• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model

    2022-08-01 06:00:58YanWeiDai代艷偉ShengHaoLi李生好andXiHaoChen陳西浩
    Chinese Physics B 2022年7期
    關(guān)鍵詞:李生

    Yan-Wei Dai(代艷偉), Sheng-Hao Li(李生好), and Xi-Hao Chen(陳西浩)

    1Centre for Modern Physics and Department of Physics,Chongqing University,Chongqing 400044,China

    2Chongqing Vocational Institute of Engineering,Chongqing 402260,China

    3Research Institute for New Materials and Technology,Chongqing University of Arts and Sciences,Chongqing 400000,China

    Keywords: quantum phase transitions,universal order parameter,fidelity

    1. Introduction

    Quantum phase transitions (QPTs)[1]occur at absolute zero temperature due to the Heisenberg uncertainty relation and are driven by quantum fluctuations. The core of the QPT consists of the Hamiltonian and its energy spectrum, which have been well studied through the development of various numerical methods. In particular,tensor network algorithm[2–12]is a very powerful tool to study the strongly correlated quantum lattice systems. To date, most QPTs can be described based on the spontaneous-symmetry-breaking order of the Landau–Ginzburg–Wilson paradigm. However, this local order parameter is model dependent and hard to be defined. In addition,not all phases can be described by symmetry-broken order, such phases correspond to QPTs beyond the Landau–Ginzburg–Wilson paradigm.[13–16]

    Recently, for one-dimensional systems of infinite size,Liuet al.[17]presented a universal order-parameter concept based on the fidelity between a ground state and its symmetrytransformed counterpart. The advantage of the universal order parameter over local order parameters is the former’s universality in characterizing QPTs in quantum lattice many-body systems, in the sense that the universal order parameter is not model dependent,in contrast with model-dependent order parameters. Reference [18] extends the universal order parameter from one-dimensional systems of infinite size to onedimensional finite-size systems. Herein we further extend the use of the universal order parameter to two-dimensional quantum systems. To test the pertinence of the universal order parameter to describe two-dimension lattice symmetry, we also calculate the ground-state fidelity per lattice site and quantum coherence.

    Quantum fidelity is a basic notion in quantum information science and is an approach to study QPTs in strongly correlated many-body systems.[19–28]As a measure of distance between two quantum states,quantum fidelity provides a measure of the similarity between two quantum states. When a system undergoes a QPT, the ground-state fidelity dramatically changes upon passing through the critical point in phase space, with the “pinch point” being the signature of the phase transition. In addition, the quantification of quantum coherence[29]has also revealed intriguing connections between correlation and quantum coherence.[30–32]A variety of quantum coherence measures have been introduced to detect QPTs, such as the quantum Jensen–Shannon divergence,[33]the relative entropy of coherence,[29]and thel1norm of coherence.[29]

    The present work investigates 2-, 3-, and 4-state quantum Potts models on a square lattice and the quantum Ising model on a honeycomb lattice by using the infinite projected entangled-pair state algorithm[3,4,7]in two dimensions. Here,we employ a simplified scheme to update the ground-state wave function. The infinite time-evolving block decimation(iTEBD) method[2]will be used to calculate iPEPS groundstate wave function withχbeing the bond dimension. In order to calculate the observable physical quantity, the corner transfer matrix renormalization method[34]is implemented to contracted vironmental tensor withMbeing the environment dimension. The remainder of this paper is organized as follows. In Section 2,the two-dimensionalq-state quantum Potts mode is introduced. Section 3 discusses the universal order parameter for 2-, 3-, and 4-state quantum Potts models on a square lattice and the quantum Ising model on a honeycomb lattice, and explains how the universal order parameter provides a model-independent way to characterize QPTs in manybody systems.Section 4 discusses the ground-state fidelity per lattice site,and Section 5 shows how quantum coherence measures can serve to detect QPTs. Finally,a summary is given in Section 6.

    2. The q-state quantum Potts model in two dimensions

    We now consider theq-state quantum Potts model[27,35]in a transverse magnetic field in two dimensions. Theqstate is described by the Hamiltonian

    3. Universal order parameter

    Reference [17] explains the concept of a universal order parameter. For any translation-invariant quantum lattice system of the symmetry groupG, if the system undergoes a QPT with symmetry order, the universal order parameter can be used to characterize the QPT. The ground-state fidelityF(ψ,gψ)between a ground state|ψ〉and its symmetrytransformed counterpartg|ψ〉, whereg ∈Gis any symmetry operation, can be written asF(ψ,gψ)=|〈ψ|g|ψ〉|. The ground-state fidelity asymptotically scales as [fg(λ)]L,[20–26]withLbeing the system size. As detailed in Refs.[17,18,28],the universal order is

    Given a control parameterλin the symmetry phase, thenIg(λ)=0. For a control parameterλin the symmetry-broken phase,the universal order parameterIg(λ)ranges from zero to unity. Note thatIg(λ)satisfies features of the order parameter.In fact, to characterize a quantum lattice many-body system with global symmetry groupGspontaneously broken,the universal order parameter is model independent.

    Fig. 1. The universal order parameter I(λ) for (a) the quantum Ising model, (b) the quantum three-state Potts model, and (c) the quantum four-state Potts model in a transverse magnetic field λ on the square lattice for different bond dimension χ.

    Figures 1(a)–1(c) show the universal order parameterI(λ)as a function of transverse magnetic fieldλfor the quantum Ising model,the three-state quantum Potts model,and the four-state quantum Potts model,respectively,with a transverse magnetic field imposed on a square lattice and for various bond dimensionsχ. The results show that the universal order parameterI(λ) is nonzero in theZqsymmetry-broken phase but zero in the symmetry phase. The variations in the universal order parameterI(λ) indicate that the many-body system undergoes a QPT when the control parameterλcrosses the phase-transition point. The pseudo critical points are as follows:

    (a)λc=3.273,3.222,3.213 and 3.212 with the bond dimensionχ= 2,4,6,8 and the environment dimensionM=12,16,20,22 for the quantum Ising model, respectively. Indeed, the pseudo critical points obtained by using the simplified updating scheme for the quantum transverse Ising model on the square lattice compares rather poorly with the resultλc= 3.044330(6) from the most accurate quantum Monte Carlo;[43]

    (b)λc=2.62,2.616 and 2.616 with the bond dimensionχ= 3,6,9 and the environment dimensionM= 16,20,22 for the three-state quantum Potts model, respectively. The estimateλc= 2.616 is consistent with the known estimateλc~2.58;[44]

    (c)λc=2.43,2.428 and 2.428 with the bond dimensionχ=4,6,8 and the environment dimensionM=16,20,22 for the four-state quantum Potts model,respectively.

    These results are consistent with those of Ref.[27].

    Figure 2 plots the universal order parameterI(λ) as a function ofλfor the quantum Ising model on a honeycomb lattice. The pseudo critical pointλcoccurs atλc=2.216,2.206 and 2.20 for the bond dimensionsχ=4,6,9 and the environment dimensionM=16, 20, 22, respectively. The quantum Ising model on a honeycomb lattice has been much less studied. A high-precision Monte Carlo estimate gives a critical point ofλc=2.13250(4).[45]

    These results indicate that pseudo critical points in twodimensional systems can be located by using the universal order parameterI(λ). In addition,the universal order parameterI(λ)is continuous for the Ising model,while the universal order parameterI(λ)is abrupt forq=3 andq=4. The continuous(discontinuous)behavior of the universal order parameterI(λ)indicates that Ising model on the square(honeycomb)lattice undergoes a continuous phase transition andq=3 andq=4 state Potts undergo a discontinuous phase transition on the square lattice.

    Fig.2. The universal order parameter I(λ)as a function of λ for quantum Ising model on the honeycomb lattice.

    4. Ground-state fidelity per lattice site

    Fidelity is a measure of the“similarity” of two quantum states. The ground-state fidelityF(λ1,λ2)=|〈ψ(λ2)|ψ(λ1)〉|asymptotically scales asF(λ1,λ2)~d(λ1,λ2)Lwithλ1andλ2being two values of the control parameterλ,whereL=Lx×Lyis the size of the two-dimensional lattice for the two given ground states|ψ(λ1)〉and|ψ(λ2)〉. Here,d(λ1,λ2) is the ground-state fidelity per lattice site, characterizing how fast the fidelity tends to zero in the thermodynamic limit,[20–26]defined as

    The ground-state fidelity per lattice site,d(λ1,λ2), satisfies the inherited properties of (i) range [0≤d(λ1,λ2)≤1], (ii)normalization[d(λ,λ)=1], and(iii)symmetry[d(λ1,λ2)=d(λ2,λ1)]. With the tensor network representation, the ground-state fidelity per lattice site,d(λ1,λ2), is the largest eigenvalue of the transfer matrix.[26]

    Fig.3. The ground state fidelity surface defined by the ground state fidelity per site, d(λ1,λ2), as a function of the transverse magnetic field λ1 and λ2 for(a)the quantum Ising model,(b)the quantum three-state Potts model,and(c)the quantum four-state Potts model on the square lattice. The pseudo critical point λc occurs as a pinch point on the ground state fidelity surface.

    Figures 3(a)–3(c)plot the ground-state fidelity per lattice site,d(λ1,λ2),as a function of the control parametersλ1andλ2for the quantum Ising model,the three-state quantum Potts model, and the four-state quantum Potts model, respectively,with a transverse magnetic field applied to the square lattice.A pinch point corresponding to the QPT point appears on the ground-state fidelity surface. The pinch point is located atλc=3.273 for the quantum Ising model with the bond dimensionχ=2 and the environment dimensionM=12[Fig.3(a)],λc=2.616 for the three-state quantum Potts model with the bond dimensionχ=6 and the environment dimensionM=16[Fig. 3(b)], andλc= 2.43 for the four-state quantum Potts model with the bond dimensionχ=4 and the environment dimensionM=16[Fig.3(c)].

    Figure 4 plots the ground-state fidelity per lattice site,d(λ1,λ2), as a function of the control parametersλ1andλ2for the quantum Ising model on a honeycomb lattice. With the square lattice, a pinch point appears on the ground-state fidelity surface. Note that the pinch point is at the intersection of two singular lines that characterize the phase-transition points. The pseudo critical point is located atλc=2.216 for the quantum Ising model with the bond dimensionχ=4 and the environment dimensionM=16 on the honeycomb lattice.Thus,the phase-transition pointsλcobtained from the fidelity per lattice site are consistent with the results from the universal order parameter. In addition,the results constitute another example of the connection between(i)pseudo critical points for a quantum many-body system undergoing a QPT[19–21]and(ii) pinch points on a fidelity surface. The fidelity per lattice site can distinguish continuous(discontinuous)quantum phase transition according to the continuous(discontinuous)behavior of fidelity near the critical point. From the surface of the fidelity per lattice site,we can also see thatq ≥3 Potts model undergoes a discontinuous phase transition on the square lattice. Ising model undergoes a continuous phase transition on the square lattice and honeycomb lattice,respectively.

    Fig.4. The ground state fidelity surface defined by the ground state fidelity per site,d(λ1,λ2),as a function of the transverse magnetic field λ1 and λ2 for the quantum Ising model on the honeycomb lattice.

    5. Quantum coherence measures

    This section discusses the connection between various quantum coherence measures and a quantum many-body system undergoing a QPT. We consider three coherence measures: the quantum Jensen–Shannon divergence, the relative entropy of coherence,and thel1norm of coherence.The quantum Jensen–Shannon divergence[33]is

    whereρis the density matrix,andρdiagcontains the diagonal elements of the density matrixρ.

    The relative entropy of coherence[29]is

    Fig. 5. Quantum coherence measures C as a function of the transverse magnetic field λ for (a) the quantum Ising model with χ = 6 and M =20, (b) the quantum three-state Potts model with χ =9 and M =22, and (c) the quantum four-state Potts model with χ =8 and M=22 on the square lattice.

    Thel1norm of coherence[29]is

    whereρnmdenotes the off-diagonal elements of the density matrixρ. Finally,Sis the entanglement entropy and is defined asS=-Trρlog2ρ.

    Figures 5(a)–5(c) plot the three coherence measures as a function ofλfor the quantum Ising model, the three-state quantum Potts model,and the four-state quantum Potts model,respectively, on a square lattice. The pseudo critical point is located atλc=3.213 withχ=6 andM=20 [Fig. 5(a)],λc=2.616 withχ=9 andM=22[Fig.5(b)],andλc=2.428 withχ=8 andM=22 [Fig. 5(c)]. The result is consistent with the results for the universal order parameter and for the ground-state fidelity per lattice site. Figure 6 also plots the three coherence measures as a function ofλfor the quantum Ising model on a honeycomb lattice. The pseudo critical point is atλc=2.20 with the bond dimensionχ=9 and the environment dimensionM=22, which is consistent with the results from the universal order parameter and the ground-state fidelity per lattice site. These results show that quantum coherence measure detects the QPT in a two-dimensional lattice system. In addition, quantum coherence can also distinguish continuous and discontinuous phase transitions.

    Fig.6. Three quantum coherence measures C as a function of the transverse magnetic field λ for the quantum Ising model on the honeycomb lattice,with χ =9 and M=22.

    6. Summary

    We investigate herein the QPTs for 2-, 3-, and 4-state quantum Potts models on a square lattice and for the Ising model on a honeycomb lattice by using the infinite projected entangled-pair state algorithm with the simplified updating scheme. We extend the universal order parameter to a twodimensional system. The universal order parameter, groundstate fidelity per lattice site, and a variety of quantum coherence measures are used to characterize QPTs. The universal order parameter can be used to explore QPTs with symmetrybroken order for any translation-invariant quantum lattice system of the symmetry groupG. Although the universal order parameter is zero in a symmetric phase, it ranges from zero to unity in symmetry-broken phase. When the control parameter crosses the critical point, the universal order parameter changes, which implies that the system undergoes a QPT at the phase-transition point.We also discuss the groundstate fidelity per lattice site and identify the pinch point near the critical point on the fidelity surface, which corresponds to the QPT point. Finally, we discuss three quantum coherence measures: the quantum Jensen–Shannon divergence,the relative entropy of coherence, and thel1norm of coherence.These measures have singularities at the critical point, which identifies the QPTs. By using the universal order parameter,the ground-state fidelity per lattice site and the quantum coherence measures provide consistent positions for the phasetransition point. From the universal order parameter, the surface of the fidelity per lattice site and the quantum coherence measures,Our results show that Ising model undergoes a continuous phase transition on the square lattice and honeycomb lattice,respectively. And 3,4-state Potts model undergo a discontinuous phase transition on the square lattice. We expect the universal order parameter,ground-state fidelity per lattice site, and quantum coherence measures to provide further insights into critical phenomena in strongly correlated manybody quantum lattice systems of any dimensionality.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 11805285), Natural Science Foundation of Chongqing of China (Grant No. cstc2020jcyjmsxmX0034),and the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN 201900703).

    猜你喜歡
    李生
    失蹤記
    滇池(2022年12期)2022-11-28 02:26:07
    李生其人
    蠟筆小新
    寶藏(2022年11期)2022-03-07 08:57:54
    神鳥
    寶藏(2022年11期)2022-03-07 08:57:54
    鳳舞九天
    寶藏(2022年11期)2022-03-07 08:57:54
    險(xiǎn)峰奇雄
    寶藏(2022年11期)2022-03-07 08:57:54
    阿拉伯人
    寶藏(2022年11期)2022-03-07 08:57:54
    小數(shù)的初步認(rèn)識(shí)
    天涯
    等周問題中的直觀感知與理性思考
    在线免费十八禁| 男女下面进入的视频免费午夜| 美女xxoo啪啪120秒动态图| 国产伦在线观看视频一区| 久久久国产成人精品二区| 超碰av人人做人人爽久久| 26uuu在线亚洲综合色| 欧美日本亚洲视频在线播放| 欧美潮喷喷水| 成人鲁丝片一二三区免费| 亚洲国产精品成人综合色| 亚洲精品乱久久久久久| 91午夜精品亚洲一区二区三区| 国产成人freesex在线| videossex国产| 精品免费久久久久久久清纯| 国内揄拍国产精品人妻在线| 一级黄色大片毛片| 99久久成人亚洲精品观看| 成人无遮挡网站| 色综合站精品国产| 日韩中字成人| 中文亚洲av片在线观看爽| 小蜜桃在线观看免费完整版高清| 免费看日本二区| 插阴视频在线观看视频| 亚洲国产欧美人成| 少妇被粗大猛烈的视频| 亚洲中文字幕日韩| 成人午夜精彩视频在线观看| 免费看av在线观看网站| 一边摸一边抽搐一进一小说| 国产高清视频在线观看网站| 国产精品无大码| 深夜a级毛片| 亚洲精品日韩av片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区免费观看| 亚洲精品久久久久久婷婷小说 | 欧美成人免费av一区二区三区| 午夜激情福利司机影院| 欧美一区二区国产精品久久精品| 国产精品久久久久久精品电影| 国产精品国产三级专区第一集| 日韩欧美 国产精品| 22中文网久久字幕| 纵有疾风起免费观看全集完整版 | 久久婷婷人人爽人人干人人爱| 国产成人freesex在线| 成人亚洲精品av一区二区| 91久久精品国产一区二区成人| 欧美日韩在线观看h| kizo精华| 国产精品永久免费网站| 毛片一级片免费看久久久久| 天堂√8在线中文| 只有这里有精品99| 最近中文字幕2019免费版| 高清毛片免费看| 韩国av在线不卡| 亚洲人与动物交配视频| 欧美丝袜亚洲另类| 日本午夜av视频| 亚洲人成网站在线观看播放| 国产精品国产三级国产专区5o | 国产淫语在线视频| a级毛色黄片| 一边摸一边抽搐一进一小说| 国产精品日韩av在线免费观看| 日韩人妻高清精品专区| 一级黄色大片毛片| 亚洲色图av天堂| 久久久久国产网址| 免费观看精品视频网站| 国产亚洲一区二区精品| 人妻少妇偷人精品九色| 亚洲五月天丁香| 村上凉子中文字幕在线| 一级黄色大片毛片| 男女那种视频在线观看| 国产日韩欧美在线精品| 99热精品在线国产| 亚洲成av人片在线播放无| 欧美激情国产日韩精品一区| 人妻制服诱惑在线中文字幕| 久久久a久久爽久久v久久| 能在线免费观看的黄片| 两个人视频免费观看高清| 免费不卡的大黄色大毛片视频在线观看 | 亚洲av中文av极速乱| 亚洲天堂国产精品一区在线| 国产人妻一区二区三区在| 久久6这里有精品| 国产av不卡久久| 婷婷色综合大香蕉| 美女脱内裤让男人舔精品视频| 久久久国产成人精品二区| 一区二区三区乱码不卡18| 又粗又硬又长又爽又黄的视频| 成年版毛片免费区| 日韩 亚洲 欧美在线| 观看美女的网站| 亚洲精品乱久久久久久| 亚洲欧美日韩无卡精品| 纵有疾风起免费观看全集完整版 | 国产高潮美女av| 欧美最新免费一区二区三区| 三级男女做爰猛烈吃奶摸视频| 真实男女啪啪啪动态图| 国产麻豆成人av免费视频| 亚洲va在线va天堂va国产| 精品免费久久久久久久清纯| 一级二级三级毛片免费看| 国产精品日韩av在线免费观看| 国产亚洲最大av| 亚洲欧洲日产国产| 观看美女的网站| 国国产精品蜜臀av免费| 久久精品国产自在天天线| 婷婷色麻豆天堂久久 | 国产精品久久久久久av不卡| 18禁在线播放成人免费| 国产一区二区在线av高清观看| av免费在线看不卡| 免费观看a级毛片全部| 国产高潮美女av| 色噜噜av男人的天堂激情| 村上凉子中文字幕在线| 国产精品日韩av在线免费观看| 亚洲四区av| 老司机影院成人| 嫩草影院入口| 亚洲国产精品成人综合色| 亚洲av一区综合| av在线天堂中文字幕| 亚洲最大成人av| 五月玫瑰六月丁香| 激情 狠狠 欧美| 国产成人a∨麻豆精品| 国产一区二区在线av高清观看| av免费在线看不卡| 亚洲av电影在线观看一区二区三区 | 久久精品人妻少妇| 国产高潮美女av| 中文字幕av成人在线电影| 2022亚洲国产成人精品| 国产成人精品久久久久久| 久久热精品热| 日韩人妻高清精品专区| 欧美激情久久久久久爽电影| 高清在线视频一区二区三区 | 黄色欧美视频在线观看| 丝袜喷水一区| 最近最新中文字幕大全电影3| 国产av一区在线观看免费| 午夜久久久久精精品| 国产91av在线免费观看| 亚洲美女搞黄在线观看| 国产精品永久免费网站| 日韩欧美国产在线观看| 国产高清三级在线| 99热这里只有是精品50| 高清视频免费观看一区二区 | 国内精品一区二区在线观看| 国内精品美女久久久久久| 成人毛片60女人毛片免费| 亚洲中文字幕一区二区三区有码在线看| 又粗又爽又猛毛片免费看| 又粗又爽又猛毛片免费看| 欧美日本亚洲视频在线播放| 黄片wwwwww| 热99在线观看视频| 狂野欧美激情性xxxx在线观看| 嫩草影院入口| 岛国在线免费视频观看| av在线天堂中文字幕| 我要搜黄色片| 嫩草影院新地址| 亚洲综合精品二区| 变态另类丝袜制服| 久久精品夜夜夜夜夜久久蜜豆| 久久精品久久久久久噜噜老黄 | 乱系列少妇在线播放| 热99re8久久精品国产| 桃色一区二区三区在线观看| 欧美成人免费av一区二区三区| 在线免费十八禁| 亚洲精品影视一区二区三区av| 能在线免费看毛片的网站| 亚洲欧美清纯卡通| 嫩草影院入口| 男女国产视频网站| 久久久久精品久久久久真实原创| 26uuu在线亚洲综合色| 日本wwww免费看| 菩萨蛮人人尽说江南好唐韦庄 | 最近视频中文字幕2019在线8| 一夜夜www| 亚洲五月天丁香| 能在线免费观看的黄片| 久久精品国产鲁丝片午夜精品| 国产激情偷乱视频一区二区| 精品国内亚洲2022精品成人| 黑人高潮一二区| 爱豆传媒免费全集在线观看| 亚洲国产欧美在线一区| 日日干狠狠操夜夜爽| 99国产精品一区二区蜜桃av| 乱系列少妇在线播放| 秋霞在线观看毛片| 免费看av在线观看网站| 特大巨黑吊av在线直播| av黄色大香蕉| 校园人妻丝袜中文字幕| 国产黄片视频在线免费观看| 少妇猛男粗大的猛烈进出视频 | 久久久a久久爽久久v久久| 国产成人一区二区在线| 大话2 男鬼变身卡| 日韩人妻高清精品专区| 成人国产麻豆网| 噜噜噜噜噜久久久久久91| 男人的好看免费观看在线视频| 人妻系列 视频| 久久久久久久国产电影| 精品人妻一区二区三区麻豆| 黄色欧美视频在线观看| 免费人成在线观看视频色| 三级国产精品欧美在线观看| 黑人高潮一二区| 99在线视频只有这里精品首页| 欧美潮喷喷水| 国产av码专区亚洲av| 精品熟女少妇av免费看| 午夜日本视频在线| 精品人妻视频免费看| 菩萨蛮人人尽说江南好唐韦庄 | av在线播放精品| 午夜老司机福利剧场| 日韩 亚洲 欧美在线| 99久国产av精品| 观看免费一级毛片| 国产精品人妻久久久久久| 黄色一级大片看看| 国产免费福利视频在线观看| av在线观看视频网站免费| 国产伦精品一区二区三区视频9| 国产精品福利在线免费观看| 久久这里只有精品中国| 嫩草影院精品99| 男人和女人高潮做爰伦理| 老女人水多毛片| 两个人的视频大全免费| 亚洲国产欧美在线一区| 久久久国产成人免费| 国产日韩欧美在线精品| 午夜免费男女啪啪视频观看| 黄色一级大片看看| 亚洲中文字幕一区二区三区有码在线看| 久久欧美精品欧美久久欧美| 久久精品久久久久久噜噜老黄 | 成年av动漫网址| 日韩一区二区视频免费看| 国产白丝娇喘喷水9色精品| 男女啪啪激烈高潮av片| 精品久久久久久久久亚洲| 精品久久国产蜜桃| 日本一二三区视频观看| 色视频www国产| 成人午夜精彩视频在线观看| 中文天堂在线官网| 欧美性猛交黑人性爽| 能在线免费观看的黄片| 精品国内亚洲2022精品成人| 亚洲色图av天堂| 日韩av不卡免费在线播放| 国产成人福利小说| 日本欧美国产在线视频| 国产单亲对白刺激| 亚洲三级黄色毛片| 麻豆久久精品国产亚洲av| av又黄又爽大尺度在线免费看 | 国产成人免费观看mmmm| 免费看美女性在线毛片视频| 桃色一区二区三区在线观看| 99久久人妻综合| 天堂网av新在线| 日韩,欧美,国产一区二区三区 | 成人午夜高清在线视频| 中文乱码字字幕精品一区二区三区 | 色综合亚洲欧美另类图片| 久久久精品94久久精品| av国产久精品久网站免费入址| 国产黄色视频一区二区在线观看 | 中文欧美无线码| 国产高清视频在线观看网站| 久久6这里有精品| 亚洲欧美一区二区三区国产| 直男gayav资源| 欧美日韩国产亚洲二区| 一区二区三区高清视频在线| 亚洲欧洲国产日韩| 欧美性猛交╳xxx乱大交人| 在现免费观看毛片| 中文字幕人妻熟人妻熟丝袜美| 色5月婷婷丁香| 国产女主播在线喷水免费视频网站 | 免费一级毛片在线播放高清视频| 久久久久久九九精品二区国产| 色噜噜av男人的天堂激情| 噜噜噜噜噜久久久久久91| 2021少妇久久久久久久久久久| 99热这里只有精品一区| 欧美人与善性xxx| 久久欧美精品欧美久久欧美| 一边亲一边摸免费视频| 亚洲国产最新在线播放| 久久精品国产99精品国产亚洲性色| 国产又色又爽无遮挡免| 成人毛片60女人毛片免费| 欧美日本视频| 午夜福利网站1000一区二区三区| 亚洲怡红院男人天堂| 一夜夜www| 午夜福利成人在线免费观看| 久久鲁丝午夜福利片| 国产 一区精品| 一个人免费在线观看电影| 极品教师在线视频| 成人欧美大片| 欧美一区二区精品小视频在线| 欧美精品国产亚洲| 午夜精品在线福利| 天堂影院成人在线观看| 亚洲性久久影院| 男女啪啪激烈高潮av片| 国产亚洲91精品色在线| 一区二区三区乱码不卡18| 亚洲人成网站在线播| 麻豆成人av视频| 久久欧美精品欧美久久欧美| 高清av免费在线| 毛片女人毛片| 最近最新中文字幕大全电影3| 三级经典国产精品| 亚洲成人中文字幕在线播放| 噜噜噜噜噜久久久久久91| 在线免费十八禁| 男女那种视频在线观看| 国产老妇女一区| 成人国产麻豆网| 亚洲av熟女| 午夜福利成人在线免费观看| 高清视频免费观看一区二区 | 伊人久久精品亚洲午夜| 在线观看一区二区三区| 丝袜美腿在线中文| 亚洲av熟女| 亚洲欧美中文字幕日韩二区| 国产亚洲av片在线观看秒播厂 | 噜噜噜噜噜久久久久久91| 成人漫画全彩无遮挡| 国产精品久久久久久精品电影小说 | 久久久精品94久久精品| 亚洲va在线va天堂va国产| 日韩欧美国产在线观看| 人体艺术视频欧美日本| 精品一区二区免费观看| 国语对白做爰xxxⅹ性视频网站| 国产综合懂色| 在线天堂最新版资源| 国产黄a三级三级三级人| 女的被弄到高潮叫床怎么办| 黄色一级大片看看| 中文精品一卡2卡3卡4更新| 麻豆成人午夜福利视频| 一个人看的www免费观看视频| 国产午夜福利久久久久久| 国产国拍精品亚洲av在线观看| 日本黄色片子视频| 看十八女毛片水多多多| 精品午夜福利在线看| 一本一本综合久久| 午夜久久久久精精品| 国产精品综合久久久久久久免费| 18禁在线播放成人免费| 亚洲精品456在线播放app| 久久精品国产亚洲av涩爱| 久久99精品国语久久久| 亚洲精品国产成人久久av| 免费黄色在线免费观看| 午夜免费男女啪啪视频观看| 最近手机中文字幕大全| 国产色爽女视频免费观看| 国产熟女欧美一区二区| 日日撸夜夜添| 国产精华一区二区三区| 成人美女网站在线观看视频| 亚洲欧美精品自产自拍| 亚洲熟妇中文字幕五十中出| 国产淫片久久久久久久久| 99热精品在线国产| 22中文网久久字幕| 国产亚洲最大av| 麻豆精品久久久久久蜜桃| 国产成人一区二区在线| av免费观看日本| 男女视频在线观看网站免费| 别揉我奶头 嗯啊视频| 日韩欧美 国产精品| 搡老妇女老女人老熟妇| 直男gayav资源| 91午夜精品亚洲一区二区三区| 岛国在线免费视频观看| 亚洲在线观看片| 亚洲真实伦在线观看| 六月丁香七月| 成人美女网站在线观看视频| 男的添女的下面高潮视频| 丰满乱子伦码专区| 久99久视频精品免费| 精品久久久久久久人妻蜜臀av| 午夜日本视频在线| 日韩成人av中文字幕在线观看| 亚洲欧美精品综合久久99| 国产伦在线观看视频一区| 久久精品91蜜桃| 亚洲欧洲日产国产| 免费在线观看成人毛片| 免费看日本二区| 黄色配什么色好看| 99热网站在线观看| 亚洲四区av| 久久久久久久久久成人| 精品久久久久久久久亚洲| 亚洲综合精品二区| 成人欧美大片| 日韩一本色道免费dvd| 久久久久久大精品| 建设人人有责人人尽责人人享有的 | 大香蕉久久网| 久久久久久伊人网av| av卡一久久| 级片在线观看| 欧美又色又爽又黄视频| 一个人免费在线观看电影| 国产高清三级在线| 亚洲乱码一区二区免费版| av国产久精品久网站免费入址| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品sss在线观看| 色播亚洲综合网| 成人欧美大片| 亚洲国产精品专区欧美| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜添av毛片| 黄片wwwwww| 精品一区二区三区视频在线| 九草在线视频观看| 村上凉子中文字幕在线| 精品久久国产蜜桃| 别揉我奶头 嗯啊视频| 亚洲精品,欧美精品| 免费观看的影片在线观看| www.av在线官网国产| 中文字幕熟女人妻在线| 国产色爽女视频免费观看| 国产一区二区三区av在线| 亚洲精品国产av成人精品| 秋霞伦理黄片| av国产免费在线观看| 久久国内精品自在自线图片| 日韩欧美在线乱码| 日韩人妻高清精品专区| 91在线精品国自产拍蜜月| 丝袜喷水一区| 久久久午夜欧美精品| 毛片一级片免费看久久久久| 秋霞伦理黄片| 亚洲欧美成人综合另类久久久 | 伦精品一区二区三区| 丰满人妻一区二区三区视频av| 三级国产精品片| 精品不卡国产一区二区三区| 18禁在线播放成人免费| 青春草视频在线免费观看| 七月丁香在线播放| 99久国产av精品| 日本五十路高清| 好男人在线观看高清免费视频| 国产熟女欧美一区二区| 女人十人毛片免费观看3o分钟| 小蜜桃在线观看免费完整版高清| 亚洲怡红院男人天堂| 18禁动态无遮挡网站| 国产亚洲5aaaaa淫片| 一级毛片我不卡| 欧美日韩国产亚洲二区| 国产高清视频在线观看网站| 亚洲av不卡在线观看| 黄色日韩在线| 狠狠狠狠99中文字幕| 欧美97在线视频| 国产精品一区二区性色av| 男人的好看免费观看在线视频| 亚洲经典国产精华液单| 午夜亚洲福利在线播放| 免费观看精品视频网站| 久久这里只有精品中国| 又爽又黄无遮挡网站| 国产三级中文精品| av国产久精品久网站免费入址| 看免费成人av毛片| 一夜夜www| 尾随美女入室| 日本wwww免费看| 亚洲av日韩在线播放| 亚洲国产欧美人成| 亚洲美女搞黄在线观看| 久久热精品热| 一个人免费在线观看电影| 亚洲精品乱码久久久v下载方式| 国产高潮美女av| 天美传媒精品一区二区| 久久人妻av系列| 只有这里有精品99| 看十八女毛片水多多多| 国产亚洲91精品色在线| 精品99又大又爽又粗少妇毛片| 一级黄色大片毛片| www.色视频.com| 午夜老司机福利剧场| 观看免费一级毛片| 我的老师免费观看完整版| 男女边吃奶边做爰视频| 久久人人爽人人片av| 国产精品99久久久久久久久| 亚洲成人中文字幕在线播放| 国产精品嫩草影院av在线观看| 久久久久国产网址| a级毛片免费高清观看在线播放| 国产亚洲av片在线观看秒播厂 | 国产片特级美女逼逼视频| 国产精品综合久久久久久久免费| 99久国产av精品国产电影| 插逼视频在线观看| 国模一区二区三区四区视频| 国产精品一区二区在线观看99 | 男女下面进入的视频免费午夜| 亚洲一区高清亚洲精品| 亚洲真实伦在线观看| 又爽又黄无遮挡网站| 国内揄拍国产精品人妻在线| 中文字幕精品亚洲无线码一区| 男女啪啪激烈高潮av片| 麻豆成人午夜福利视频| 22中文网久久字幕| 人妻少妇偷人精品九色| 男女啪啪激烈高潮av片| 成人av在线播放网站| 大话2 男鬼变身卡| 精品欧美国产一区二区三| 国产三级中文精品| 国产精品嫩草影院av在线观看| 欧美区成人在线视频| 亚洲四区av| 纵有疾风起免费观看全集完整版 | 亚洲国产精品专区欧美| 国产精品麻豆人妻色哟哟久久 | 热99在线观看视频| 久久久久九九精品影院| 插逼视频在线观看| 国产精品嫩草影院av在线观看| 大话2 男鬼变身卡| 国产精品久久久久久精品电影小说 | 麻豆精品久久久久久蜜桃| 日韩人妻高清精品专区| 国产老妇伦熟女老妇高清| 亚洲中文字幕日韩| 一级毛片我不卡| 国产高清不卡午夜福利| 91久久精品国产一区二区成人| 伊人久久精品亚洲午夜| 免费大片18禁| 日韩在线高清观看一区二区三区| 国产精品三级大全| 国产淫语在线视频| 欧美精品国产亚洲| 久久久精品大字幕| 亚州av有码| 国产一区有黄有色的免费视频 | 岛国毛片在线播放| 69人妻影院| 少妇熟女aⅴ在线视频| 69人妻影院| 成人高潮视频无遮挡免费网站| 一个人免费在线观看电影| 亚洲在久久综合| av在线播放精品| 免费一级毛片在线播放高清视频| 国产精品三级大全| 亚洲精华国产精华液的使用体验| 最近视频中文字幕2019在线8| 国产午夜精品论理片| 女人十人毛片免费观看3o分钟| 亚洲最大成人中文| 嫩草影院入口| 中文亚洲av片在线观看爽| 毛片女人毛片| 国产乱人视频| 啦啦啦啦在线视频资源| av免费观看日本| 高清在线视频一区二区三区 | 一个人免费在线观看电影| 白带黄色成豆腐渣|