• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data-driven modeling of a four-dimensional stochastic projectile system

    2022-08-01 06:00:54YongHuang黃勇andYangLi李揚
    Chinese Physics B 2022年7期
    關(guān)鍵詞:黃勇李揚

    Yong Huang(黃勇) and Yang Li(李揚)

    1School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    2School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China

    Keywords: data-driven modeling,machine learning,projectile systems,Kramers–Moyal formulas

    1. Introduction

    Motion of a projectile is generally influenced by all sorts of forces and fluctuations in practical case.Its dynamical modeling based on classical mechanics is therefore not always accurate enough, and the analysis of its dynamical behaviors is not very reliable consequently.Fortunately,there are more and more available observable, experimental or simulated data in the projectile system with the development of the scientific tools and simulation capabilities. Thus, how to discover the governing laws of the projectile from data is of much importance in engineering fields.

    Recently, many researchers have proposed various datadriven methods to extract the governing equations of complex nonlinear phenomena. For instance, the sparse identification of nonlinear dynamics method was devised to learn the deterministic ordinary[1,2]or partial[3–5]differential equations from time series data. Then,Boninsegnaet al.[6]extended this approach to extract stochastic dynamical systems with Gaussian noise via Kramers–Moyal formulas. Li and Duan[7,8]made further efforts to propose the non-local Kramers–Moyal formulas and developed a data-driven approach to find the stochastic differential equations with both (Gaussian) Brownian motion and (non-Gaussian) L′evy motion from sample path data. The theory of Koopman operator can also be used to discover the deterministic and stochastic differential equations from data.[9–11]There are also some data-driven methods based on neural networks to learn dynamical systems from sample paths.[12–15]Additionally, some researchers are devoted to developing techniques to extract the dynamical behaviors such as mean exit time[16,17]and most probable path.[18,19]

    Compared with the Koopman operator method,the neural network method and many other methods for system identification, the sparse learning based on the Kramers–Moyal formulas used in this study has the advantages that its computation speed is very fast and it is easy to program. Thus,in this paper we aim to apply the data-driven method based on the Kramers–Moyal formulas to the projectile systems. The article is arranged as follows. In Section 2, we describe the projectile systems and present its It?o stochastic differential equation. In Section 3,we introduce the Kramers–Moyal formulas and show the numerical method to learn the drift and diffusion terms for this system from simulated sample path data.Section 4 exhibits the comparison of the identification results and the real system. Finally, the conclusions are presented in Section 5.

    2. Projectile systems

    In order to generalize the data-driven method to the projectile systems, we simulate some sample path data based on the known model and identify the stochastic dynamical system from the data in this work. Formally, the angle motion equation of the projectile has the following form:[20]

    Fig.1. The model of the projectile system.

    Here,ξ,ηandζdenote the three axes of the projectile coordinate system,Oξindicates the direction of the projectile axis,Oηpoints upwards and is perpendicular toOξ,andOζis perpendicular to the planeOξηpointing right. The state variablesωηandωζrepresent rotational angular velocity corresponding toηandζaxes,respectively. The other two variablesδ1andδ2indicate the vertical and horizontal components of the attack angleδ, which is the angle between the projectile axis and its velocity. The model of the projectile system with the axes and parameters is visualized in Fig.1.The structure and aerodynamic parameters in the equation are listed in Tables 1 and 2,respectively.

    Table 1. Structure parameters.

    Table 2. Aerodynamic parameters.

    The variablevdenotes the velocity of the projectile during its flight in air, which can be easily influenced in general. In consideration of the random disturbances of air, the speed is assumed asv= ˉv+ξt,where ˉv=1012.3 m/s and the scalar stochastic processξtis a white Gaussian noise satisfying E[ξt]=0 and E[ξtξs]=2κδ(t-s). The noise intensity is chosen asκ=50 in the following computation.

    Note that there exist some nonlinear terms about noise in Eq. (1). After the expansion of these nonlinear terms and neglecting of the higher order terms, we reduce it as the following standard It?o stochastic differential equation:

    where the random vectorXt=[δ1,δ2,ωη,ωζ]T,the drift coefficient

    and the diffusion coefficienta=σσTwith the functionσ,

    3. Theory and method

    According to the Fokker–Planck equation corresponding to stochastic differential equation (2), the drift and diffusion coefficients dominate the probabilistic structure of the solution processXt.[21]Therefore, the discovery of the stochastic governing laws from sample path data completely depends on the identification of the drift and diffusion terms.

    The Kramers–Moyal formulas can be used to extract the underlying stochastic dynamical systems from data,which express the drift and diffusion coefficients in terms of the sample paths of the solution process.[6,22]For our systems,these equations can be formulated as

    wherebi(x)denotesi-th component of the drift vectorb(x)in Eq. (3), andaij(x) indicatesij-th component of the diffusion matrixa(x). Then the driftb(x)and diffusiona(x)can be estimated by approximately computing the limit expressions on the right-hand side in terms of sample path data ofXt.

    Assume that there exists a pair of data sets for the stochastic processXtcontainingMelements,respectively,

    where everyyiis the image point ofxiafter a small evolution timehfori=1,2,...,M. In other words,Eq.(2)is integrated by numerical integral methods such as the Runge–Kutta method from initial pointxito getyiin timeh. Note that the superscript in Eq. (5) denotes different component of vector or matrix and the subscript in Eq.(6)indicates different data.It is also necessary to choose a dictionary of basis functionsΨ(x)=[ψ1(x),ψ2(x),...,ψK(x)]to approximate the drift and diffusion terms. The results will be better if we seek as rich type of the basis functions as possible, while the amount of work is immense and polynomial basis functions are sufficiently accurate for most cases. Thus we select polynomial functions as the dictionary in this research.

    Assume that the system has ergodic property and every component of the drift coefficient is estimated asbi(x)=∑Kk=1cikψk(x),i=1,2,3,4. Moreover, the limit expressions on the left-hand side of Kramers–Moyal formulas can be approximated by finite differences. Above all,we can derive the following group of linear equations via Eqs.(5)and(6):

    The solution to Eq. (8) is generally very dense, which contains many non-dominant terms close to zero. For the sake of seeking the least coefficients without loss of reliability and avoiding overfitting,the sparse solution should be enforced by minimizing

    whereρindicates a positive Lagrange multiplier to control the degree of sparsity.

    We can use the iterating thresholding algorithm to realize the sparse learning method(9).[1,6,7]First, we can choose an appropriate pre-defined threshold parameterλas a sparsification knob. The magnitude ofλis usually chosen as about 0.1%–10%of the largest coefficient ofci. After Eq.(8)being performed to obtain a non-sparse solution, we set the coefficients smaller thanλas zero and delete the corresponding basis functions. Then the regression problem is carried out on the remaining coefficients. The procedure is iterated until no coefficients are found smaller thanλ.

    Table 3. The algorithm for identifying the drift and diffusion terms from sample path data.

    4. Results

    In the above section,we described the data-driven method to extract the stochastic dynamical systems from sample path data based on the Kramers–Moyal formulas.We now show the effectiveness of this technique applied on the projectile system introduced in Section 2.

    First, we chooseM=104initial points to construct the data setX, which are uniformly and randomly distributed in the region[-1,1]×[-1,1]×[-1,1]×[-1,1]. Given the time steph=0.0001, the image data setYis integrated via Euler scheme of the stochastic system(2). The dictionaryΨof basis functions is selected as the polynomial functions up to order 3,which contains 35 terms since the system is four-dimensional.Based on these preliminaries, we can compute the matrixAand vectorsBi,Bi jin Eqs.(7)and(10).

    Via the least square method and sparse learning, all the components of the drift and diffusion coefficients are evaluated as the linear combination of the polynomial basis functions. Since the system is four-dimensional, it is impossible to show these functions intuitively in the figures. Thus we portray them as two-dimensional surfaces by fixing two state variables.

    The learned and true functions of four components of the drift coefficient are shown in Figs.2–5,respectively. In every figure, the top panels denote the learned results and the bottom panels correspond to the true functions.The four columns of the figures indicate the cases with(i)ωη=0.5,ωζ=0.5;(ii)ωη=-0.5,ωζ=-0.5; (iii)δ1= 0.5,δ2= 0.5; (iv)δ1=-0.5,δ2=-0.5, respectively. It is seen that the estimation results agree well with the true functions of the drift terms. The third and fourth components have a small error but still within an acceptable range. This error stems from the fact that the magnitude of the two components is much larger than the first two. A coordinate transformation can lead to more accurate results.

    As mentioned above, there are 10 elements of the diffusion matrix that need to be identified from data due to the symmetry. For the sake of simplification,we just present the diagonal elementsa11,a22,a33anda44for the case ofωη=0.5,ωζ=-0.5 in Fig. 6. The results show that the accuracy of the approximation of the diffusion term is not as good as the one for the drift coefficient, while it can still capture the dynamical structures. It seems that the errors fora11anda22are relatively larger. This is because the magnitude of them is too small to be sufficiently accurate. Above all,the identification of the stochastic dynamical system is consistent enough with the real model.

    Fig.2. Comparison between learned and true function of the first component of the drift coefficient: (a)and(e)ωη =0.5,ωζ =0.5;(b)and(f)ωη =-0.5,ωζ =-0.5;(c)and(g)δ1=0.5,δ2=0.5;(d)and(h)δ1=-0.5,δ2=-0.5.

    Fig.3. Comparison between learned and true function of the second component of the drift coefficient: (a)and(e)ωη =0.5,ωζ =0.5;(b)and(f)ωη =-0.5,ωζ =-0.5;(c)and(g)δ1=0.5,δ2=0.5;(d)and(h)δ1=-0.5,δ2=-0.5.

    Fig.4. Comparison between learned and true function of the third component of the drift coefficient: (a)and(e)ωη =0.5,ωζ =0.5;(b)and(f)ωη =-0.5,ωζ =-0.5;(c)and(g)δ1=0.5,δ2=0.5;(d)and(h)δ1=-0.5,δ2=-0.5.

    Fig.5. Comparison between learned and true function of the fourth component of the drift coefficient: (a)and(e)ωη =0.5,ωζ =0.5;(b)and(f)ωη =-0.5,ωζ =-0.5;(c)and(g)δ1=0.5,δ2=0.5;(d)and(h)δ1=-0.5,δ2=-0.5.

    Fig.6. Comparison between learned and true function of the diagonal elements a11,a22,a33 and a44 of the diffusion matrix for ωη =0.5,ωζ =-0.5.

    5. Conclusion

    In summary, we have employed a data-driven method based on the Kramers–Moyal formulas to extract the stochastic model for the four-dimensional projectile systems from simulated sample path data. Specifically,the projectile system is assumed as an It?o stochastic differential equation. Then the least square method and sparse learning are applied to compute the drift coefficient and diffusion matrix, which are sufficiently accurate to the true functions. The effective approximation of the learned model to the real one implies that the data-driven method can be well applied to the projectile systems. Therefore, given the measurable time-series data, we can establish the governing equations for the projectile in the engineering field. This fact demonstrates that it has many applications in practical problems. For example, the learned model of the projectile can be used to analyze its dynamical responses so that we can improve the performances of the projectile by adjusting its shape and structure.

    Acknowledgement

    This research was supported by the Six Talent Peaks Project in Jiangsu Province,China(Grant No.JXQC-002).

    Data availability statement

    The data that support the findings of this study are openly available in GitHub.

    猜你喜歡
    黃勇李揚
    Data encryption based on a 9D complex chaotic system with quaternion for smart grid
    李揚縝治療外傷致危急重癥驗案1則
    喜糖禮盒包裝設(shè)計
    墨菲定律
    金山(2020年6期)2020-07-09 06:18:58
    Effect of heat treatment on microstructure and properties of single crystal copper cold-welded joints
    China Welding(2019年2期)2019-10-22 07:13:10
    Structural evolution in deformation-induced rejuvenation in metallic glasses:A cavity perspective?
    Effects of rotational speeds on the performance of a centrifugal pump with a variable-pitch inducer *
    函數(shù)乘積極值性質(zhì)的一個反例
    殺人心理記
    送信
    女同久久另类99精品国产91| 美女大奶头视频| 亚洲成人精品中文字幕电影| 欧美在线黄色| 国产真人三级小视频在线观看| 日韩欧美三级三区| 国产精品一区二区三区四区久久 | 国产精品一区二区精品视频观看| 亚洲成人免费电影在线观看| 好男人电影高清在线观看| 欧美av亚洲av综合av国产av| 一区二区日韩欧美中文字幕| 亚洲熟妇中文字幕五十中出| 国产精品精品国产色婷婷| 色精品久久人妻99蜜桃| 国产麻豆成人av免费视频| 婷婷丁香在线五月| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文日韩欧美视频| 亚洲午夜精品一区,二区,三区| 身体一侧抽搐| 天天躁狠狠躁夜夜躁狠狠躁| 在线免费观看的www视频| 91成年电影在线观看| 男女下面插进去视频免费观看| 制服诱惑二区| 中出人妻视频一区二区| 最新美女视频免费是黄的| 韩国av一区二区三区四区| 国产精品1区2区在线观看.| 嫩草影视91久久| 亚洲国产精品sss在线观看| 少妇被粗大的猛进出69影院| 一个人免费在线观看的高清视频| 最近最新免费中文字幕在线| 99精品久久久久人妻精品| 久久草成人影院| 免费在线观看日本一区| 久久久久国产精品人妻aⅴ院| 日本黄色视频三级网站网址| 精品人妻1区二区| 他把我摸到了高潮在线观看| 90打野战视频偷拍视频| 18美女黄网站色大片免费观看| 很黄的视频免费| 国产av一区在线观看免费| 欧美不卡视频在线免费观看 | 日韩一卡2卡3卡4卡2021年| 日韩欧美在线二视频| 精品高清国产在线一区| 侵犯人妻中文字幕一二三四区| 涩涩av久久男人的天堂| 深夜精品福利| 18禁美女被吸乳视频| 久9热在线精品视频| 成人国语在线视频| 制服人妻中文乱码| 国产亚洲精品综合一区在线观看 | 精品欧美一区二区三区在线| 精品国内亚洲2022精品成人| 成人国产综合亚洲| 伊人久久大香线蕉亚洲五| 两个人免费观看高清视频| 极品教师在线免费播放| 欧美色视频一区免费| 亚洲精品国产一区二区精华液| 中文字幕av电影在线播放| 亚洲专区国产一区二区| 村上凉子中文字幕在线| 国产精品二区激情视频| 色播亚洲综合网| 亚洲成a人片在线一区二区| 国产成人啪精品午夜网站| 热re99久久国产66热| 中文亚洲av片在线观看爽| 亚洲国产精品sss在线观看| 久久精品影院6| 色播亚洲综合网| 99久久精品国产亚洲精品| 久久影院123| 中文字幕精品免费在线观看视频| 国产成人欧美| 国产精品香港三级国产av潘金莲| 久久精品人人爽人人爽视色| 99riav亚洲国产免费| 久久草成人影院| 热re99久久国产66热| 黑人巨大精品欧美一区二区mp4| 亚洲精品一区av在线观看| 天堂动漫精品| 一级片免费观看大全| 老司机午夜十八禁免费视频| 亚洲欧美日韩高清在线视频| 老熟妇乱子伦视频在线观看| 18禁观看日本| 亚洲男人天堂网一区| 亚洲欧美一区二区三区黑人| 在线观看日韩欧美| 日本在线视频免费播放| 精品久久久精品久久久| 日韩免费av在线播放| 亚洲,欧美精品.| 亚洲av第一区精品v没综合| 热99re8久久精品国产| 我的亚洲天堂| 国产精品98久久久久久宅男小说| 91成人精品电影| 国产精品一区二区三区四区久久 | 亚洲av电影在线进入| 日韩大码丰满熟妇| 亚洲国产中文字幕在线视频| 国产亚洲精品一区二区www| 999精品在线视频| 男女做爰动态图高潮gif福利片 | 美女扒开内裤让男人捅视频| 脱女人内裤的视频| 一边摸一边做爽爽视频免费| 欧美在线黄色| 亚洲av日韩精品久久久久久密| 日韩高清综合在线| 亚洲欧美精品综合久久99| 精品卡一卡二卡四卡免费| 国产99白浆流出| 丰满的人妻完整版| 亚洲aⅴ乱码一区二区在线播放 | 天堂√8在线中文| 又大又爽又粗| 免费久久久久久久精品成人欧美视频| 欧美乱码精品一区二区三区| 久久人人97超碰香蕉20202| 国产成年人精品一区二区| 这个男人来自地球电影免费观看| 在线av久久热| 日日夜夜操网爽| 中文亚洲av片在线观看爽| 久久狼人影院| 国内毛片毛片毛片毛片毛片| 日本撒尿小便嘘嘘汇集6| 91精品国产国语对白视频| 欧美一区二区精品小视频在线| 人人妻人人爽人人添夜夜欢视频| 在线观看午夜福利视频| 老司机福利观看| 一本大道久久a久久精品| 国产精品综合久久久久久久免费 | 欧美日韩一级在线毛片| 黄片播放在线免费| 亚洲人成网站在线播放欧美日韩| 国产一区在线观看成人免费| 99国产综合亚洲精品| 99在线视频只有这里精品首页| 99久久综合精品五月天人人| 黑人操中国人逼视频| 久久久久久免费高清国产稀缺| 欧美黄色片欧美黄色片| 一边摸一边抽搐一进一小说| 一卡2卡三卡四卡精品乱码亚洲| 女性被躁到高潮视频| 97人妻精品一区二区三区麻豆 | 男人舔女人下体高潮全视频| 日韩视频一区二区在线观看| 国产国语露脸激情在线看| 看免费av毛片| 999久久久精品免费观看国产| 天堂动漫精品| 一本久久中文字幕| 国产精品久久电影中文字幕| 国产成+人综合+亚洲专区| 国产av在哪里看| 露出奶头的视频| 免费在线观看亚洲国产| 一级毛片精品| 丝袜在线中文字幕| 国产精品二区激情视频| 香蕉国产在线看| 亚洲在线自拍视频| 亚洲电影在线观看av| 欧美老熟妇乱子伦牲交| 这个男人来自地球电影免费观看| 成人18禁在线播放| 亚洲欧美日韩另类电影网站| 婷婷六月久久综合丁香| 一级,二级,三级黄色视频| 久久久久精品国产欧美久久久| 又黄又爽又免费观看的视频| 美女大奶头视频| 大型av网站在线播放| 成熟少妇高潮喷水视频| 亚洲一区中文字幕在线| 亚洲国产精品999在线| 黑丝袜美女国产一区| 操美女的视频在线观看| 91九色精品人成在线观看| 国产精品影院久久| 亚洲人成77777在线视频| 很黄的视频免费| 欧美日本视频| 国产亚洲精品第一综合不卡| 日韩视频一区二区在线观看| e午夜精品久久久久久久| av电影中文网址| 村上凉子中文字幕在线| 一夜夜www| 国产97色在线日韩免费| 欧美乱码精品一区二区三区| 亚洲国产毛片av蜜桃av| 两个人视频免费观看高清| 精品午夜福利视频在线观看一区| 日韩精品中文字幕看吧| 精品一品国产午夜福利视频| 国产精品 国内视频| svipshipincom国产片| 国产精品免费视频内射| 国产一卡二卡三卡精品| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3 | 国内久久婷婷六月综合欲色啪| 侵犯人妻中文字幕一二三四区| 色综合亚洲欧美另类图片| 国产精华一区二区三区| 亚洲欧美日韩高清在线视频| 日韩免费av在线播放| 亚洲性夜色夜夜综合| 精品午夜福利视频在线观看一区| 黄色成人免费大全| 精品乱码久久久久久99久播| 如日韩欧美国产精品一区二区三区| 丁香六月欧美| 乱人伦中国视频| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产99精品国产亚洲性色 | 夜夜夜夜夜久久久久| 搞女人的毛片| 久久婷婷人人爽人人干人人爱 | 亚洲欧美激情在线| 亚洲熟妇中文字幕五十中出| 热99re8久久精品国产| 搡老熟女国产l中国老女人| 国产成人系列免费观看| 日本a在线网址| 成人18禁在线播放| 国产一区二区三区视频了| 美女高潮到喷水免费观看| bbb黄色大片| 久久精品亚洲精品国产色婷小说| 日韩精品免费视频一区二区三区| 老鸭窝网址在线观看| 久久国产精品人妻蜜桃| 精品一区二区三区视频在线观看免费| 亚洲精品美女久久av网站| 久久久精品国产亚洲av高清涩受| 熟妇人妻久久中文字幕3abv| 久久精品国产亚洲av香蕉五月| 久久午夜亚洲精品久久| 黄色毛片三级朝国网站| 久久久国产欧美日韩av| 他把我摸到了高潮在线观看| 欧美色视频一区免费| 国产亚洲精品av在线| 国产真人三级小视频在线观看| 1024视频免费在线观看| 免费观看精品视频网站| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美一区二区三区黑人| 亚洲第一欧美日韩一区二区三区| 国产精品一区二区精品视频观看| 亚洲熟妇中文字幕五十中出| 国产精品美女特级片免费视频播放器 | 手机成人av网站| 国产91精品成人一区二区三区| 欧美日韩一级在线毛片| 中文字幕高清在线视频| 亚洲欧美日韩无卡精品| 色播亚洲综合网| 精品国产乱子伦一区二区三区| 亚洲少妇的诱惑av| 亚洲黑人精品在线| 国产成人av激情在线播放| 日韩精品青青久久久久久| 亚洲av第一区精品v没综合| 91大片在线观看| 成人国产一区最新在线观看| 黄频高清免费视频| 黄色丝袜av网址大全| 身体一侧抽搐| 叶爱在线成人免费视频播放| 日本在线视频免费播放| 国产精品综合久久久久久久免费 | 一区福利在线观看| 国产精华一区二区三区| 亚洲精品av麻豆狂野| 一级a爱片免费观看的视频| 这个男人来自地球电影免费观看| 丁香六月欧美| 一a级毛片在线观看| 久久九九热精品免费| 亚洲av成人一区二区三| 国产不卡一卡二| 制服诱惑二区| 一本大道久久a久久精品| 宅男免费午夜| 国产成人av教育| 少妇熟女aⅴ在线视频| 黄片小视频在线播放| aaaaa片日本免费| 亚洲成人免费电影在线观看| 一个人免费在线观看的高清视频| 国产精品久久电影中文字幕| 久久久久久人人人人人| 性色av乱码一区二区三区2| 久久热在线av| 国产av在哪里看| 一级片免费观看大全| 久久国产亚洲av麻豆专区| 国产真人三级小视频在线观看| 好男人在线观看高清免费视频 | 亚洲三区欧美一区| 90打野战视频偷拍视频| 丰满人妻熟妇乱又伦精品不卡| 国产高清视频在线播放一区| 久久人妻熟女aⅴ| 精品国产乱子伦一区二区三区| 搡老岳熟女国产| 男人的好看免费观看在线视频 | 国产麻豆成人av免费视频| 欧美不卡视频在线免费观看 | 老汉色∧v一级毛片| 性色av乱码一区二区三区2| 久久人人爽av亚洲精品天堂| 国产亚洲精品第一综合不卡| 久久久久九九精品影院| 真人做人爱边吃奶动态| 午夜福利一区二区在线看| 国产欧美日韩综合在线一区二区| 欧美精品啪啪一区二区三区| 国产欧美日韩精品亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美日韩在线播放| 大型av网站在线播放| 丁香六月欧美| 精品人妻在线不人妻| 久久久精品国产亚洲av高清涩受| 又紧又爽又黄一区二区| 亚洲人成77777在线视频| 欧美大码av| 亚洲美女黄片视频| 久久性视频一级片| 超碰成人久久| 十八禁网站免费在线| 精品日产1卡2卡| 老熟妇仑乱视频hdxx| 一级,二级,三级黄色视频| 丝袜美足系列| 国产一卡二卡三卡精品| 操美女的视频在线观看| 精品一区二区三区视频在线观看免费| 狠狠狠狠99中文字幕| 真人做人爱边吃奶动态| 国产免费av片在线观看野外av| 日本vs欧美在线观看视频| 日韩中文字幕欧美一区二区| 日本免费a在线| 啦啦啦观看免费观看视频高清 | 欧美中文综合在线视频| 久久欧美精品欧美久久欧美| 一本久久中文字幕| 久久精品亚洲熟妇少妇任你| 19禁男女啪啪无遮挡网站| √禁漫天堂资源中文www| 涩涩av久久男人的天堂| 欧美乱妇无乱码| 国产精品1区2区在线观看.| 日韩视频一区二区在线观看| 欧美一级a爱片免费观看看 | 日韩精品中文字幕看吧| 19禁男女啪啪无遮挡网站| 成人18禁在线播放| 久久国产乱子伦精品免费另类| 99在线视频只有这里精品首页| 亚洲欧美精品综合一区二区三区| 亚洲九九香蕉| 亚洲 欧美一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲成国产人片在线观看| 少妇粗大呻吟视频| 这个男人来自地球电影免费观看| 一本综合久久免费| 国产黄a三级三级三级人| av天堂久久9| 搡老岳熟女国产| 精品一区二区三区四区五区乱码| 久久久久久免费高清国产稀缺| cao死你这个sao货| 黑人操中国人逼视频| 老汉色av国产亚洲站长工具| 亚洲第一电影网av| 亚洲国产精品999在线| 美女 人体艺术 gogo| 亚洲电影在线观看av| 电影成人av| 一本综合久久免费| 久久久久久久午夜电影| 久久影院123| av欧美777| 久久久国产成人精品二区| 午夜视频精品福利| 一本久久中文字幕| 欧美日韩精品网址| 欧美激情高清一区二区三区| 麻豆一二三区av精品| 日本精品一区二区三区蜜桃| √禁漫天堂资源中文www| 久久国产乱子伦精品免费另类| 美女 人体艺术 gogo| 黄色 视频免费看| 丝袜人妻中文字幕| 激情在线观看视频在线高清| 极品教师在线免费播放| 国产成人免费无遮挡视频| 午夜福利,免费看| 国产成人啪精品午夜网站| 美女大奶头视频| 亚洲成a人片在线一区二区| 天天躁夜夜躁狠狠躁躁| 给我免费播放毛片高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 日日干狠狠操夜夜爽| 久久 成人 亚洲| 亚洲精品美女久久av网站| 久久人妻av系列| 欧美午夜高清在线| 免费久久久久久久精品成人欧美视频| 操出白浆在线播放| 搡老妇女老女人老熟妇| 久久影院123| 两个人免费观看高清视频| 欧美一级毛片孕妇| 免费看a级黄色片| 国产国语露脸激情在线看| 悠悠久久av| 男人操女人黄网站| 动漫黄色视频在线观看| 中国美女看黄片| 777久久人妻少妇嫩草av网站| 一夜夜www| 国产精品亚洲美女久久久| 亚洲av电影在线进入| 麻豆一二三区av精品| 国产一区二区三区综合在线观看| 两个人看的免费小视频| 丰满的人妻完整版| 高清在线国产一区| 男女做爰动态图高潮gif福利片 | 午夜两性在线视频| 一边摸一边抽搐一进一小说| 国产乱人伦免费视频| 久久久久久久精品吃奶| 日韩国内少妇激情av| 香蕉丝袜av| 国产成+人综合+亚洲专区| 黑丝袜美女国产一区| 亚洲av成人一区二区三| 久久久久久国产a免费观看| 国产精品电影一区二区三区| 人人妻人人爽人人添夜夜欢视频| 91大片在线观看| 亚洲视频免费观看视频| 亚洲精品国产色婷婷电影| 国产免费av片在线观看野外av| 午夜成年电影在线免费观看| 美女午夜性视频免费| www国产在线视频色| 亚洲自拍偷在线| 欧美黄色淫秽网站| 欧美日本亚洲视频在线播放| 两人在一起打扑克的视频| 欧美+亚洲+日韩+国产| 国产极品粉嫩免费观看在线| 一进一出抽搐gif免费好疼| av福利片在线| ponron亚洲| 久99久视频精品免费| 国产乱人视频| 午夜激情欧美在线| 国产精品久久久久久亚洲av鲁大| 国产美女午夜福利| 大型黄色视频在线免费观看| 日韩 亚洲 欧美在线| 久久精品人妻少妇| 中文字幕精品亚洲无线码一区| 神马国产精品三级电影在线观看| 日本撒尿小便嘘嘘汇集6| av在线观看视频网站免费| 成年免费大片在线观看| 无遮挡黄片免费观看| 精品午夜福利视频在线观看一区| 男女下面进入的视频免费午夜| 国产久久久一区二区三区| 免费av毛片视频| 久久人妻av系列| 国产精品人妻久久久影院| 联通29元200g的流量卡| 色哟哟·www| 欧美高清成人免费视频www| 18禁在线播放成人免费| 国产免费男女视频| 成人午夜高清在线视频| 看十八女毛片水多多多| 日本 欧美在线| 熟女电影av网| 国产欧美日韩一区二区精品| 久久热精品热| 国产日本99.免费观看| 精品久久久久久,| 午夜福利成人在线免费观看| 国产主播在线观看一区二区| 国内久久婷婷六月综合欲色啪| 国产私拍福利视频在线观看| 午夜精品一区二区三区免费看| 变态另类丝袜制服| 看黄色毛片网站| 午夜亚洲福利在线播放| 婷婷亚洲欧美| 日韩欧美精品免费久久| 色哟哟哟哟哟哟| 熟女人妻精品中文字幕| 此物有八面人人有两片| 久久久国产成人精品二区| 男人舔女人下体高潮全视频| 黄色丝袜av网址大全| 丰满人妻一区二区三区视频av| 国产探花在线观看一区二区| 日韩强制内射视频| 老司机深夜福利视频在线观看| 色播亚洲综合网| 夜夜看夜夜爽夜夜摸| 精品一区二区三区视频在线| 欧美+亚洲+日韩+国产| 亚洲一区高清亚洲精品| 久久精品夜夜夜夜夜久久蜜豆| 午夜久久久久精精品| 国产亚洲91精品色在线| 久久久久久久久中文| 国产伦人伦偷精品视频| 色综合色国产| 亚洲欧美清纯卡通| 久久久久久九九精品二区国产| 久久精品国产亚洲网站| 精华霜和精华液先用哪个| 国产精品永久免费网站| 欧美黑人欧美精品刺激| 国产在线男女| 亚洲av第一区精品v没综合| 在线a可以看的网站| 精品一区二区三区视频在线| 午夜免费成人在线视频| 欧美日韩亚洲国产一区二区在线观看| 丰满的人妻完整版| 免费人成在线观看视频色| av在线天堂中文字幕| 免费无遮挡裸体视频| 俺也久久电影网| 91久久精品电影网| 桃色一区二区三区在线观看| eeuss影院久久| 久久国产精品人妻蜜桃| 欧美一区二区国产精品久久精品| 久久精品国产亚洲av涩爱 | 国内揄拍国产精品人妻在线| 男女那种视频在线观看| 少妇的逼好多水| 成人永久免费在线观看视频| 嫩草影院入口| 三级国产精品欧美在线观看| 非洲黑人性xxxx精品又粗又长| 五月伊人婷婷丁香| 久久国产精品人妻蜜桃| a级毛片a级免费在线| 国产精品乱码一区二三区的特点| 18禁裸乳无遮挡免费网站照片| 国产精品综合久久久久久久免费| 成人二区视频| 亚洲综合色惰| 日日摸夜夜添夜夜添小说| 国内毛片毛片毛片毛片毛片| 三级男女做爰猛烈吃奶摸视频| 成人性生交大片免费视频hd| 美女免费视频网站| 一本精品99久久精品77| 久久久久久大精品| 欧美绝顶高潮抽搐喷水| 午夜老司机福利剧场| 成人国产一区最新在线观看| 午夜福利成人在线免费观看| 国产精品人妻久久久影院| 亚洲无线观看免费| 一区二区三区免费毛片| 国内少妇人妻偷人精品xxx网站| 99久国产av精品| 88av欧美| 欧美+日韩+精品| 男人的好看免费观看在线视频| 神马国产精品三级电影在线观看| 亚洲国产精品久久男人天堂| 麻豆国产97在线/欧美| 成人高潮视频无遮挡免费网站| 午夜福利视频1000在线观看| 99国产极品粉嫩在线观看| 亚洲精品乱码久久久v下载方式| 九色成人免费人妻av| 不卡视频在线观看欧美| 日本欧美国产在线视频| 亚洲成人精品中文字幕电影| 久久人妻av系列| 免费看美女性在线毛片视频|