• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Up/down-conversion luminescence of monoclinic Gd2O3:Er3+nanoparticles prepared by laser ablation in liquid

    2022-08-01 05:59:24HuaWeiDeng鄧華威andDiHuChen陳弟虎
    Chinese Physics B 2022年7期
    關(guān)鍵詞:華威

    Hua-Wei Deng(鄧華威) and Di-Hu Chen(陳弟虎)

    State Key Laboratory of Optoelectronic Materials and Technologies,School of Electronics and Information Technology,Sun Yat-Sen University,Guangzhou 510275,China

    Keywords: Gd2O3,nanoparticles,luminescence,laser ablation in liquid

    1. Introduction

    Rare earth luminescent materials have attracted much attention in recent years due to the unique electronic structure and physical properties of rare earth ions.[1–4]At present,rare earth luminescent materials have been widely used in lighting, display and other fields.[5–10]Rare earth-doped gadolinium oxide is a kind of good luminescent material.[11]On the one hand,the physical and chemical properties of gadolinium oxide are stable.[12]On the other hand,gadolinium ions can be easily substituted by other rare earth ions to get controllable luminescence.[13]In addition, the phonon energy of gadolinium oxide is low, which contributes to the efficiency of upconversion luminescence.[14]Due to the unique energy level structure of Er3+ion, Er3+ion possesses both up-conversion and down-conversion luminescence properties.[15,16]For this reason, compared with other rare earth ions, erbium ion may have more applications.Tunable fluorescent color is a requirement in the application of fluorescent materials.[17–19]It is worth to mention that there exist cross relaxation processes among adjacent Er3+ions.[20]Therefore, the electron distribution in corresponding energy levels can be easily tuned by simply adjusting the doping concentration of Er3+ions, and thus getting controllable fluorescence. In addition, applying nanomaterials to bioimaging is popular in recent years.[21–27]Due to the good tissue penetration of up-conversion excitation light,the application of up-conversion fluorescent materials in bio-imaging has attracted much attention.[28,29]Erbium-doped gadolinium oxide is a good kind of up-conversion fluorescent material.[30]

    At present, the studies on monoclinic rare earth-doped gadolinium oxide nanoparticles are rare.[15]The most popular methods for synthesizing monoclinic gadolinium oxide are combustion method and solid-state method.[31]The nanoparticles synthesized by combustion method usually float in the air after burning, which may cause dust pollution. While for solid-state method, it is usually not easy to synthesize nanosized particles. To date,more and more researchers have been dedicating to the research of preparing nanomaterials by laser ablation in liquid(LAL)method.[32–43]Compared with solidstate method,monoclinic gadolinium oxide nanoparticles can be easier to synthesize by LAL.[44]Additionally, nanoparticles synthesized by LAL can be easily collected compared with combustion method because they are dispersed in liquid as they are prepared.

    In this work,erbium-doped monoclinic gadolinium oxide nanoparticles were successfully prepared by LAL technique.The nanoparticles can be used as down-conversion phosphors as well as up-conversion phosphors. We got tunable luminescence by simply adjusting the concentration of erbium. In addition,the results of cytotoxicity and fluorescence imaging of living cells indicate that the material has the potential for applications in bioimaging.

    2. Experimental details

    2.1. Material synthesis

    The detailed method of material preparation has been reported in previous work.[45]There are two steps in the preparation process. The first step is to prepare targets. The raw materials (Gd2O3and Er2O3powders) for preparing the targets were purchased from Aladdin Chemistry(China). First,grind the Gd2O3and Er2O3powders with different atomic ratios(Er/(Gd+Er)=0.5%,2%,5%,10%,20%)in a mortar to make them fully mixed. Then an appropriate amount of polyvinyl alcohol (PVA) glue (10 wt%) was added and mixed with the powders.After the powders were dried,they were compressed into tablets. Finally, the tablets were sintered at 1550°C for 6 hours to make ceramic targets. The second step is to synthesize nanoparticles. The target was immersed in deionized water,and then a beam of pulsed laser(wavelength=532 nm,pulse duration = 5 ns, focal length = 200 mm, pulse power=90 mJ,repetition rate=5 Hz)was focused on the target to ablate the target for 15 minutes. Finally, the obtained colloid solution was collected for further characterization.

    2.2. Characterization

    The morphology of the nanoparticles was observed by using a transmission electron microscope (TEM, FEI Tecnai G2 F30). Dynamic light scattering(DLS)measurements were carried out with an EliteSizer Omni instrument(Brookhaven).The crystal structure of the nanoparticles was characterized by using an x-ray diffraction (XRD) diffractometer (Rigaku,SmartLabx). The fluorescence spectrum and fluorescence lifetime were measured by using a fluorescence spectrometer(FLS980,Edinburgh).

    2.3. Cytotoxicity assay

    RAW264.7 cells which were purchased from Forevergen Biotechnology Co., Ltd (Guangzhou, China) were incubated with different concentrations of Gd2O3:2%Er3+nanoparticles(20 μg/mL,40 μg/mL,80 μg/mL,and 160 μg/mL)and culture media (DMEM, as the negative control) in their logarithmic growth period. All groups were cultured in a cell incubator for 24 hours. Cell viability assay was carried out by using the Cell Counting Kit-8 (CCK-8) colorimetric solution. And the absorbance at 450 nm was measured by using a microplate reader(Multiskan Ex Primary EIA V,ThermoFisher,USA).

    2.4. Fluorescence imaging of cells

    RAW264.7 cells were incubated with the Gd2O3:2%Er3+nanoparticles(100 μg/mL)for 12 hours. After co-incubation,the cells were then washed with PBS solution to remove excess particles and dead cells. Fluorescence imaging of the cells was performed on a two-photon confocal laser scanning microscopy(LSM 710 NLO, Carl Zeiss, Jena, Germany)operating at an excitation wavelength of 980 nm.

    3. Results and discussion

    The crystal structure of the samples prepared by LAL were characterized by XRD. The XRD patterns are shown in Fig.1.

    For samples with Er3+concentration of 0.5% to 10%,the XRD patterns match the standard card of monoclinic gadolinium oxide (PDF#42-1465). While for the sample Gd2O3:20%Er3+, there is obvious impurity phase. By comparing with standard PDF cards, it can be found that the impurity phase matches the cubic gadolinium oxide (PDF#11-0604). The results indicate that the crystal structure is monoclinic phase at lower Er3+concentration, while cubic phase will appear in the case of high Er3+concentration. Figure 2(a)is a TEM image of the typical sample Gd2O3:2%Er3+. It can be seen from Fig.2(a)that the sample is nanosized. According to TEM data, a statistical analysis which is inserted in Fig. 2(a) of 160 particles indicated that the average size of sample 2%Er is 22.2±7.6 nm. The particle size distribution of the nanoparticles in solution was monitored by DLS measurement. As shown in Fig.2(b),the peaks of the particle hydrodynamic diameter distribution of Gd2O3:xEr3+(x=0.5%,2%,5%,10%,20%)nanoparticles locate at 214 nm,286 nm,227 nm,239 nm,and 265 nm respectively.

    Fig.3. Excitation spectrum of Gd2O3:2%Er3+ nanoparticles.

    The typical excitation spectrum of Gd2O3:2%Er3+nanoparticles monitored at 548 nm is shown in Fig.3. There are mainly three characteristic absorption peaks in the excitation spectrum. The absorption peaks at 367 nm, 379 nm,and 408 nm correspond to4I15/2→2G9/2,4I15/2→4G11/2,and4I15/2→2H9/2transitions of Er3+ion, respectively. The absorption at 379 nm is the strongest, therefore, 379 nm was chosen as the excitation wavelength for the study of downconversion luminescence. Figure 4(a) are emission visible light spectra of Gd2O3:xEr (x= 0.5%, 2%, 5%, 10%, and 20%)nanoparticles under the excitation of 379 nm. The emission peaks at 527 nm, 548 nm, and 670 nm correspond to2H11/2→4I15/2,4S3/2→4I15/2, and4F9/2→4I15/2transitions of Er3+ion respectively. The near-infrared emission spectra under the excitation of 379 nm were also measured as shown in Fig. 4(b). The emission peaks at 978 nm and 1540 nm correspond to4I11/2→4I15/2and4I13/2→4I15/2transitions of Er3+ion respectively. In addition,it can be seen from Fig. 4(a) that with the increase of the Er3+ion concentration the intensity ratio of 548-nm emission band to 670-nm emission band(I548nm/I670nm)gradually decreases. Thereby fluorescence color was tuned by simply adjusting the concentration of Er3+ion. This phenomenon can be attributed to the increase of the concentration of Er3+ion. When an ion has been excited, there are two types of de-excitation: radiative transition and nonradiative transition. If the exciton undergoes a radiative transition from excited to lower state,photons will be emitted. In addition to luminescence,there is the possibility of nonradiative de-excitation;that is,a process in which the ion can reach its ground state by a mechanism other than the emission of photons.[46]The main nonradiative transition processes include multiphonon emission and energy transfer.[46]According to Dexter’s energy transfer theory,the dependence onR,whereRis the separation between two ions,of the transfer probability can be written as follows:[47,48]

    wheresis a positive integer taking the values of 6,8,10,and those values correspond to dipole–dipole,dipole–quadrupole,and quadrupole–quadrupole interactions,respectively. Therefore, the probability of energy transfer between erbium ions increases with the erbium ion concentration. Energy transfer processes between same ions can be mainly divided into two kinds of processes, namely general resonant transfer and cross-relaxation which is a special case of nonradiative resonant transfer.[49,50]In case of general resonant transfer, the initial de-excited state of sensitizer and the final excited state of activator are same. Therefore, the emission color does not change because the population of electrons in excited state does not change. In case of cross-relaxation, one of the ions transfers a part of its excitation energy to the other center,different from the general resonant transfer,the initial de-excited state of sensitizer and the final excited state of activator are different in cross-relaxation process. Hence, the population of electrons in some excited states can be changed by crossrelaxation, and the emission color changes accordingly. In our experiment, the ratio of red to green intensity changed significantly with the increase of Er3+ion concentration. In general energy transfer processes between same ions, only the cross-relaxation process results in a significant change in color. Therefore, we consider this experimental phenomenon results from the cross-relaxation caused by the concentration change. There are also some articles have reported the crossrelaxation between Er3+ions and suggested that the change of the red–green intensity ratio with the change of Er ion concentration is caused by cross-relaxation.[20,51–54]The fluorescence lifetime of 548 nm of Gd2O3:xEr (x=0.5%, 2%, 5%,10%, and 20%)nanoparticles under the excitation of 379 nm had been measured.The results are shown in Fig.5.The decay curves conform to double exponential fitting[55]

    whereIis fluorescent intensity which is proportional to the counts in Fig.5,tis decay time,τ1andτ2are fitted lifetimes,I0,A1, andA2are constants. The average lifetime values are calculated by the following formula[55]

    As shown in Fig.5,the average lifetime of characteristic emission peak of Er3+decreases with the increase of the amount of Er3+. The significant change in fluorescence lifetime reflects the strong energy transfer between Er3+ions. From the fitting results, there are two decay rates. One of them reflects the decay of a conventional emission. We suppose the other results from the defects on nanoparticles. It has been reported that the defects on nanoparticles can cause double exponential decay rate.[56]Moreover, the oxide nanoparticles synthesized by laser in liquid usually have many defects.[32]There are many studies that aim to alter materials properties by creating defects using laser ablation in liquid(LAL)technology.[32]Those studies are also called laser defect-engineering in liquid(LDL).[32]Therefore,we suppose that the double exponential decay rate may result from the defects on nanoparticles.

    Fig. 4. (a) Visible emission spectra and (b) near infrared emission spectra of Gd2O3:xEr3+ (x=0.5, 2%, 5%, 10%, 20%)nanoparticles under the excitation of 379 nm.

    The up-conversion visible fluorescence spectra of Gd2O3:xEr (x=0.5%, 2%, 5%, 10%, and 20%) nanoparticles under excitation at 980 nm are shown in Fig.6(a). Three main peaks at 527 nm, 548 nm, and 671 nm are observed.Those emission bands are assigned as the2H11/2→4I15/2,4S3/2→4I15/2,and4F9/2→4I15/2transitions of Er3+ion respectively. The near-infrared emission spectra under the excitation of 980 nm were also measured as shown in Fig. 6(b).Since the measurement range cannot include the excitation wavelength, the emission spectrum from 900 nm to 1100 nm was not measured under 980-nm excitation. The emission peak at 1540 nm correspond to4I13/2→4I15/2transition of Er3+ion.It can be seen from the up-conversion emission spectra of all samples that with the increase of the Er3+ion concentration the intensity ratio of 548-nm emission band to 671-nm emission band (I548nm/I670nm) gradually decreases. In our opinion, this phenomenon is caused by the cross-relaxation process between erbium ions. It has been reported that the up-conversion emission intensity and pump power follow the following relationship[57]

    whereIis the emission intensity,Pis the pump power,andnis the number of the photons involved in up-conversion photoluminescence process. The value ofnis the slop of the linear fitting equation which can be obtained by fitting the plots of lnIversus lnP. As shown in Fig. 7, the value ofnfor green emission band at 548 nm is 1.79 and the value ofnfor red emission band at 671 nm is 1.71. The results that the fitted n is close to two suggest that two photons absorption process is involved in green and red up-conversion photoluminescence processes. This deviation from the expected phenomenon is due to the saturation effects.[58]The valuen=2 is the ideal value for pure saturation processes. The number of the luminescence center is a constant and does not change with the pump power. Therefore,the saturation effect is obviously under higher power excitation.[59]In addition, it was reported that higher pump power can increase the competition between linear decay and the upconversion process of the intermediate excited states,which results in a reduced slope.[59,60]

    Fig.5. Decay curves and lifetime values of Gd2O3:xEr3+(x=0.5,2%,5%,10%,20%)nanoparticles(λex=379 nm,λem=548 nm).

    Fig. 6. (a) Visible emission spectra and (b) near-infrared emission spectra of Gd2O3:xEr3+ (x=0.5, 2%, 5%, 10%, 20%)nanoparticles under the excitation of 980 nm.

    Fig.7.Double logarithmic plots of up-conversion emission intensities versus pump powers in Gd2O3:2%Er3+ nanoparticles under 980-nm excitation.

    In order to better understand the luminescence process of up-conversion and down-conversion processes, the energy level diagram of Er3+ions and the possible energy transfer processes are shown in Fig.8. The possible down-conversion process is shown in the left side of Fig.8. Under the excitation of 379 nm,ground-state(4I15/2)electrons of Er3+ions absorb photons and populate the excited states(4G11/2).The electrons in the excitedstate4G11/2can easily relax to the lower excited states (2H11/2,4S3/2, and4F9/2) via no-radiative relaxation process. Finally, the electrons transfer from excited state to ground state through photon emission. For the up-conversion luminescence under excitation of 980 nm,there are mainly two luminescence processes. One is green emission process. First,the ground state electron transfers to the4I11/2state through ground state absorption (GSA), and then the electron in the4I11/2state absorbs another photon and transfers to the4F7/2state. Then, the electron in the4F7/2state transfers to the2H11/2or4S3/2states through non-radiative relaxation. Finally, the electron transfers from the2H11/2or4S3/2states back to the ground state and the energy is released in the form of green luminescence. Another luminescence process is red emission process. The electron in4I11/2state transfers to the lower4I13/2state through non-radiative relaxation,and then it transfers to the4F9/2state by absorbing another photon. Finally, the electron transfers back to the ground state through photon emission. As the concentration of Er3+ions increases,the probability of cross-relaxation between adjacent Er3+ions will increase,thereby the relative intensity of red emission increases and the relative intensity of green emission decreases.For the up-conversion process,the number of electrons occupying the4I11/2energy level greatly increases due to the GSA process. In this case, the cross-relaxation process is mainly4F7/2,4I11/2→4F9/2,4F9/2.

    Fig. 8. The possible scheme of energy transfer process of Gd2O3:Er3+nanoparticles.

    As shown in Fig.6(a),there are five samples,and the visible luminescence intensity of two samples(sample 10%Er and sample 20%Er) is close to that of sample 2%Er. Therefore,we think the visible fluorescence imaging of sample 2%Er is representative and may show the upconversion fluorescence imaging capability of most samples. So, we choose sample 2%Er for fluorescence imaging application. To explore the feasibility of using Gd2O3:Er3+nanoparticles for biological imaging, firstly the biocompatibility of the Gd2O3:Er3+nanoparticles should be evaluated. As shown in Fig. 9,RAW264.7 cells are employed to assay the cells viability of the Gd2O3:2%Er3+nanoparticles. After 24 hours of incubation with RAW264.7 cell,the nanoparticles had no significant effect on the cell viability of RAW264.7 cell. This shows that the cytotoxicity of the products is low. In order to test the capability of the provided Gd2O3:Er3+nanoparticles for bio-imaging,two-photon fluorescent confocal imaging experiment was conducted. Figures 10(a), 10(b), and 10(c) are the bright-filed image,fluorescence image,and merged image of RAW264.7 cells incubated with Gd2O3:2%Er3+nanoparticles respectively. It is obvious that nanoparticles can be swallowed by cells, and no significant damage of cells was found. Additionally, nanoparticles in cells can emit fluorescence under the irradiation of 980-nm laser. Therefore, the provided Gd2O3:Er3+nanoparticle is a potential candidate for bio-imaging.

    In general,color could be represented by the Commission International del’Eclairage (CIE) 1931 chromaticity coordinates.The color coordinates for the phosphors were calculated based on the corresponding emission spectra. Figure 11 is the CIE chromaticity diagram of Gd2O3:xEr(x=0.5%,2%,5%,10%, 20%) under the excitation of 379 nm or 980 nm. As shown in Fig. 11, with the increase of erbium concentration,the color gradually changes from green to orange. The results show that the fluorescent color can be tuned by simply controlling the Er concentration,and the LAL-prepared nanoparticles could be considered as a promising candidate for luminescent material.

    Fig.9. Normalized viability of RAW264.7 cells co-incubated with different concentrations of Gd2O3:2%Er3+ nanoparticles. The mass in this figure is the mass of nanoparticles,means±s.d.,n=8.

    Fig. 10. Fluorescence imaging of RAW264.7 cells incubated with Gd2O3:2%Er3+ nanoparticles. (a) Bright field image; (b) fluorescence image;(c)merged image.

    Fig.11. CIE chromaticity coordinates for Gd2O3:xEr3+ (x=0.5,2%,5%,10%,20%)under 379-nm and 980-nm excitations.

    4. Conclusion

    In summary, monoclinic Er3+-doped Gd2O3nanoparticles were successfully synthesized by LAL technique. The effect of the concentration of Er3+ion on the fluorescence properties has been studied. The fluorescent color can be tuned by controlling the amount of erbium. For cellular fluorescence imaging, the cytotoxicity is low, and the fluorescence in cell is strong enough. The results indicate that the Gd2O3:Er3+nanoparticles synthesized by LAL technique are promising candidates for bio-imaging or other fields that require controllable fluorescence.

    猜你喜歡
    華威
    張?zhí)煲怼度A威先生》的敘述人稱與經(jīng)典生成
    藝術(shù)家(2023年2期)2023-09-13 10:13:09
    中國重汽湖北華威公司:再獲“高新技術(shù)企業(yè)”榮譽
    商用汽車(2020年6期)2020-08-14 06:00:26
    紅門贊
    孔華威:用儒家之道“武裝”創(chuàng)業(yè)者
    華東科技(2016年10期)2016-11-11 06:17:49
    睡眠止疼術(shù)
    20世紀40年代官場中的阿Q
    雪蓮(2015年9期)2015-12-15 20:50:54
    華威先生(節(jié)選)
    英國小鮮肉熱心做慈善
    汽車生活(2014年11期)2014-12-03 12:51:05
    《華威先生》反諷情境下的悖論敘事
    羅文倩 最執(zhí)著的事
    投資與合作(2009年3期)2009-05-08 10:02:10
    丰满乱子伦码专区| 欧美xxxx黑人xx丫x性爽| 国产精品国产三级国产av玫瑰| 久久欧美精品欧美久久欧美| 永久网站在线| 插逼视频在线观看| 亚洲三级黄色毛片| 中文字幕亚洲精品专区| 男女国产视频网站| 一级毛片电影观看 | 黑人高潮一二区| 少妇被粗大猛烈的视频| 哪个播放器可以免费观看大片| 免费看a级黄色片| 亚洲精品aⅴ在线观看| 夜夜看夜夜爽夜夜摸| 精品国产一区二区三区久久久樱花 | 色吧在线观看| 亚洲av.av天堂| 国产私拍福利视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 五月玫瑰六月丁香| 亚洲国产欧洲综合997久久,| 欧美精品国产亚洲| 国产亚洲最大av| 国产视频首页在线观看| 乱人视频在线观看| 听说在线观看完整版免费高清| 青青草视频在线视频观看| 舔av片在线| 免费观看人在逋| 丝袜美腿在线中文| 男人的好看免费观看在线视频| 国产亚洲精品久久久com| av女优亚洲男人天堂| 精品无人区乱码1区二区| 蜜桃久久精品国产亚洲av| 99热这里只有是精品在线观看| 成人无遮挡网站| 丰满少妇做爰视频| 成人无遮挡网站| 亚洲欧美日韩高清专用| av女优亚洲男人天堂| 久久久久性生活片| 欧美3d第一页| 秋霞在线观看毛片| 干丝袜人妻中文字幕| 在线播放国产精品三级| 最近最新中文字幕大全电影3| 日本三级黄在线观看| 亚洲精品456在线播放app| 晚上一个人看的免费电影| 十八禁国产超污无遮挡网站| 欧美潮喷喷水| 国产激情偷乱视频一区二区| 亚洲精华国产精华液的使用体验| 成人午夜精彩视频在线观看| 国产成人午夜福利电影在线观看| 色5月婷婷丁香| 色综合色国产| 精品不卡国产一区二区三区| 国产免费福利视频在线观看| 久久99蜜桃精品久久| av在线观看视频网站免费| 日韩中字成人| 七月丁香在线播放| 国产国拍精品亚洲av在线观看| 亚洲内射少妇av| 成人漫画全彩无遮挡| 卡戴珊不雅视频在线播放| 丝袜美腿在线中文| 插阴视频在线观看视频| 亚洲va在线va天堂va国产| 最近手机中文字幕大全| 日韩亚洲欧美综合| 免费黄色在线免费观看| 非洲黑人性xxxx精品又粗又长| 晚上一个人看的免费电影| 观看免费一级毛片| 精品久久久噜噜| 伦精品一区二区三区| 黄色一级大片看看| 三级经典国产精品| 波野结衣二区三区在线| 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲精品av在线| 尾随美女入室| 人人妻人人澡人人爽人人夜夜 | 九九爱精品视频在线观看| 久久久久久久久久久丰满| 大又大粗又爽又黄少妇毛片口| 日本一本二区三区精品| 午夜久久久久精精品| 亚洲欧美成人精品一区二区| 小说图片视频综合网站| 五月伊人婷婷丁香| 天堂√8在线中文| 成人午夜高清在线视频| 麻豆成人午夜福利视频| 欧美性感艳星| 亚洲精品国产av成人精品| 日韩亚洲欧美综合| 中文字幕亚洲精品专区| 国产精品麻豆人妻色哟哟久久 | 啦啦啦观看免费观看视频高清| 青春草视频在线免费观看| 中文在线观看免费www的网站| 又黄又爽又刺激的免费视频.| 中文字幕人妻熟人妻熟丝袜美| 老师上课跳d突然被开到最大视频| 久久久a久久爽久久v久久| 可以在线观看毛片的网站| 在线播放无遮挡| 欧美区成人在线视频| 国产精品综合久久久久久久免费| 又粗又爽又猛毛片免费看| 自拍偷自拍亚洲精品老妇| 日韩中字成人| 丰满人妻一区二区三区视频av| 床上黄色一级片| 国产黄色小视频在线观看| 国产精华一区二区三区| 国产亚洲一区二区精品| 一级毛片久久久久久久久女| 两个人视频免费观看高清| 69人妻影院| 大香蕉97超碰在线| 国产中年淑女户外野战色| 亚洲不卡免费看| 99热精品在线国产| 国产精品99久久久久久久久| 免费av不卡在线播放| 边亲边吃奶的免费视频| 亚洲精品,欧美精品| 久久久成人免费电影| or卡值多少钱| 国产精品日韩av在线免费观看| 日韩强制内射视频| 18禁裸乳无遮挡免费网站照片| 亚洲欧美一区二区三区国产| 国产在视频线在精品| 97超碰精品成人国产| 中文亚洲av片在线观看爽| 日本与韩国留学比较| 免费不卡的大黄色大毛片视频在线观看 | 日韩av在线免费看完整版不卡| 美女国产视频在线观看| 九九热线精品视视频播放| 国产成人a∨麻豆精品| 乱系列少妇在线播放| 男女那种视频在线观看| 伦理电影大哥的女人| 亚洲精品日韩在线中文字幕| 色综合亚洲欧美另类图片| 成人午夜高清在线视频| 三级毛片av免费| 老女人水多毛片| 免费看光身美女| 波多野结衣高清无吗| 免费电影在线观看免费观看| av在线播放精品| 免费看av在线观看网站| 国产欧美日韩精品一区二区| 波野结衣二区三区在线| 亚洲欧美日韩无卡精品| 亚洲18禁久久av| 欧美成人a在线观看| 久久99热6这里只有精品| 国产探花在线观看一区二区| 国语自产精品视频在线第100页| 欧美又色又爽又黄视频| 99在线人妻在线中文字幕| 精品久久久久久久末码| 亚洲av不卡在线观看| 久久久久免费精品人妻一区二区| 1000部很黄的大片| 日本wwww免费看| 精品免费久久久久久久清纯| 亚洲最大成人手机在线| 国产91av在线免费观看| 午夜免费男女啪啪视频观看| 小说图片视频综合网站| 中文欧美无线码| 91久久精品国产一区二区三区| 午夜老司机福利剧场| 成年免费大片在线观看| 日本一本二区三区精品| 岛国毛片在线播放| 亚洲精品,欧美精品| 一级毛片电影观看 | 国产成人精品一,二区| 亚洲电影在线观看av| 搡女人真爽免费视频火全软件| 一级二级三级毛片免费看| 在线免费十八禁| 久久久a久久爽久久v久久| 国产黄片美女视频| 亚洲成人中文字幕在线播放| 狂野欧美激情性xxxx在线观看| 禁无遮挡网站| 又爽又黄a免费视频| 国产毛片a区久久久久| 蜜臀久久99精品久久宅男| 长腿黑丝高跟| 亚洲最大成人手机在线| 国产又黄又爽又无遮挡在线| 欧美日韩综合久久久久久| 久久这里只有精品中国| 99国产精品一区二区蜜桃av| 中文字幕免费在线视频6| 日日摸夜夜添夜夜添av毛片| 国产免费一级a男人的天堂| 免费电影在线观看免费观看| 久久韩国三级中文字幕| 久久久国产成人精品二区| 午夜免费男女啪啪视频观看| 午夜福利在线观看免费完整高清在| 婷婷色麻豆天堂久久 | 人妻少妇偷人精品九色| 国产色婷婷99| 夜夜看夜夜爽夜夜摸| 久久婷婷人人爽人人干人人爱| 一夜夜www| 久久精品国产99精品国产亚洲性色| 97超碰精品成人国产| 国产三级中文精品| 少妇的逼好多水| 在线免费十八禁| 啦啦啦韩国在线观看视频| 你懂的网址亚洲精品在线观看 | 超碰97精品在线观看| 色5月婷婷丁香| 日韩av不卡免费在线播放| 99久久中文字幕三级久久日本| 一二三四中文在线观看免费高清| 男人狂女人下面高潮的视频| 日韩在线高清观看一区二区三区| 日韩人妻高清精品专区| 亚洲内射少妇av| www.色视频.com| 亚洲av福利一区| 99久久精品国产国产毛片| 最近最新中文字幕大全电影3| www.av在线官网国产| 五月伊人婷婷丁香| 亚洲婷婷狠狠爱综合网| 国产成人a区在线观看| 久久久久久九九精品二区国产| 色综合站精品国产| 一级黄片播放器| 日韩欧美在线乱码| 婷婷色麻豆天堂久久 | 国产成人a区在线观看| 欧美日韩一区二区视频在线观看视频在线 | 久久99蜜桃精品久久| 国产一区二区在线av高清观看| 亚洲国产精品成人久久小说| 成人综合一区亚洲| 国产精品久久久久久久电影| 国产成人91sexporn| 午夜老司机福利剧场| 直男gayav资源| 三级经典国产精品| 国内揄拍国产精品人妻在线| 一个人观看的视频www高清免费观看| 如何舔出高潮| 九草在线视频观看| 精品国产三级普通话版| 嫩草影院入口| 国产av一区在线观看免费| 国语自产精品视频在线第100页| 免费观看a级毛片全部| 亚洲av熟女| 国产大屁股一区二区在线视频| 成人亚洲欧美一区二区av| 精品久久久久久久久亚洲| 两个人视频免费观看高清| 欧美高清性xxxxhd video| 国产白丝娇喘喷水9色精品| 久久久久久伊人网av| 国产在视频线精品| 国产成人精品一,二区| 国产一级毛片七仙女欲春2| 国产成人福利小说| 亚洲成人久久爱视频| 99久久精品一区二区三区| 国产极品天堂在线| 综合色丁香网| 中文字幕亚洲精品专区| 免费av不卡在线播放| 久久婷婷人人爽人人干人人爱| 精品欧美国产一区二区三| 又黄又爽又刺激的免费视频.| 精品一区二区三区人妻视频| 精品久久国产蜜桃| 人妻系列 视频| 日韩,欧美,国产一区二区三区 | 成人鲁丝片一二三区免费| 成年版毛片免费区| 国产一区亚洲一区在线观看| 成人av在线播放网站| 亚洲欧美成人精品一区二区| 日产精品乱码卡一卡2卡三| 我要看日韩黄色一级片| 99热全是精品| 国产激情偷乱视频一区二区| 中文字幕av成人在线电影| 又粗又硬又长又爽又黄的视频| 男人和女人高潮做爰伦理| 啦啦啦韩国在线观看视频| 亚洲激情五月婷婷啪啪| 青春草亚洲视频在线观看| 国产视频内射| 人人妻人人澡人人爽人人夜夜 | 久久精品91蜜桃| av又黄又爽大尺度在线免费看 | 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 有码 亚洲区| 国产亚洲一区二区精品| 网址你懂的国产日韩在线| 国产伦精品一区二区三区视频9| 亚洲四区av| 看黄色毛片网站| 哪个播放器可以免费观看大片| 国产精品久久久久久av不卡| 国产日韩欧美在线精品| 日韩av不卡免费在线播放| 免费看美女性在线毛片视频| 欧美成人午夜免费资源| 老司机影院毛片| 国产精品人妻久久久影院| 久久久久性生活片| 国产毛片a区久久久久| 美女黄网站色视频| 国产亚洲av嫩草精品影院| 中文字幕av在线有码专区| 一区二区三区高清视频在线| 舔av片在线| 欧美另类亚洲清纯唯美| 日本免费在线观看一区| 变态另类丝袜制服| 成人性生交大片免费视频hd| 亚洲精品一区蜜桃| 国产高清不卡午夜福利| 国产高清视频在线观看网站| 国产成人aa在线观看| 亚洲天堂国产精品一区在线| 国产精品综合久久久久久久免费| 亚洲av一区综合| 九九爱精品视频在线观看| 午夜福利高清视频| 最近视频中文字幕2019在线8| 久久精品久久久久久久性| 在线a可以看的网站| 亚洲最大成人av| 中文字幕人妻熟人妻熟丝袜美| 神马国产精品三级电影在线观看| 亚洲五月天丁香| 美女被艹到高潮喷水动态| 国内揄拍国产精品人妻在线| 国产老妇伦熟女老妇高清| 精品酒店卫生间| 亚洲精品色激情综合| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看 | 久久精品熟女亚洲av麻豆精品 | 日本黄大片高清| 性插视频无遮挡在线免费观看| 久久久欧美国产精品| 在线观看av片永久免费下载| 99九九线精品视频在线观看视频| 亚洲天堂国产精品一区在线| 2021天堂中文幕一二区在线观| 日本一二三区视频观看| 尾随美女入室| 高清日韩中文字幕在线| 麻豆精品久久久久久蜜桃| 国语自产精品视频在线第100页| 九九热线精品视视频播放| 在线播放国产精品三级| 婷婷色麻豆天堂久久 | 一级黄色大片毛片| 我要搜黄色片| 亚洲丝袜综合中文字幕| 亚洲综合色惰| 婷婷色av中文字幕| 欧美一区二区精品小视频在线| av在线播放精品| 国产精品人妻久久久久久| 久久久久久大精品| 久久久久免费精品人妻一区二区| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| 卡戴珊不雅视频在线播放| 国产精品一区二区在线观看99 | 久99久视频精品免费| 日韩人妻高清精品专区| 国产亚洲一区二区精品| av国产免费在线观看| 中文字幕免费在线视频6| 国产精品av视频在线免费观看| 亚洲精品一区蜜桃| 在线免费观看的www视频| 亚洲av成人精品一区久久| 黑人高潮一二区| 免费观看精品视频网站| 中文字幕熟女人妻在线| 日韩,欧美,国产一区二区三区 | 一区二区三区高清视频在线| 少妇熟女欧美另类| 国产真实伦视频高清在线观看| 国产单亲对白刺激| 亚洲av成人精品一二三区| 精品久久久久久久久久久久久| 国产精品国产三级国产av玫瑰| 成人美女网站在线观看视频| 亚洲国产欧美人成| 国产精品人妻久久久久久| 免费看美女性在线毛片视频| 白带黄色成豆腐渣| 亚洲va在线va天堂va国产| 日本黄大片高清| 亚洲人与动物交配视频| 国产 一区精品| 国产精品蜜桃在线观看| 七月丁香在线播放| 国产探花在线观看一区二区| 舔av片在线| 日韩国内少妇激情av| 久久韩国三级中文字幕| 天堂中文最新版在线下载 | 又粗又硬又长又爽又黄的视频| av专区在线播放| 亚洲最大成人av| 国产探花极品一区二区| 亚洲五月天丁香| 免费观看在线日韩| 免费黄色在线免费观看| www日本黄色视频网| 国产久久久一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲综合精品二区| ponron亚洲| 国产亚洲一区二区精品| 国产极品精品免费视频能看的| 一区二区三区乱码不卡18| 日本黄大片高清| 国产中年淑女户外野战色| 成人三级黄色视频| 色尼玛亚洲综合影院| 精品午夜福利在线看| a级一级毛片免费在线观看| 最近视频中文字幕2019在线8| 亚洲欧美日韩东京热| 国模一区二区三区四区视频| 纵有疾风起免费观看全集完整版 | 午夜精品国产一区二区电影 | 国产熟女欧美一区二区| 亚洲欧美中文字幕日韩二区| 国产真实伦视频高清在线观看| 九九爱精品视频在线观看| 黑人高潮一二区| 看黄色毛片网站| 久久精品久久精品一区二区三区| 99视频精品全部免费 在线| 麻豆成人午夜福利视频| 91aial.com中文字幕在线观看| 又爽又黄无遮挡网站| 久久99热这里只有精品18| 夜夜爽夜夜爽视频| av在线天堂中文字幕| 三级经典国产精品| 亚洲国产色片| 国产 一区精品| av黄色大香蕉| 九九热线精品视视频播放| 国产精品乱码一区二三区的特点| 最后的刺客免费高清国语| 国内少妇人妻偷人精品xxx网站| 超碰97精品在线观看| 久久99热这里只有精品18| 啦啦啦观看免费观看视频高清| 国国产精品蜜臀av免费| 成人高潮视频无遮挡免费网站| 亚洲综合精品二区| 2022亚洲国产成人精品| av线在线观看网站| 少妇的逼好多水| 亚洲在久久综合| 亚洲va在线va天堂va国产| 亚洲激情五月婷婷啪啪| 精品久久久久久成人av| 久久精品影院6| 亚洲,欧美,日韩| 97热精品久久久久久| 男的添女的下面高潮视频| 又爽又黄无遮挡网站| 国产精品一及| 国产成人午夜福利电影在线观看| av卡一久久| 中文天堂在线官网| 中文字幕制服av| 爱豆传媒免费全集在线观看| 色5月婷婷丁香| 性插视频无遮挡在线免费观看| 亚洲精品aⅴ在线观看| 女人被狂操c到高潮| 我的女老师完整版在线观看| 国产精品人妻久久久久久| 国产精品久久久久久av不卡| 欧美精品一区二区大全| 亚洲av电影不卡..在线观看| 美女黄网站色视频| 欧美日韩国产亚洲二区| 插阴视频在线观看视频| 自拍偷自拍亚洲精品老妇| 精品久久久久久久久久久久久| 成人特级av手机在线观看| 看十八女毛片水多多多| 日韩 亚洲 欧美在线| 男人舔女人下体高潮全视频| 欧美潮喷喷水| 丝袜美腿在线中文| 国产高潮美女av| 老司机福利观看| 国产一区亚洲一区在线观看| 亚洲在久久综合| 亚洲四区av| 91aial.com中文字幕在线观看| 老女人水多毛片| 国产亚洲最大av| 人人妻人人澡人人爽人人夜夜 | 嘟嘟电影网在线观看| 亚洲精品色激情综合| 伦精品一区二区三区| 日本一二三区视频观看| 国产真实伦视频高清在线观看| 日本一本二区三区精品| 日本av手机在线免费观看| 国产一级毛片七仙女欲春2| 成人二区视频| 国产亚洲91精品色在线| 黄色一级大片看看| 乱系列少妇在线播放| 久久亚洲精品不卡| 小蜜桃在线观看免费完整版高清| 久久午夜福利片| 午夜日本视频在线| 精品人妻一区二区三区麻豆| 欧美性感艳星| 亚洲中文字幕日韩| 国产精品伦人一区二区| 国产av不卡久久| 国产精品.久久久| 狂野欧美白嫩少妇大欣赏| 菩萨蛮人人尽说江南好唐韦庄 | 五月玫瑰六月丁香| 国产成人freesex在线| av女优亚洲男人天堂| 少妇被粗大猛烈的视频| 亚洲av中文字字幕乱码综合| 一区二区三区免费毛片| 国产精品福利在线免费观看| 天堂网av新在线| 99国产精品一区二区蜜桃av| 国产又黄又爽又无遮挡在线| 久久综合国产亚洲精品| 亚洲av日韩在线播放| 欧美另类亚洲清纯唯美| 久久久久久大精品| 在线天堂最新版资源| 男人狂女人下面高潮的视频| 一边亲一边摸免费视频| 波野结衣二区三区在线| 韩国高清视频一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 国产免费男女视频| 成人av在线播放网站| 亚洲怡红院男人天堂| 中文资源天堂在线| 禁无遮挡网站| 久久精品国产自在天天线| 亚洲人成网站在线观看播放| 久久久久九九精品影院| 哪个播放器可以免费观看大片| 成人欧美大片| 精品久久久久久久末码| 国产精品福利在线免费观看| 日韩视频在线欧美| 天天躁日日操中文字幕| 免费看a级黄色片| 国产色婷婷99| 亚洲精品影视一区二区三区av| 人人妻人人澡欧美一区二区| 午夜精品一区二区三区免费看| av视频在线观看入口| 亚洲精品自拍成人| 国产亚洲av片在线观看秒播厂 | 插阴视频在线观看视频| 精华霜和精华液先用哪个| 欧美变态另类bdsm刘玥| 男插女下体视频免费在线播放| www日本黄色视频网| 中文字幕av在线有码专区| 午夜福利视频1000在线观看| 婷婷色综合大香蕉| 国产又色又爽无遮挡免| 日本欧美国产在线视频| 亚洲欧洲国产日韩| 久久久欧美国产精品| 2021少妇久久久久久久久久久| eeuss影院久久| 赤兔流量卡办理| 毛片女人毛片|