supported by the National Key Research and Development of China (Grant Nos. 2018YFA0704200 and 2021YFA1401800), the National Natural Science Foundation of China (Grant Nos. 12074414 and 11774402), and the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB25000000).

    猜你喜歡
    亞?wèn)|治安
    汪孟鄒與亞?wèn)|圖書館
    文史春秋(2022年4期)2022-06-16 07:12:50
    Me & Miss Bee
    貫徹落實(shí)新安法 全力推動(dòng)依法治安
    推進(jìn)掃黑除惡 優(yōu)化治安環(huán)境
    公民與法治(2020年5期)2020-05-30 12:33:50
    GLOBAL NONEXISTENCE FOR A VISCOELASTIC WAVE EQUATION WITH ACOUSTIC BOUNDARY CONDITIONS?
    做好企業(yè)治安保衛(wèi)工作的認(rèn)識(shí)與實(shí)踐
    活力(2019年17期)2019-11-26 00:42:08
    BLOW-UP PHENOMENA FOR A CLASS OF GENERALIZED DOUBLE DISPERSION EQUATIONS?
    基于知識(shí)管理的建設(shè)企業(yè)治安管理模式
    點(diǎn)擊反證法
    2015年高考數(shù)學(xué)模擬試題(一)
    插逼视频在线观看| 考比视频在线观看| 91精品三级在线观看| 人成视频在线观看免费观看| 亚洲国产av新网站| 免费观看无遮挡的男女| 在线亚洲精品国产二区图片欧美 | 一区在线观看完整版| 一本色道久久久久久精品综合| 久久久精品94久久精品| 少妇 在线观看| 国产色婷婷99| 在线看a的网站| 69精品国产乱码久久久| 亚洲,一卡二卡三卡| 99热6这里只有精品| 久久狼人影院| 久久久久久久久久久久大奶| 男女高潮啪啪啪动态图| 99热6这里只有精品| 99久久精品一区二区三区| 永久网站在线| xxx大片免费视频| 午夜老司机福利剧场| 九九爱精品视频在线观看| 国产探花极品一区二区| 成人黄色视频免费在线看| 97在线视频观看| 色婷婷久久久亚洲欧美| 久久婷婷青草| 亚洲精品日韩在线中文字幕| 国产精品女同一区二区软件| 免费看av在线观看网站| 免费大片黄手机在线观看| 国产极品天堂在线| 国产片内射在线| 亚洲国产精品成人久久小说| 青春草视频在线免费观看| 寂寞人妻少妇视频99o| 日韩大片免费观看网站| 国产片特级美女逼逼视频| 老女人水多毛片| 久久国产精品大桥未久av| 亚洲国产av影院在线观看| 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 欧美日韩综合久久久久久| 亚洲欧洲国产日韩| 亚洲精品国产av成人精品| 涩涩av久久男人的天堂| 三级国产精品欧美在线观看| 黑人猛操日本美女一级片| 久久久久网色| videos熟女内射| 考比视频在线观看| 亚洲国产精品999| 成人免费观看视频高清| 国产有黄有色有爽视频| 日韩,欧美,国产一区二区三区| 国产免费现黄频在线看| 街头女战士在线观看网站| 亚洲欧洲日产国产| 免费大片18禁| 熟女人妻精品中文字幕| 一个人免费看片子| 一级爰片在线观看| 免费看光身美女| a级毛片在线看网站| 91午夜精品亚洲一区二区三区| 亚洲国产av新网站| 七月丁香在线播放| 国产亚洲欧美精品永久| 中国国产av一级| 久久97久久精品| 精品久久久精品久久久| 日本欧美国产在线视频| a级毛色黄片| 丝瓜视频免费看黄片| tube8黄色片| 亚洲人成网站在线观看播放| 成人亚洲精品一区在线观看| 亚洲精品日韩在线中文字幕| 在线观看国产h片| a级毛色黄片| 久久久久久久久久成人| 日韩制服骚丝袜av| 国产精品久久久久久精品电影小说| 精品一区二区三卡| 日韩av不卡免费在线播放| 久久久精品94久久精品| 日韩一区二区三区影片| 亚洲,欧美,日韩| av免费观看日本| 少妇猛男粗大的猛烈进出视频| 亚洲图色成人| 亚洲av欧美aⅴ国产| 黑人猛操日本美女一级片| 少妇熟女欧美另类| 女人久久www免费人成看片| 少妇人妻久久综合中文| 九色亚洲精品在线播放| 国产在线视频一区二区| 18禁裸乳无遮挡动漫免费视频| 2021少妇久久久久久久久久久| 国产成人精品一,二区| 三级国产精品欧美在线观看| 综合色丁香网| 久久久a久久爽久久v久久| 欧美日韩一区二区视频在线观看视频在线| 黑人猛操日本美女一级片| 国产亚洲精品久久久com| 国产精品国产三级国产专区5o| kizo精华| 人体艺术视频欧美日本| 亚洲国产欧美在线一区| 青春草国产在线视频| 亚洲久久久国产精品| 国产国语露脸激情在线看| 久久99热6这里只有精品| 极品少妇高潮喷水抽搐| 婷婷色麻豆天堂久久| 丰满迷人的少妇在线观看| 999精品在线视频| 看十八女毛片水多多多| 国产国拍精品亚洲av在线观看| 水蜜桃什么品种好| 国产成人精品福利久久| 亚洲国产欧美在线一区| 91精品国产九色| 性高湖久久久久久久久免费观看| 久久久久久久久大av| av不卡在线播放| 亚洲丝袜综合中文字幕| 亚洲精品日韩av片在线观看| 亚洲欧美清纯卡通| 在线播放无遮挡| 日韩伦理黄色片| 国模一区二区三区四区视频| 日本欧美视频一区| 国产极品天堂在线| 日韩免费高清中文字幕av| 免费人成在线观看视频色| 亚洲精品乱码久久久久久按摩| 欧美性感艳星| 少妇精品久久久久久久| 国产精品偷伦视频观看了| 卡戴珊不雅视频在线播放| 新久久久久国产一级毛片| 亚洲av日韩在线播放| 一级毛片电影观看| 亚洲少妇的诱惑av| 欧美亚洲 丝袜 人妻 在线| 中文字幕av电影在线播放| 精品亚洲成a人片在线观看| 久久久久久久久久久久大奶| 99久久综合免费| 午夜影院在线不卡| 亚洲精品久久久久久婷婷小说| 一区二区三区四区激情视频| 久热久热在线精品观看| kizo精华| 国产黄片视频在线免费观看| 能在线免费看毛片的网站| 曰老女人黄片| 高清在线视频一区二区三区| 亚洲国产日韩一区二区| 久久99精品国语久久久| 日韩av免费高清视频| 亚洲综合精品二区| 亚洲精品乱码久久久v下载方式| 欧美人与善性xxx| 婷婷色麻豆天堂久久| 欧美国产精品一级二级三级| 简卡轻食公司| 亚洲av成人精品一区久久| 99精国产麻豆久久婷婷| 亚洲怡红院男人天堂| 国产免费视频播放在线视频| 最近的中文字幕免费完整| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品国产av蜜桃| av.在线天堂| 日韩强制内射视频| 亚洲图色成人| 成人手机av| 99久久综合免费| 久热这里只有精品99| 国产一区二区三区av在线| 成人无遮挡网站| 99久久精品一区二区三区| av福利片在线| 午夜激情福利司机影院| 全区人妻精品视频| 成人影院久久| 一级爰片在线观看| 又大又黄又爽视频免费| 97精品久久久久久久久久精品| 看免费成人av毛片| 一级a做视频免费观看| 久久久久久久大尺度免费视频| 免费观看在线日韩| 91精品伊人久久大香线蕉| 久久这里有精品视频免费| 少妇被粗大猛烈的视频| 狂野欧美激情性bbbbbb| 99视频精品全部免费 在线| 成人影院久久| 男女无遮挡免费网站观看| 亚洲熟女精品中文字幕| 精品人妻熟女av久视频| 欧美日韩综合久久久久久| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品亚洲一区二区| 一本久久精品| 人妻制服诱惑在线中文字幕| 制服人妻中文乱码| 久久精品熟女亚洲av麻豆精品| 国产精品偷伦视频观看了| 99热国产这里只有精品6| a级毛片免费高清观看在线播放| 在线亚洲精品国产二区图片欧美 | 亚洲成人一二三区av| 亚洲欧美精品自产自拍| 色视频在线一区二区三区| 国产色爽女视频免费观看| 国产精品偷伦视频观看了| 免费观看的影片在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人精品在线电影| 日韩成人av中文字幕在线观看| 亚洲第一av免费看| 极品人妻少妇av视频| a级毛色黄片| 夜夜看夜夜爽夜夜摸| 欧美性感艳星| 成人午夜精彩视频在线观看| 亚洲国产欧美在线一区| 中文字幕人妻熟人妻熟丝袜美| 国产精品国产三级专区第一集| 一区二区三区免费毛片| 在线精品无人区一区二区三| 多毛熟女@视频| 十八禁高潮呻吟视频| 一区二区av电影网| 日韩中文字幕视频在线看片| 亚洲美女搞黄在线观看| 超色免费av| 夜夜骑夜夜射夜夜干| 欧美激情国产日韩精品一区| 一级毛片 在线播放| 亚洲精品第二区| 国产高清不卡午夜福利| 亚洲色图综合在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产亚洲av片在线观看秒播厂| 国产av一区二区精品久久| 国产在线视频一区二区| 日韩不卡一区二区三区视频在线| 91精品国产国语对白视频| 在线亚洲精品国产二区图片欧美 | 一级片'在线观看视频| 欧美精品亚洲一区二区| 久久国产精品男人的天堂亚洲 | 久久精品国产亚洲av涩爱| 成人手机av| 久久国产亚洲av麻豆专区| 欧美成人午夜免费资源| 国产精品久久久久久久电影| 国产精品人妻久久久影院| 简卡轻食公司| 色5月婷婷丁香| 日韩伦理黄色片| 亚洲国产最新在线播放| 国产色爽女视频免费观看| 久久热精品热| 久久久久人妻精品一区果冻| 国产精品久久久久久久久免| 亚洲经典国产精华液单| 免费不卡的大黄色大毛片视频在线观看| 国产精品一区www在线观看| 在线播放无遮挡| 亚洲国产av影院在线观看| 国产精品熟女久久久久浪| 成年人午夜在线观看视频| 晚上一个人看的免费电影| 久久女婷五月综合色啪小说| 99久久中文字幕三级久久日本| 国产日韩欧美视频二区| 伊人久久国产一区二区| 亚洲av二区三区四区| 成人国产麻豆网| 简卡轻食公司| 人人妻人人爽人人添夜夜欢视频| 亚洲精品自拍成人| 青青草视频在线视频观看| 特大巨黑吊av在线直播| 少妇熟女欧美另类| av有码第一页| 99热国产这里只有精品6| 亚洲四区av| 精品人妻一区二区三区麻豆| 高清午夜精品一区二区三区| 欧美日韩精品成人综合77777| 最近最新中文字幕免费大全7| 亚洲高清免费不卡视频| 精品亚洲乱码少妇综合久久| 精品人妻偷拍中文字幕| 91久久精品国产一区二区三区| 飞空精品影院首页| 熟女电影av网| 伦理电影免费视频| 狠狠精品人妻久久久久久综合| 制服丝袜香蕉在线| 免费久久久久久久精品成人欧美视频 | 亚洲人与动物交配视频| 久久鲁丝午夜福利片| 日韩大片免费观看网站| 亚洲国产色片| 美女中出高潮动态图| 99热国产这里只有精品6| 热re99久久精品国产66热6| 久久久久久久久久久久大奶| 九色亚洲精品在线播放| 亚洲精品乱码久久久久久按摩| 男人爽女人下面视频在线观看| 老司机影院毛片| 国产av国产精品国产| 97超碰精品成人国产| 一边亲一边摸免费视频| 国产色婷婷99| 国产男女内射视频| 精品久久久噜噜| 久久久久久伊人网av| 中文字幕亚洲精品专区| 国产熟女午夜一区二区三区 | 草草在线视频免费看| 亚洲av综合色区一区| 久久久亚洲精品成人影院| 一本一本综合久久| 国产有黄有色有爽视频| 国产成人a∨麻豆精品| 91精品一卡2卡3卡4卡| 国产精品欧美亚洲77777| 国产无遮挡羞羞视频在线观看| 免费高清在线观看日韩| 亚洲av福利一区| 久久久久久久大尺度免费视频| 亚洲成人av在线免费| 精品久久蜜臀av无| 欧美 日韩 精品 国产| 中文字幕人妻丝袜制服| 91久久精品国产一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 国产极品天堂在线| 一级毛片我不卡| 久久久精品免费免费高清| 99热国产这里只有精品6| 欧美日韩av久久| 亚洲经典国产精华液单| 97在线视频观看| av黄色大香蕉| 国产黄色免费在线视频| 精品少妇内射三级| 考比视频在线观看| 亚洲国产av影院在线观看| 国产视频内射| 久久99一区二区三区| 国产精品女同一区二区软件| 国产爽快片一区二区三区| 日韩一本色道免费dvd| 国产免费视频播放在线视频| 99国产精品免费福利视频| 成人影院久久| 亚洲在久久综合| 日本爱情动作片www.在线观看| 一个人看视频在线观看www免费| 天美传媒精品一区二区| 国产在线视频一区二区| 嫩草影院入口| 肉色欧美久久久久久久蜜桃| 曰老女人黄片| 这个男人来自地球电影免费观看 | 26uuu在线亚洲综合色| 熟妇人妻不卡中文字幕| 久久久久久伊人网av| 久久久国产欧美日韩av| 一边亲一边摸免费视频| 97超碰精品成人国产| 美女xxoo啪啪120秒动态图| 91精品一卡2卡3卡4卡| 99九九线精品视频在线观看视频| 免费看光身美女| 国产av国产精品国产| av有码第一页| 婷婷色综合www| 国产成人精品久久久久久| 成年人午夜在线观看视频| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 看非洲黑人一级黄片| 久久久久久久国产电影| 亚洲国产精品专区欧美| 黄色欧美视频在线观看| 国产亚洲最大av| 国产伦理片在线播放av一区| xxxhd国产人妻xxx| 国产白丝娇喘喷水9色精品| 美女内射精品一级片tv| 制服丝袜香蕉在线| 亚洲精品第二区| 在线观看免费日韩欧美大片 | 久久久久久伊人网av| 又黄又爽又刺激的免费视频.| 国产成人免费观看mmmm| 免费人成在线观看视频色| 欧美少妇被猛烈插入视频| 另类亚洲欧美激情| 久久青草综合色| 色94色欧美一区二区| av电影中文网址| 日本-黄色视频高清免费观看| 一本一本综合久久| 这个男人来自地球电影免费观看 | av免费在线看不卡| 中文字幕久久专区| 亚洲欧洲精品一区二区精品久久久 | 你懂的网址亚洲精品在线观看| 美女cb高潮喷水在线观看| 永久免费av网站大全| 人妻人人澡人人爽人人| 久久久精品免费免费高清| 不卡视频在线观看欧美| 777米奇影视久久| 超碰97精品在线观看| 夜夜看夜夜爽夜夜摸| videossex国产| 中国美白少妇内射xxxbb| 亚洲精品色激情综合| 免费黄网站久久成人精品| 日韩一本色道免费dvd| 国产精品嫩草影院av在线观看| 亚洲av二区三区四区| 91在线精品国自产拍蜜月| 亚洲三级黄色毛片| 80岁老熟妇乱子伦牲交| 日本wwww免费看| 国产日韩欧美在线精品| 中文字幕最新亚洲高清| 五月开心婷婷网| 亚洲欧美清纯卡通| 久久热精品热| 飞空精品影院首页| 日韩大片免费观看网站| 赤兔流量卡办理| 日本av手机在线免费观看| 伦理电影大哥的女人| 久久午夜福利片| 人妻夜夜爽99麻豆av| 少妇人妻精品综合一区二区| 男人操女人黄网站| 国产乱人偷精品视频| 色吧在线观看| 人妻 亚洲 视频| 日韩成人av中文字幕在线观看| 波野结衣二区三区在线| 亚洲第一区二区三区不卡| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕| 欧美日韩亚洲高清精品| 爱豆传媒免费全集在线观看| 午夜免费男女啪啪视频观看| 91精品国产国语对白视频| 99国产综合亚洲精品| 曰老女人黄片| 日本av免费视频播放| 伊人久久国产一区二区| 欧美国产精品一级二级三级| 免费大片黄手机在线观看| 最近手机中文字幕大全| 亚洲精品视频女| 国产欧美日韩一区二区三区在线 | 成人二区视频| 日本vs欧美在线观看视频| 国产色婷婷99| 校园人妻丝袜中文字幕| 夜夜看夜夜爽夜夜摸| 午夜激情福利司机影院| 亚洲欧洲国产日韩| 久久精品熟女亚洲av麻豆精品| 国产成人av激情在线播放 | 久久综合国产亚洲精品| 大香蕉久久网| 老司机亚洲免费影院| 91国产中文字幕| av黄色大香蕉| 狂野欧美激情性xxxx在线观看| 女人久久www免费人成看片| 国产精品嫩草影院av在线观看| 国产精品偷伦视频观看了| 亚洲精品一区蜜桃| 夫妻午夜视频| 成人免费观看视频高清| 午夜激情av网站| 国产一区二区在线观看日韩| 精品一区二区三卡| 久久99热这里只频精品6学生| 高清午夜精品一区二区三区| 建设人人有责人人尽责人人享有的| 九九久久精品国产亚洲av麻豆| 亚洲精品久久成人aⅴ小说 | 国产精品不卡视频一区二区| 欧美日韩国产mv在线观看视频| 91午夜精品亚洲一区二区三区| 国产精品蜜桃在线观看| 啦啦啦在线观看免费高清www| 99国产精品免费福利视频| 亚洲精品国产av成人精品| 日产精品乱码卡一卡2卡三| 亚洲av在线观看美女高潮| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av涩爱| av电影中文网址| 亚洲精品亚洲一区二区| 国产精品久久久久久精品古装| 亚洲怡红院男人天堂| 在线观看免费视频网站a站| 亚洲欧美日韩卡通动漫| 男的添女的下面高潮视频| 亚洲国产成人一精品久久久| 日本猛色少妇xxxxx猛交久久| 伊人久久精品亚洲午夜| 在现免费观看毛片| 最黄视频免费看| 成年女人在线观看亚洲视频| 中文字幕av电影在线播放| 在线看a的网站| 亚洲国产欧美日韩在线播放| 久久久国产一区二区| 岛国毛片在线播放| 欧美精品亚洲一区二区| 日韩精品有码人妻一区| 久久这里有精品视频免费| 亚洲国产精品一区三区| 日本黄色日本黄色录像| 精品一区二区三区视频在线| 国产极品粉嫩免费观看在线 | 亚洲国产av影院在线观看| 另类亚洲欧美激情| 美女内射精品一级片tv| 免费高清在线观看视频在线观看| 在线观看人妻少妇| 天美传媒精品一区二区| 国产成人精品无人区| 在线亚洲精品国产二区图片欧美 | 免费大片黄手机在线观看| 久久久久精品性色| 久久精品久久久久久噜噜老黄| 精品人妻在线不人妻| 精品卡一卡二卡四卡免费| 亚洲精品视频女| av在线app专区| 黄片播放在线免费| 国产免费一级a男人的天堂| 午夜精品国产一区二区电影| 国产精品免费大片| 欧美最新免费一区二区三区| a级毛色黄片| 亚洲精品色激情综合| 日本黄色日本黄色录像| 黄色视频在线播放观看不卡| 成人国产麻豆网| 18+在线观看网站| 美女cb高潮喷水在线观看| 亚洲天堂av无毛| h视频一区二区三区| 91精品伊人久久大香线蕉| 亚洲精品久久久久久婷婷小说| 精品人妻一区二区三区麻豆| 视频中文字幕在线观看| 欧美精品一区二区大全| 伊人久久国产一区二区| 综合色丁香网| 欧美精品人与动牲交sv欧美| 纯流量卡能插随身wifi吗| 十分钟在线观看高清视频www| 精品一区二区三卡| 啦啦啦视频在线资源免费观看| 伊人亚洲综合成人网| 晚上一个人看的免费电影| 色吧在线观看| 午夜免费男女啪啪视频观看| 国语对白做爰xxxⅹ性视频网站| 国产 一区精品| 日韩精品免费视频一区二区三区 | 51国产日韩欧美| 美女国产视频在线观看| 亚洲成人av在线免费| 热re99久久精品国产66热6| 2018国产大陆天天弄谢| 久久久久久久久久人人人人人人| 亚洲成人一二三区av| 男女边吃奶边做爰视频| 国产白丝娇喘喷水9色精品| 麻豆乱淫一区二区| 桃花免费在线播放| 麻豆成人av视频| 熟女人妻精品中文字幕| 色婷婷av一区二区三区视频| 熟女av电影| 久久久久精品性色| 七月丁香在线播放| 国产欧美亚洲国产| 国产乱来视频区| 亚洲国产欧美在线一区| 波野结衣二区三区在线|