• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural evolution in deformation-induced rejuvenation in metallic glasses:A cavity perspective?

    2019-04-13 01:14:34ShaoqinJiang江少欽YongHuang黃勇andMaozhiLi李茂枝
    Chinese Physics B 2019年4期
    關鍵詞:黃勇

    Shaoqin Jiang(江少欽),Yong Huang(黃勇),and Maozhi Li(李茂枝)

    Department of Physics,Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices,Renmin University of China,Beijing 100872,China

    1.Introduction

    Recently,the rejuvenation of metallic glasses has attracted much interest,since it is a promising approach for improving the plasticity of metallic glasses and thereby enhancing their potential applicability as structural materials.[1–10]Experimentally,various approaches have been developed for achieving the rejuvenation of metallic glasses.It was found that rejuvenation of bulk metallic glasses can be achieved through elastostatic compression for high strength and large plasticity.[1–3]The mechanism was attributed to the irreversible structural changes based on the generation of free volume.Similarly,shot-peening of pre-annealed metallic glasses can also realize the mechanically induced rejuvenation.[4]It was argued that shot-peening may induce the part of the free volume distribution associated with flow defects.It was also found that plastic deformation by the high-pressure torsion technique can also effectively rejuvenate the structure of metallic glasses.[5]Further study revealed a transition of the deformation mode from heterogeneous, localized deformation to homogeneous deformation in Zr50Cu40Al10bulk metallic glass and attributed the transition to a change in the local atomic environment in the rejuvenated volume.[6]Moreover,ion irradiation was also found to rejuvenate metallic glasses,leading to significant tensile ductility and plastic deformation,while electron diffraction indicated subtle signatures of structural changes of metallic glasses.[7]Very recently,thermal cycling induced rejuvenation of metallic glasses was also achieved in experiments.[8]It was explained that thermal cycling induced rejuvenation results from the intrinsic nonuniformity of the glass structure,and thermal cycling introduces heterogeneities which effectively induces flow and improves plasticity.In addition,a method was proposed via molecular dynamics simulations to control the level rejuvenation through systematic thermal processing,and crucial conditions for rejuvenation were clarified.[9]

    Although plenty of studies have been devoted to rejuvenation of amorphous materials,the evolution of atomic structures in rejuvenation is still elusive.Using Monte Carlo simulation for a binary Lennard–Jones mixture,rejuvenation in glasses was observed via mechanical loading and the pair correlation functions were analyzed for understanding the structure evolution in rejuvenation.[10]However,no details of the atomic structure information related to rejuvenation were provided.As indicated above,the increase of the free volume and its distribution in metallic glasses plays important roles in rejuvenation.[1–4,6,8,11–13]However,the characteristic of free volume in rejuvenation or how free volume influences rejuvenation of metallic glasses is not clear,either.On the other hand,the free volume was defined as the Voronoi-cell volume minus the volume of atom.[14]This free volume is a thermodynamic quantity,and cannot reflect the topological information of atoms packing for the structural evolution.[15]It has been revealed that there exist cavities in metallic glasses,[16]which is often regarded as a topology-based defect due to packing deficiencies in metallic liquids and glasses.[15–21]The formation of large cavities in metallic glasses is the result of mechanical instability.[18–20]Moreover,cavities in metallic glasses can be measured by positron annihilation life time measurements.[22–24]Therefore,characterization of cavities in metallic glasses may provide new insight into the structure property relationship.

    In this work,we performed classical molecular dynamics simulations to investigate the structural evolution in deformation-induced rejuvenation in Cu80Zr20metallic glasses by characterizing cavities.The creation and annihilation of cavities in deformation process is found to be responsible for the underlying structural basis of rejuvenation in metallic glasses.In deformation process,cavities prefer to form in the relatively densely packed regions,leading to the irreversible rearrangements in metallic glasses.The characteristic of cavities provides a universal structural description for both aging and rejuvenation mechanism in metallic glasses.

    2.Model and simulation method

    In our studies,classic molecular dynamic(MD)simulations were performed for Cu80Zr20metallic alloy and a realistic embedded atom method potential was employed to describe the interatomic interactions.[25]All of the simulations were performed using the large-scale atomic/molecular massively parallel simulator(LAMMPS)package.[26]The structure contains 4×104atoms in a cubic box with periodic boundary conditions applied in three dimensions.The initial configuration was melted and equilibrated at T=2000 K for 0.2 ns in isothermal–isobaric(NPT)ensemble,and then cooled down to 300 K with four different cooling rates of 0.1 K/ps,1 K/ps,10 K/ps,and 100 K/ps,respectively.In these processes,the box size was adjusted to give a zero pressure.The samples were further relaxed at300K in canonical(NVT)ensemble for 0.4 ns.In our MD simulations,temperature and pressure were controlled with Nose–Hoover thermostat and barostat,respectively.To examine the deformation-induced rejuvenation in four metallic glass samples,uniaxial compression along the Z direction with constant strain rate was applied to the samples at 300 K.Periodic boundary conditions were applied in the X and Y directions.

    In our work,the cavities in metallic glasses were characterized in terms of the numerical algorithm developed by Sastry et al.[17]In this algorithm,Voronoi and Delaunay tessellations were constructed with the atomic radii of Cu (1.28 A° ) and Zr (1.59 A° ) taken into account, and an exclusion radius was applied to determine the void regions and the volumes of cavities.According to previous studies,[17]1.4 times of the atomic radii of Cu and Zr were chosen as the exclusion radii for Cu and Zr atoms,respectively,which are comparable to the distances that pair correlation functions start to be nonzero.[28]More details about the algorithm can be found in Ref.[17].The connectivity of nearest neighboring cavities was also considered,[27]so that a rigorous and precise cavity in metallic glasses can be quantitatively defined and characterized.

    3.Results and discussions

    Figure 1 shows the potential energy and volume per atom in four samples with different cooling rates as a function of temperature in the cooling process.Both the potential energy and the volume decrease as the temperature decreases,exhibiting a kink below a certain temperature, and indicating the glass transition in four samples.It can be seen that the slower the cooling rate,the lower the potential energy,and the smaller the volume per atom,indicating that four metallic glassy samples with different states are obtained.

    Fig.1.The evolution of(a)potential energy per atom and(b)volume per atom as the samples are cooled from 2000 K to 300 K with four different cooling rates.

    First,we investigate the temperature evolution of cavities in four samples in the cooling process.As shown in Fig.2,both the total volume and the number of cavities decrease significantly as the temperature decreases,indicating that there exist numerous cavities in high temperature liquids,and the cavities are rapidly annihilated in the cooling process.It can be seen that in high temperature liquids, both volume and number of cavities are almost the same in four samples, independent of the cooling rate. As temperature decreases below about 1400 K, both volume and number of cavities change with cooling rate.Slower cooling rate accelerates the annihilation of cavities in both volume and number as shown in Fig.2,leading to the least cavities in the sample of 0.1 K/ps.This indicates that the sample of 0.1 K/ps can be relaxed much more adequately,so that more cavities are annihilated in the cooling process.In addition,the aging effect in the cooling process with different cooling rates can be well characterized by the annihilation of cavities,so that cavities can be used to characterize the metallic glasses at different glassy states.

    Fig.2.The evolution of(a)total volume and(b)total number of cavities of four different specimens as a function of temperature from 2000 K to 300 K.

    Next,we analyze the evolution of the cavities in deformation process.Figure 3(a)shows the strain–stress curves in four samples as the compressive deformation is applied.The yield stress increases as the cooling rate is decreased.There is almost no overshoot in the strain–stress curve in the sample of 100 K/ps.As the cooling rate decreases,the overshoot becomes more significant.As the strain goes beyond the yield point,the stress in the samples with slower cooling rates decreases,and the strain–stress curves almost collapse together as the strain is over 15%.Figure 3(b)shows the evolution of potential energy with the strain.Before compression,the potential energies in four samples are different.As the external stress is applied,the potential energy in all samples increases as the strain increases.The increase in potential energy is much more drastic in the sample of 0.1 K/ps.As the strain increases,the difference in potential energy in the four samples becomes smaller and almost the same as the strain reaches about 40%.This indicates that these glassy samples are rejuvenated to higher energy states,and the aging effect produced in the cooling process in four samples can be completely erased by applying mechanical deformation.This is consistent with previous studies.[10]It can be seen that rejuvenation of metallic glasses can be achieved by applying mechanical deformation.

    Fig.3.(a)Strain–stress curves of four metallic glassy samples in compressive deformation;(b)evolution of potential energies in four samples in deformation process.The inset in panel(b)shows the evolution of the potential energy in four samples up to 40%strain.

    To understand the underlying structural basis of the deformation induced rejuvenation of metallic glasses,the evolution of the cavities in four samples in deformation process is analyzed.Figure 4 shows the change of volume and number of cavities with strain.Both the total volume and number of cavities in these samples decrease a little as the strain increases to before 5%.This indicates that some cavities are shrunk or annihilated under the deformation in the apparent elastic regime.In the sample of 0.1 K/ps,the volume and number of cavities do not change much with strain smaller than 5%.This implies that the sample is adequately relaxed in the cooling process with a cooling rate of 0.1 K/ps,so that the compressive deformation does not induce further decrease in the volume or number of cavities.However,in the samples of 1 K/ps and 10 K/ps,the deformation induces significant decrease in the volume and number of cavities before 5%.In the sample of 100 K/ps,the volume and number of cavities do not change much,either.This is because this sample is yielded quickly as the strain exceeds 2%.As the strain is larger than 5%,the total volume and number of cavities in all samples increase as the samples are further deformed.The increase is more drastic in the sample of 0.1 K/ps,indicating that the local atomic rearrangement is more significant and more cavities are generated in this sample under deformation.As the strain is larger than 15%,the volume and number of cavities become similar in four samples.This behavior is quite similar to the potential energy in the deformation process.Thus,four metallic glassy samples at different states obtained in cooling processes are rejuvenated into a higher energy state with similar potential energy and atomic structure feature.It can be seen that the aging history in four samples is finally erased by the deformation induced rejuvenation.Moreover,the generation and annihilation of cavities in metallic glassy samples play a key role in both aging and rejuvenation processes.As shown above,while the annihilation of cavities dominates in the aging process,the generation of cavities essentially controls the rejuvenation process.Therefore,the characteristics of cavities provide a generic description for both aging and rejuvenation in metallic glasses.

    Fig.4.The evolution of(a)volume and(b)number of cavities in four metallic glassy samples in compressive deformation process.

    To get further insight into the relationship between cavities and rejuvenation in metallic glasses,we investigate the role of each element in the creation of cavities in the deformation process.Figure 5 shows the variation of the percentage of Cu and Zr around cavities with strain in the sample of 0.1 K/ps,respectively.It can be seen that while the percentage of Cu around cavities increases with strain,the percentage of Zr is fluctuating,and does not change much in the deformation process.This indicates that new cavities are essentially created around Cu atoms,leading to the increase of Cu atoms around cavities.This also implies that most atomic irreversible rearrangements take place around Cu atoms,which is consistent with the characterization of atomic rearrangements in metallic glasses.[29]

    Fig.5.Variation of the percentage of(a)Cu and(b)Zr atoms around cavities compared to the total number of atoms in the metallic glassy sample of 0.1 K/ps with strain.

    We also investigate the relationship between the creation of cavities and atomic clusters in the deformation process. Figure 6 shows the major populated clusters with and without cavities surrounded at different strains.It can be seen that while much more icosahedral clusters are populated in the regions without cavities,only a small fraction of icosahedral clusters are located around cavities,indicating the dense packing feature of icosahedral clusters.In contrast,while the fraction of icosahedral clusters decreases monotonically with the increase of the strain,the fraction of icosahedral clusters located around cavities does not change much with the strain.This implies that the decrease of icosahedral clusters in the regions without cavities is accompanied with the creation of cavities,and icosahedral clusters are mainly transformed to some lowpopulated clusters in the deformation process.[30]On the other hand,the population of the major clusters around cavities does not vary much with the strain.This indicates that the plastic deformation mainly changes the atomic environments in the regions without cavities,although the fraction of atomic clusters changes with strain.[31,32]This also indicates that if only atomic clusters and their evolution are characterized in the rejuvenation process,one cannot obtain the generic structure feature for better understanding of the rejuvenation mechanism in metallic glasses.

    Figure7further confirms this point.Figure7(a)shows the cavity distribution in the sample of 0.1 K/ps at a strain of 5%,and figure 7(b)shows the volume difference of cavities between the strain of 5.2%and 5%,which indicates the creation and annihilation of cavities in the deformation process.The red circles mark the region without cavities in Fig.7(a),and the corresponding volume difference in cavities in Fig.7(b),respectively.It can be seen that the big cavities are mainly created in the densely packed region,not in the so-called loosely packed region.[33,34]Moreover,there are some small cavities populated around such regions,and the length scale is far beyond the nearest neighbor distance.This clearly demonstrates that new cavities are mainly created in the densely packing regions.

    Fig.6.Population of the major atomic clusters(a)without and(b)with cavities surrounded in the metallic glassy sample of 0.1 K/ps.

    Fig.7.(a)Snapshot of cavity distribution in the sample of 0.1 K/ps at a strain of 5%;(b)the volume difference of cavities between the strain of 5.2%and 5%.The cross-section in the middle of the sample along the X direction is taken for the illustration.The color bar represents the cavity volume in panel(a)and volume difference in panel(b),respectively.The circles mark the regions without cavity in panel(a)and the corresponding volume difference in panel(b).

    4.Conclusion

    The rejuvenation of metallic glasses has been realized by applying compressive deformation.Metallic glasses in different energy states have been rejuvenated into a higher energy state with similar potential energy.Numerous cavities are created in this process,which is the main underlying structural basis of rejuvenation of metallic glasses.Moreover,cavities tend to be formed in the densely packed regions.The creation of cavities essentially facilitates the irreversible rearrangements in plastic deformation.

    [1]Concustell A,Mear F O,Surinach S,Baro M D and Greer A L 2009 Phil.Mag.Lett.89 831

    [2]Ke H B,Wen P,Peng H L,Wang W H and Greer A L 2011 Scr.Mater.64 966

    [3]Zhang M,Wang Y M,Li F X,Jiang S Q,Li M Z and Liu L 2017 Sci.Rep.7 625

    [4]Zhang Y,Wang W H and Greer A L 2006 Nat.Mater.5 857

    [5]Dmowski W,Yokoyama Y,Chuang A,Ren Y,Umemoto M,Tsuchiya K,Inoue A and Egami T 2010 Acta Mater.58 429

    [6]Meng F Q,Tsuchiya K,Seiichiro I I and Yokoyama Y 2012 Appl.Phys.Lett.101 121914

    [7]Magagnosc D J,Kumar G,Schroers J,Felfer P,Cairney J M and Gianola D S 2014 Acta Mater.74 165

    [8]Ketov S V,Sun Y H,Nachum S,Lu Z,Checchi A,Beraldin A R,Bai H Y,Wang W H,Louzguine-Luzgin D V,Carpenter M A and Greer A L 2015 Nature 524 200

    [9]Wakeda M,Saida J,Li J and Ogata S 2015 Sci.Rep.5 10545

    [10]Utz M,Debenedetti P G and Stillinger F H 2000 Phys.Rev.Lett.84 1471

    [11]Ding J,Cheng Y Q and Ma E 2014 Acta Mater.69 343

    [12]Heggen M,Spaepen F and Feuerbacher M 2005 J.Appl.Phys.97 033506

    [13]Struik L C E 1997 Polymer 38 4053

    [14]Spaepen F 2006 Scr.Mater.54 363

    [15]Cohen M H and Turnbull D 1959 J.Chem.Phys.31 1164

    [16]Sheng H W,Ma E and Kramer M J 2012 JOM 64 856

    [17]Sastry S,Corti D S,Debenedetti P G and Stillinger F H 1997 Phys.Rev.E 56 5524

    [18]WangXD,AryalS,ZhongC,ChingWY,ShengHW,ZhangH,Zhang D X,Cao Q P and Jiang J Z 2015 Sci.Rep.5 9184

    [19]Guan P,Lu S,Spector M J B,Valavala P K and Falk M L 2013 Phys.Rev.Lett.110 185502

    [20]Pan S P,Feng S D,Qiao J W,Wang W M and Qin J Y 2016 J.Alloys Compd.664 65

    [21]Sastry S,Corti D S,Debenedetti P G and Stillinger F H 1997 Phys.Rev.E 56 5533

    [22]Nagel C,Ratzke K,Schmidtke E,Wolff J,Geyer U and Faupel F 1998 Phys.Rev.B 57 10224

    [23]Flores K M,Suh D and Dauskardt R H 2002 J.Mater.Res.17 5

    [24]Kanungo B P,Glade S C,Asoka-Kumar P and Flores K M 2004 Intermetallics 12 1073

    [25]Mendelev MI,Kramer MJ,Ott RT,Sordelet D J,Yagodin D and Popel P 2009 Phil.Mag.89 967

    [26]Plimpton S 1995 J.Comput.Phys.117 1

    [27]Sietasma J and Thijsse B J 1995 Phys.Rev.B 52 3248

    [28]Bernal J D 1964 Proc.R.Soc.Lond.A 280 299

    [29]Shang B S,Li M Z,Yao Y G,Lu Y J and Wang W H 2014 Phys.Rev.E 90 042303

    [30]Cheng Y Q and Ma E 2011 Prog.Mater.Sci.56 379

    [31]Hu Q,Zeng X R and Fu M W 2012 J.Appl.Phys.111 083523

    [32]Peng H L,Li M Z and Wang W H 2011 Phys.Rev.Lett.106 135503

    [33]Falk M L and Langer J S 1998 Phys.Rev.E 57 7192

    [34]Spaepen F 1977 Acta Metall.25 407

    猜你喜歡
    黃勇
    Data-driven modeling of a four-dimensional stochastic projectile system
    Effect of heat treatment on microstructure and properties of single crystal copper cold-welded joints
    China Welding(2019年2期)2019-10-22 07:13:10
    喊黃勇
    歲月(2018年1期)2018-02-27 18:59:04
    Effects of rotational speeds on the performance of a centrifugal pump with a variable-pitch inducer *
    函數(shù)乘積極值性質(zhì)的一個反例
    殺人心理記
    黃勇書法作品欣賞
    廣西文學(2015年10期)2015-10-22 03:12:34
    沙漠魅影
    沙人
    黃勇:為足球而生
    足球之夜(2013年5期)2013-04-29 00:44:03
    天堂√8在线中文| 亚洲精品美女久久久久99蜜臀| 日韩欧美 国产精品| 国产黄片美女视频| 少妇的逼水好多| 最近最新中文字幕大全电影3| 久久久久精品国产欧美久久久| 老司机午夜福利在线观看视频| 国产成人av教育| 亚洲五月天丁香| av视频在线观看入口| 色精品久久人妻99蜜桃| 18禁美女被吸乳视频| 露出奶头的视频| 免费观看人在逋| 嫩草影院精品99| 欧美成人性av电影在线观看| 成在线人永久免费视频| 1024香蕉在线观看| 美女高潮喷水抽搐中文字幕| 99精品欧美一区二区三区四区| 99精品欧美一区二区三区四区| 五月玫瑰六月丁香| 久久香蕉国产精品| 免费大片18禁| 俄罗斯特黄特色一大片| 午夜福利免费观看在线| 亚洲av电影在线进入| 国产三级黄色录像| 哪里可以看免费的av片| 国产亚洲精品综合一区在线观看| 国产熟女xx| 久久精品国产综合久久久| 免费看光身美女| 免费看光身美女| 一个人看的www免费观看视频| 老司机在亚洲福利影院| h日本视频在线播放| 免费av不卡在线播放| 成人特级黄色片久久久久久久| 午夜福利高清视频| 男女午夜视频在线观看| 国产三级在线视频| 男女下面进入的视频免费午夜| 免费av毛片视频| 免费高清视频大片| 久久久久久久精品吃奶| 丝袜人妻中文字幕| 国产亚洲精品久久久com| 一本一本综合久久| 99riav亚洲国产免费| 精品久久久久久久末码| 后天国语完整版免费观看| 99在线视频只有这里精品首页| 99精品久久久久人妻精品| 精品熟女少妇八av免费久了| 别揉我奶头~嗯~啊~动态视频| 很黄的视频免费| 日韩有码中文字幕| 日本撒尿小便嘘嘘汇集6| 在线看三级毛片| 国产亚洲欧美98| 特大巨黑吊av在线直播| 国产精品永久免费网站| 成人18禁在线播放| 真实男女啪啪啪动态图| 亚洲在线自拍视频| 99久久精品一区二区三区| 小蜜桃在线观看免费完整版高清| 黑人欧美特级aaaaaa片| 最近最新中文字幕大全电影3| 国产在线精品亚洲第一网站| 亚洲 欧美一区二区三区| 亚洲成av人片在线播放无| 757午夜福利合集在线观看| 欧美激情久久久久久爽电影| 女同久久另类99精品国产91| 一区二区三区高清视频在线| 村上凉子中文字幕在线| 国产精品香港三级国产av潘金莲| 一进一出好大好爽视频| 99在线人妻在线中文字幕| 成在线人永久免费视频| 亚洲精华国产精华精| 欧美日韩福利视频一区二区| 亚洲一区高清亚洲精品| 欧美另类亚洲清纯唯美| xxx96com| 床上黄色一级片| 精品乱码久久久久久99久播| 亚洲国产看品久久| 宅男免费午夜| 久久精品综合一区二区三区| 叶爱在线成人免费视频播放| 免费搜索国产男女视频| 两性夫妻黄色片| 很黄的视频免费| 亚洲精品乱码久久久v下载方式 | 国产一区二区在线av高清观看| 波多野结衣高清作品| 一二三四社区在线视频社区8| 19禁男女啪啪无遮挡网站| 在线观看美女被高潮喷水网站 | 亚洲国产中文字幕在线视频| 男女那种视频在线观看| 亚洲av成人精品一区久久| 麻豆一二三区av精品| 国产伦一二天堂av在线观看| 国产精品一区二区三区四区免费观看 | 老司机深夜福利视频在线观看| 白带黄色成豆腐渣| 两性午夜刺激爽爽歪歪视频在线观看| 又紧又爽又黄一区二区| 99久久久亚洲精品蜜臀av| 午夜福利在线在线| 亚洲自拍偷在线| 91麻豆精品激情在线观看国产| 国产黄a三级三级三级人| 精品久久久久久久毛片微露脸| 国产伦人伦偷精品视频| 给我免费播放毛片高清在线观看| 欧美日韩福利视频一区二区| xxxwww97欧美| 亚洲国产欧美人成| 久久久精品欧美日韩精品| 69av精品久久久久久| 中亚洲国语对白在线视频| 久久午夜亚洲精品久久| 性欧美人与动物交配| 国产精品久久电影中文字幕| 亚洲在线观看片| 日韩大尺度精品在线看网址| 久久久久免费精品人妻一区二区| 国产精品99久久99久久久不卡| 午夜福利高清视频| 久久这里只有精品中国| 淫秽高清视频在线观看| 性色avwww在线观看| 18禁黄网站禁片午夜丰满| 欧美中文综合在线视频| 精品国内亚洲2022精品成人| 好看av亚洲va欧美ⅴa在| 亚洲人成网站在线播放欧美日韩| 久久欧美精品欧美久久欧美| 亚洲国产精品sss在线观看| 色吧在线观看| 最近视频中文字幕2019在线8| 嫩草影院入口| 精品一区二区三区四区五区乱码| 婷婷丁香在线五月| 日日摸夜夜添夜夜添小说| 一个人看视频在线观看www免费 | 欧美日韩精品网址| 久久久久久人人人人人| 精品国产三级普通话版| 精品久久久久久久毛片微露脸| 久久久久国内视频| 欧美中文日本在线观看视频| 中文在线观看免费www的网站| 亚洲国产欧美网| 三级男女做爰猛烈吃奶摸视频| 好男人电影高清在线观看| 免费av毛片视频| 久久中文字幕一级| 国产亚洲av嫩草精品影院| 黄色片一级片一级黄色片| 亚洲欧洲精品一区二区精品久久久| 在线观看舔阴道视频| 国产黄片美女视频| 成人国产一区最新在线观看| 国产精品久久久久久精品电影| 欧美性猛交黑人性爽| 欧美xxxx黑人xx丫x性爽| 热99re8久久精品国产| svipshipincom国产片| 亚洲av片天天在线观看| 亚洲国产高清在线一区二区三| 在线视频色国产色| 九色成人免费人妻av| 亚洲aⅴ乱码一区二区在线播放| av女优亚洲男人天堂 | ponron亚洲| 免费电影在线观看免费观看| 听说在线观看完整版免费高清| 俺也久久电影网| 91麻豆av在线| 亚洲av中文字字幕乱码综合| 麻豆成人av在线观看| 精品国产亚洲在线| 男女做爰动态图高潮gif福利片| 综合色av麻豆| 亚洲av第一区精品v没综合| 国产亚洲精品久久久com| 99热这里只有精品一区 | 欧美三级亚洲精品| 在线视频色国产色| 99在线人妻在线中文字幕| 国模一区二区三区四区视频 | 此物有八面人人有两片| 国产一区二区三区视频了| 亚洲成人精品中文字幕电影| 亚洲性夜色夜夜综合| 国产美女午夜福利| 99热精品在线国产| 老汉色∧v一级毛片| 亚洲精品色激情综合| 日韩高清综合在线| 久久久久精品国产欧美久久久| 成人高潮视频无遮挡免费网站| av女优亚洲男人天堂 | 久久久久亚洲av毛片大全| 99热只有精品国产| 亚洲国产精品成人综合色| 99久久国产精品久久久| 男女那种视频在线观看| 亚洲午夜精品一区,二区,三区| www.自偷自拍.com| 久久精品影院6| 日本一二三区视频观看| svipshipincom国产片| 少妇熟女aⅴ在线视频| 国产精品久久久久久亚洲av鲁大| 中文字幕人妻丝袜一区二区| 狠狠狠狠99中文字幕| 婷婷精品国产亚洲av在线| 色噜噜av男人的天堂激情| 久久精品影院6| 99在线视频只有这里精品首页| 中文字幕最新亚洲高清| 亚洲一区二区三区不卡视频| 欧美黄色淫秽网站| 哪里可以看免费的av片| 天天躁日日操中文字幕| 母亲3免费完整高清在线观看| 丰满人妻一区二区三区视频av | 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 一区福利在线观看| 香蕉av资源在线| 狠狠狠狠99中文字幕| 国产69精品久久久久777片 | 好看av亚洲va欧美ⅴa在| 色视频www国产| 99久久精品一区二区三区| 国产一区二区三区视频了| 日韩高清综合在线| 精品99又大又爽又粗少妇毛片 | 午夜福利免费观看在线| 欧美日韩黄片免| 9191精品国产免费久久| 可以在线观看毛片的网站| 老司机福利观看| 成熟少妇高潮喷水视频| www.熟女人妻精品国产| 最近最新中文字幕大全电影3| av女优亚洲男人天堂 | 嫩草影视91久久| 欧美一区二区国产精品久久精品| 母亲3免费完整高清在线观看| 精品熟女少妇八av免费久了| 十八禁人妻一区二区| 国产精品精品国产色婷婷| 噜噜噜噜噜久久久久久91| 美女高潮喷水抽搐中文字幕| 亚洲av日韩精品久久久久久密| 午夜福利免费观看在线| 99久久无色码亚洲精品果冻| 美女高潮的动态| 可以在线观看毛片的网站| 三级国产精品欧美在线观看 | 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看 | 精品无人区乱码1区二区| 99久久精品一区二区三区| 无限看片的www在线观看| 午夜a级毛片| cao死你这个sao货| 级片在线观看| 国产黄片美女视频| 亚洲国产精品999在线| 欧美日韩中文字幕国产精品一区二区三区| 久久久国产成人免费| 天堂影院成人在线观看| 国产精品1区2区在线观看.| 午夜免费成人在线视频| 亚洲精华国产精华精| 色视频www国产| 精品福利观看| 色吧在线观看| 久久久色成人| 国产精品亚洲美女久久久| 亚洲片人在线观看| or卡值多少钱| 成人性生交大片免费视频hd| 成人一区二区视频在线观看| 日韩欧美国产在线观看| av片东京热男人的天堂| 国产综合懂色| 国产亚洲精品一区二区www| 久久国产精品影院| 日韩成人在线观看一区二区三区| 午夜a级毛片| 制服丝袜大香蕉在线| 三级毛片av免费| 日韩欧美国产在线观看| 免费无遮挡裸体视频| 久久久久久人人人人人| 在线免费观看的www视频| 亚洲成av人片免费观看| 观看免费一级毛片| 亚洲中文字幕一区二区三区有码在线看 | 男人舔女人下体高潮全视频| 亚洲av熟女| 欧美极品一区二区三区四区| 又黄又粗又硬又大视频| 国产高潮美女av| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品sss在线观看| 一二三四社区在线视频社区8| 黄色视频,在线免费观看| 成年免费大片在线观看| 日本一本二区三区精品| 日韩中文字幕欧美一区二区| 一级a爱片免费观看的视频| 性色av乱码一区二区三区2| 人妻久久中文字幕网| 一个人看的www免费观看视频| 亚洲av免费在线观看| bbb黄色大片| 色综合欧美亚洲国产小说| 亚洲国产日韩欧美精品在线观看 | 天天躁日日操中文字幕| 两性夫妻黄色片| 国产精品永久免费网站| 网址你懂的国产日韩在线| 国产乱人视频| 久久精品影院6| a级毛片在线看网站| 欧美大码av| 悠悠久久av| 亚洲狠狠婷婷综合久久图片| 亚洲一区高清亚洲精品| 精品福利观看| 国产精品九九99| 一本精品99久久精品77| 久久久成人免费电影| 91麻豆av在线| 在线视频色国产色| 性欧美人与动物交配| 国产男靠女视频免费网站| 亚洲人成电影免费在线| 动漫黄色视频在线观看| 中文字幕熟女人妻在线| 亚洲男人的天堂狠狠| 一级黄色大片毛片| 男女下面进入的视频免费午夜| 麻豆国产97在线/欧美| 国产精品自产拍在线观看55亚洲| 欧美激情在线99| 少妇的丰满在线观看| 国产亚洲精品综合一区在线观看| 999久久久国产精品视频| 亚洲狠狠婷婷综合久久图片| 制服人妻中文乱码| 国产精品久久久久久亚洲av鲁大| cao死你这个sao货| 国产高清videossex| 超碰成人久久| 白带黄色成豆腐渣| 午夜视频精品福利| 18禁黄网站禁片免费观看直播| 中文字幕人成人乱码亚洲影| 嫩草影院精品99| 免费看十八禁软件| 制服人妻中文乱码| 香蕉av资源在线| 国产人伦9x9x在线观看| 国产精品一及| 久久久精品大字幕| 哪里可以看免费的av片| 一级毛片精品| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| 欧美性猛交黑人性爽| 国产1区2区3区精品| 视频区欧美日本亚洲| 国产伦精品一区二区三区四那| 亚洲熟妇熟女久久| 欧美高清成人免费视频www| 九九热线精品视视频播放| 国产激情偷乱视频一区二区| 久久久国产精品麻豆| 9191精品国产免费久久| 亚洲av第一区精品v没综合| 熟妇人妻久久中文字幕3abv| 欧美成人性av电影在线观看| 成年版毛片免费区| 桃红色精品国产亚洲av| 特级一级黄色大片| 国产黄a三级三级三级人| 少妇的丰满在线观看| 午夜两性在线视频| 免费av毛片视频| 久9热在线精品视频| 日日夜夜操网爽| 日本黄大片高清| 日本a在线网址| 99热这里只有精品一区 | 大型黄色视频在线免费观看| 69av精品久久久久久| 真人做人爱边吃奶动态| 成年女人永久免费观看视频| 亚洲午夜理论影院| 国产黄色小视频在线观看| 99国产精品一区二区三区| 欧美zozozo另类| 白带黄色成豆腐渣| 免费观看的影片在线观看| 欧美日韩黄片免| 国产精华一区二区三区| 一个人看的www免费观看视频| 国产精品自产拍在线观看55亚洲| 午夜福利成人在线免费观看| 国产乱人伦免费视频| 欧美黑人欧美精品刺激| 99riav亚洲国产免费| 可以在线观看毛片的网站| 成人三级黄色视频| 日本一二三区视频观看| 99久久99久久久精品蜜桃| 村上凉子中文字幕在线| 男人和女人高潮做爰伦理| 亚洲一区二区三区不卡视频| 亚洲片人在线观看| 中文字幕最新亚洲高清| 亚洲精品国产精品久久久不卡| 中文字幕高清在线视频| 少妇裸体淫交视频免费看高清| 不卡av一区二区三区| 99国产综合亚洲精品| www.熟女人妻精品国产| 91av网一区二区| 亚洲五月婷婷丁香| 国产精品亚洲美女久久久| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩一区二区三| 黄片小视频在线播放| 精品一区二区三区四区五区乱码| 好看av亚洲va欧美ⅴa在| av国产免费在线观看| 99riav亚洲国产免费| 国产午夜精品论理片| 久久99热这里只有精品18| 老鸭窝网址在线观看| 99久久综合精品五月天人人| 成人av一区二区三区在线看| 精品乱码久久久久久99久播| 老司机午夜十八禁免费视频| 欧美日韩精品网址| 中亚洲国语对白在线视频| 日本成人三级电影网站| 两个人视频免费观看高清| 中文字幕高清在线视频| 99re在线观看精品视频| 国产精品精品国产色婷婷| 国产成人欧美在线观看| 精品福利观看| 欧美黄色片欧美黄色片| 亚洲人成伊人成综合网2020| 久久久久久久午夜电影| 特大巨黑吊av在线直播| 久久精品国产亚洲av香蕉五月| 久久久久久久久免费视频了| 亚洲狠狠婷婷综合久久图片| 欧美不卡视频在线免费观看| 欧美黑人巨大hd| 亚洲最大成人中文| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清在线视频| 最好的美女福利视频网| 久久精品91无色码中文字幕| 一级毛片女人18水好多| 日韩人妻高清精品专区| 亚洲国产精品成人综合色| 日韩欧美在线乱码| 少妇丰满av| 日韩有码中文字幕| 小说图片视频综合网站| 久久久国产精品麻豆| 啦啦啦韩国在线观看视频| 亚洲精品美女久久久久99蜜臀| 久久久久久久久免费视频了| 国产精品久久久久久精品电影| 美女 人体艺术 gogo| 网址你懂的国产日韩在线| 亚洲熟妇中文字幕五十中出| 可以在线观看的亚洲视频| 国产精品一区二区免费欧美| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区成人 | 亚洲精品中文字幕一二三四区| 国产激情欧美一区二区| 免费av毛片视频| 国产aⅴ精品一区二区三区波| 99久国产av精品| 我的老师免费观看完整版| 成年女人永久免费观看视频| 国产久久久一区二区三区| 无遮挡黄片免费观看| 国产v大片淫在线免费观看| 美女午夜性视频免费| 成熟少妇高潮喷水视频| 亚洲片人在线观看| 亚洲国产精品久久男人天堂| av欧美777| 亚洲avbb在线观看| 亚洲国产精品sss在线观看| 欧美3d第一页| 国产男靠女视频免费网站| aaaaa片日本免费| 女人高潮潮喷娇喘18禁视频| 国产成人aa在线观看| 全区人妻精品视频| 国产成人精品无人区| 无限看片的www在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品亚洲一级av第二区| 欧美色视频一区免费| 无遮挡黄片免费观看| 久久午夜综合久久蜜桃| 视频区欧美日本亚洲| 在线十欧美十亚洲十日本专区| a级毛片在线看网站| 97碰自拍视频| 亚洲精品乱码久久久v下载方式 | 91av网站免费观看| 免费av不卡在线播放| 精品一区二区三区视频在线 | 床上黄色一级片| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| 搡老岳熟女国产| 中文字幕久久专区| cao死你这个sao货| 国产精品综合久久久久久久免费| 精品无人区乱码1区二区| av国产免费在线观看| 午夜激情福利司机影院| 久久久久久久久免费视频了| 亚洲欧美日韩高清在线视频| 色综合亚洲欧美另类图片| 色尼玛亚洲综合影院| 精品人妻1区二区| 欧美丝袜亚洲另类 | 三级男女做爰猛烈吃奶摸视频| 国模一区二区三区四区视频 | 99riav亚洲国产免费| 国产午夜福利久久久久久| 午夜精品久久久久久毛片777| 人人妻,人人澡人人爽秒播| 99久久综合精品五月天人人| 男女做爰动态图高潮gif福利片| 老司机午夜福利在线观看视频| 亚洲美女视频黄频| 亚洲在线观看片| 亚洲av电影在线进入| 岛国在线观看网站| 亚洲精品久久国产高清桃花| 亚洲 欧美 日韩 在线 免费| 狂野欧美白嫩少妇大欣赏| 最好的美女福利视频网| 国产成人欧美在线观看| 热99在线观看视频| 国产探花在线观看一区二区| 精品久久久久久久毛片微露脸| 亚洲午夜精品一区,二区,三区| 久久久久国内视频| 国产爱豆传媒在线观看| 97超级碰碰碰精品色视频在线观看| 男女下面进入的视频免费午夜| 两个人看的免费小视频| 色综合站精品国产| 免费在线观看视频国产中文字幕亚洲| 两个人视频免费观看高清| av天堂中文字幕网| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 国产精品 欧美亚洲| 美女黄网站色视频| 成人精品一区二区免费| 免费看美女性在线毛片视频| 国语自产精品视频在线第100页| 一本一本综合久久| 国产精品影院久久| 99热这里只有精品一区 | 亚洲欧美日韩高清专用| 亚洲精品在线观看二区| 亚洲欧美精品综合久久99| 久久精品国产亚洲av香蕉五月| xxx96com| a级毛片a级免费在线| 婷婷精品国产亚洲av| 99在线视频只有这里精品首页| 亚洲乱码一区二区免费版| www.精华液| 亚洲av美国av| 国产精品亚洲美女久久久| 高清毛片免费观看视频网站| 成人国产一区最新在线观看| 人妻久久中文字幕网| 午夜免费观看网址| 国产 一区 欧美 日韩| 国产精品日韩av在线免费观看| 免费无遮挡裸体视频| 亚洲成人久久爱视频|