• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exploration of structural,optical,and photoluminescent properties of(1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications

    2022-06-29 09:23:34ZeinHeibaMohamedBakrMohamedNouraFaragandAliBadawi
    Chinese Physics B 2022年6期

    Zein K Heiba Mohamed Bakr Mohamed Noura M Farag and Ali Badawi

    1Physics Department,Faculty of Science,Ain Shams University,Cairo,Egypt

    2Physics Department,Faculty of Science,Taibah University,Al-Madina al Munawarah,Saudi Arabia

    3Department of Physics,College of Science,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia

    4Department of Physics,University College of Turabah,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia

    Keywords: NiCo2O4 and PbS,nanocomposite,FTIR,optical,photoluminescence

    1. Introduction

    The rapid progress of nanocomposites materials enables a high degree of control over their optical and electronic characteristics.[1]The NiCo2O4(nickel cobaltite; NCO)is of a mixed metal oxide spinel type, where nickel atoms occupy the octahedral sites while cobalt ones distribute over both octahedral and tetrahedral sites.[2]The NCO has attractive features such as low cost, low toxicity, eco-environmentally and natural abundance.[2]Lead sulfide (PbS) is a member of IV–VI group chalcogenide semiconductors has optical and optoelectronic characteristics made it able to be used in solar cells,optoelectronic devices,photoconductors,sensors,and infrared detector devices applications.[3]Nanocomposites of different oxides and/or sulfides reveal the interesting characteristics as compared with those of parent compounds. For instant,the 304 stainless steel was protected upon being coated by MnS/TiO2nanotube films under simulated solar light.[4]The 0.2ZnMn2O4/0.8ZnFe2O4nanocomposite sample revealed a good nonlinear optical behavior at low frequency.[5]The CuCoOx/BiVO4multifunctional catalyst was applied to the organics’ degradation, water oxidation and O2reduction under visible light.[6]Moreover, NiO/NiCo2O4tubular structures with surface microporosity could have various applications such as the catalytic oxidation of harmful gases.[7]For(1-x)CuCo2O4-xCuS nanocomposites, the absorption spectrum ofx=0.1 sample displays a plateau in the visible region, that has a constant value in comparison with those of other composite samples.[8]The Ni/NiCo2O4nanocomposite displayed a high nonlinearity and has tailorable linear and nonlinear optical features, which is beneficial to device applications.[9]The improvement in the electrical characteristics together with a reduction in the optical band gap of CeO2combined with PbS makes the resulting nanocomposite suitable for the solar cell uses.[10]The NCO@ZrO2exhibited an excellent performance in solar thermochemical procedure.[11]Ullahet al.demonstrated that the coupling of PbS with TiO2extended their photo response to visible range.[12]Adding PbS to MoS2adapted its fast response to the speed of mechanical exfoliation in detecting NO2.[13]The intercalation of PbS into the layered space of K2La2Ti3O10greatly enhanced the absorption edge and the photocatalytic activity.[14]

    In the present study,the(1-x)NiCo2O4/xPbS(x=0,0.1,0.15, 0.2) nanocomposite samples are synthesized by the hydrothermal method and the thermolysis method. The effect of alloying NCO and PbS phases in a heterostructure nanocomposite matrix on the structure, optical, and photoluminescent characteristics are studied in detail using x-ray diffraction,Fourier-transform infrared spectroscopy,transmission electron microscope, photoluminescence, and UV-diffused absorption techniques.

    2. Methods and materials

    Nano NiCo2O4sample was synthesized by dissolving a stoichiometric ratio of(nickel and cobalt)nitrates and urea in deionized water (35 ml) under magnetic stirring for 30 min.Then the solution was transferred into a teflon-lined stainlesssteel autoclave and heated at 120°C for one day. The autoclave allowed the solution to be cooled down to a room temperature. The formed solution was centrifuged and washed many times using deionized water and ethanol. The resulting powder was dried and annealed in an electric oven at 350°C for 2 h(see Fig.1(a)). To synthesize the(1-x)NiCo2O4/xPbS(x=0, 0.1, 0.15, 0.2), the first step was to dissolve a stoichiometric ratio (1:1) of lead acetate and thiourea in 10 ml of deionized water in the presence the desired amount (x) of nano NiCo2O4sample. The solution was stirred in a magnetic stirrer for 0.5 h then annealed at 250°C for 2 h to avoid oxidizing the PbS (see Fig. 1(b)). All produced samples were explored by the techniques mentioned in Table 1. Tauc’s and Beer–Lambert’s formulas were used to find the direct optical bandgap[15]

    whereA,d,Eg,B,hν,λg,h,c, (D1=[B(hc)n-1d/2.303],D2),λ,andRare the absorbance,thickness,optical band gap,constant,incident photon energy,the wavelength related to the optical gap,Planck’s constant,light velocity,constants represent the reflection,the wavelength,and the reflectance,respectively.

    Investigation technique Devices and conditions X-ray diffraction(XRD) PANalytical diffractometer,copper source,LaB6 standard for instrumental correction High-resolution transmission electron microscope(TEM)JEOL JEM-2100,200 keV Fourier-transform infrared spectroscopy(FTIR) FTIR spectrometer(Bruker Tensor 27)UV diffuse reflectance Double-beam spectrophotometer(Shimadzu UV-VIS-2600)with attached integrating sphere assembly Photoluminescence spectrofluorometer Jasco FP-6500,Japan,Xenon lamb,150 Watt

    3. Results and discussion

    3.1. Structural analysis

    Using a line-detector, high quality x-ray diffraction (XRD) patterns have been recorded for the nanocomposite samples(1-x)NiCo2O4/xPbS (x=0, 0.1, 0.15, and 0.2) and depicted in Fig. 2(a). Accurate phase identification, using search-match program X’Pert HighScore Plus,can be performed due to the high quality of the diffraction patterns. Rietveld quantitative phase analysis[17]sreveals a single cubic spinel phase for the pristine NiCo2O4(x=0.0),while for compositesx=0.1,0.15,and 0.2 three phases are identified: cubic spinel NiCo2O4as a major phase(>95%),PbS,and PbSO4as minor phases. Table 2 lists the resulting structural and microstructure parameters obtained from Rietveld analysis and figure 2(b)shows the resulting diffraction pattern fitting. To determine the crystallite size of the minor phases, first the size is constrained within the size of the major phase NCO,then in subsequent final refinement the size parameter is freely refined. From Table 2 it may follow that the phase percentages of PbS and PbSO4are less than composition parameter (x) used for preparation which suggests the incorporation of some Pb and S ions into the NiCo2O4lattice. The suggestion may be confirmed by the slight increase in the NiCo2O4cell parameter due to the insertion of Pb ions which are larger than that of Ni or Co ones. The crystallite size of the NiCo2O4phase is isotropic and almost the same(≈15 nm)for all samples(see Table 2). For PbSO4phase,the crystallite size is≈17 nm while the PbS phase is large as given in Table 2. The TEM images given in Fig.3 show very uniform particle morphology throughout the sample and good crystallinity. The particle size is almost isotropic with a very narrow size distribution as indicated by Rietveld analysis.

    x NiCo2O4 PbS PbSO4 Size(°A) a(°A) %Size(°A) a(°A) %Size(°A) a(°A) b(°A) c(°A) %0.0 14.1 8.0989(4) 100– – –– – – –0.1 15.2 8.0999 97.3 143 5.933(1) 2.0 17.2 8.488 5.397 6.961 0.7 0.15 16.1 8.1007 95.4 116 5.935 2.8 17.1 8.462 5.392 6.954 1.8 0.2 16.3 8.0992 95.2 125 5.935 2.9 17.1 8.460(1) 5.390 6.953 1.9

    Fig.3. TEM images with different magnifications for 0.8NiCo2O4/0.2PbS sample.

    Infrared spectroscopy is used as an effective tool for investigating the local structure of transition metal oxides.[18]The measured Fourier-transform infrared (FTIR) spectra for the (1-x)NCO/xPbS nanocomposites are given in Fig. 4.There exist two sharp vibrational modes at 545.9 cm-1and 648.9 cm-1which can be assigned to primarily motion of the octahedral and tetrahedral metal–O,respectively.[18–20]For the composite samples (x=0.1, 0.15, 0.2), the spectra contain two extra weak peaks observed around 1034 cm-1and 1160 cm-1which are characteristic peaks of the heteropolar diatomic molecules of Pb–S band.[21–23]Because the bond of Pb–S is mainly an electrovalent bond, the FTIR spectra of the samples do not show strong bands associated with Pb–S stretching nor those with bending vibrations.

    3.2. Optical properties

    The diffused absorption data for (1-x)NCO/xPbS nanocomposite samples are displayed in Fig. 5. As revealed from the graph,NCO sample exhibits a substantial amount of absorption in a range of 400 nm–800 nm similar to the absorption amount of CoMn2O4sample.[24]This observation reveals the importance of this sample in visible light driven catalyst.The wide absorption of NCO sample may be caused by the absorption of the surface plasmons of nanoparticle and coupling of plasmon modes of the neighboring particle.[25]The absorption spectrum is modified due to NCO doped with PbS.The absorbance of NCO/xPbS nanocomposites decreases in the UV range while it increases in the visible range as compared with NCO as shown in Fig.5(a).This behavior indicates that the absorption of the(1-x)NCO/xPbS nanocomposite is affected due to the presence of PbS in the sample. In contrary to the NCO@ZrO2composite,the NCO is predominant as reported in Ref.[11]. Furthermore, the absorption slightly increases as the amount of PbS and PbSO4phases increase in the nanocomposite matrix(see Table 2).

    The values of direct optical band gap (Eg) for different samples are obtained from extrapolating the linear part of the plots between (αhν)2versus hνto zero absorption (see Fig.6). As revealed from the graph,NCO has two band gaps of 1.35 eV and 2.33 eV which are in agreement with the values in Ref. [26]. These two energy gaps are ascribed to the electron movement from the O-2p valence band to the transition metals-3d(t2g,eg)conduction bands.[27]Furthermore,the two bands are attributed to the presence of high spin and low spin sates of Co3in the NCO sample.[27]As the NCO alloyed with PbS,the optical band gap increases to(3.3 eV,4.06 eV),(3.33 eV, 4.1 eV), and (3.27 eV, 4.15 eV) as the amount of PbS becomes 10%, 15%, and 20%, respectively. The optical band gap of ZnO increases as the amount of Pb doping augments.[28]As indicated from XRD analysis in Table 2,the nanocomposite contain PbS and PbSO4beside the main phase of NCO.In addition,some Pb and S atoms are introduced into NCO lattice as indicated by XRD results. All these variables affect the values of the optical energy gaps.

    The refractive indexnand absorption indexk, related to refraction and absorption,respectively,rely on the interference between the samples under investigation and incident light:nis related to the phase velocity and associated with the dispersion, whilekis linked to the coefficient of mass reduction and allows the determining of dissipation rate of the electromagnetic wave in the medium. The changing of the extinction coefficient (k) with the wavelength (λ) for (1-x)NCO/xPbS nanocomposite samples is displayed in Fig.7.

    In the case of NCO sample,kincreases as the wavelength augments, and so does the scenario in the (1-x)NCO/xPbS nanocomposite samples. In addition, as the percentage of PbS increases in the nanocomposite samples,thekvalues decrease at the lower wavelengths while they increase at higher wavelengths. The enhancement or decrease inkvalue may be linked to the strengthening or weakening of the absorption process depending on whether the excess free carriers exists or not.[29]The variation of the refractive index (n)with the wavelength for the (1-x)NCO/xPbS nanocomposite samples is shown in Fig. 7(b). Thenvalue for the NCO and(1-x)NCO/xPbS nanocomposite samples decrease as the wavelength is increased. Therefore, thenvalues in all samples describe the degrees of the normal dispersion. Furthermore,thenvalue in the nanocomposite sample is higher than that of NCO sample; the situation is reversed in a higher wavelength range. In addition, as the content of PbS increases in the nanocomposite sample, thenvalue decreases slightly. The difference of value ofnamong different samples may be caused by the variations in the polarizability of the samples.[30]The variations in the real part(εr)and imaginary part(εi)of the dielectric constant and the optical conductivity(σopt)for(1-x)NCO/xPbS nanocomposite samples are shown in Fig. 8. Bothεrandεicurves exhibit similar manners to thenandkcurves, respectively for the corresponding samples. The value ofεrdecreases while the values ofεiandσoptincrease as the wavelength augments for each of all samples. Also, the values ofεrof the nanocomposite samples in a lower wavelength range are higher than those of NCO samples. The values ofεiandσoptof the nanocomposite samples in a lower wavelength range are lower than those of NCO samples. In a higher wavelength range,the behaviors ofεr,εi,andσoptin the nanocomposite samples are reversed as compared with those of the NCO samples. The values ofεr,εi,andσoptincrease slightly as the amount of PbS increases in nanocomposite matrix. The variations of the values ofεrandσoptare linked to the changing of the density of the localized states in an optical bandgap of the host material and theεivaries with the modification of the dipole movement.[31]

    The nonlinear optical (NLO) characteristics such asχ1andn2play a crucial role in realizing the high performance communication networks devices. The values ofχ1,χ3, andn2are dependent on the wavelengthλfor all nanocomposite samples and shown in Fig. 9. The three parameters vary in a similar way, where the three parameters decrease withλincreasing in NCO and nanocomposite samples. The values ofχ1,χ3, andn2values of the nanocomposite samples are higher than those of NCO samples. In addition,the values ofχ1,χ3, andn2decrease slightly as the percentage of PbS increase in the nanocomposite matrix. The changing in the nonlinear parameters may be due to the variation in the number of defect centers and hence the changing in the local polarizabilities present in the different samples. The improvement in the values ofχ3andn2in the nanocomposite samples makes the samples deserve to further studied so as to be used in numerous NLO and future photonic applications depending on the frequency range.

    3.3. Photoluminescence analysis

    Figure 10(a) shows the photoluminescence (PL) spectra emitted from (1-x)NCO/xPbS (x=0.0, 0.1, 0.15, and 0.2)system under an excitingλof 300 nm at room temperature.The PL intensity increases as the amount of PbS becomes 10%and 15%in the nanocomposite system relative to NCO sample,while it decreases as the content of PbS increases further in the matrix. The intensification or suppression in the luminescence intensity may be caused by the increasing or decreasing of the recombination rate between the photo-induced electrons(e-)and holes(h+)pairs which depends on the trap levels existent in the bandgaps of the different samples.[32]A similar result was observed in two-dimensional PbS/amorphous MoSxheterojunction composites.[33]The enhancement and reduction in the PL intensity of the different samples may make these materials able to possess the LED and photocatalytic applications.Using Gaussian function,the PL spectrum for each of all samples can be decomposed into ultraviolet color and violet colos(see Figs. 8(b)–8(e)). The direct recombination of the electrons via an exciton-exciton collision process produces the ultraviolet color and violet color.[34]

    4. Conclusions

    The pristine NiCo2O4(NCO) has a single cubic spinel phase, while the (1-x)NCO/xPbS nanocomposite samples withx=0.1, 0.15, and 0.2 have three phases: cubic spinel NCO as a major phase (>95%), PbS, and PbSO4as minor phases. Some Pb and S ions are incorporated into the NCO lattice. The cell parameter of NCO phase increases as the amount of PbS augments in the nanocomposite sample. The crystallite size of the NCO phase is isotropic and almost the same (≈15 nm) for all samples. For the PbSO4phase, the crystallite size is≈17 nm while for PbS phase it is very large (~130 nm). The FTIR spectra reveal the heteropolar diatomic molecules of Pb–S band existent in the nanocomposite’s samples. The NCO sample exhibits a substantial amount of absorption in the visible light range. For the NCO alloyed with PbS, the absorption decreases in the UV range while it increases in the visible range. The NCO has two band gaps of 1.35 eV and 2.33 eV which increase to (3.3 eV, 4.06 eV),(3.33 eV,4.1 eV),and(3.27 eV,4.15 eV)upon increasing PbS to 10%, 15%, and 20%, respectively. In all samples, the values ofn,εr,and the nonlinear optical behavior decrease while the values ofk,εi, andσoptincrease as the wavelength augments. For the PbS alloyed with NCO,the dielectric constant,optical conductivity, and the nonlinear optical parameters are enhanced as compared with counterparts for the NCO sample.As the percentage of PbS increases, the values ofk,n,εr,εi,σopt, and NLO decrease slightly. The PL spectra for all samples can be decomposed into ultraviolet and violet colors. The enhancement and reduction in the PL intensity of the different samples may make these materials able to possess the LED and photocatalytic applications.

    Acknowledgment

    The authors thank the support of Taif University Researchers Supporting Project Number TURSP-2020/12, Taif University,Taif,Saudi Arabia.

    久久久久久久久久久免费av| 久久精品久久精品一区二区三区| 少妇熟女欧美另类| 一区二区日韩欧美中文字幕 | 久久久国产一区二区| 亚洲国产最新在线播放| 中文字幕免费在线视频6| 国产不卡av网站在线观看| 久久人妻熟女aⅴ| 免费播放大片免费观看视频在线观看| 日韩成人av中文字幕在线观看| 免费黄色在线免费观看| 久久久a久久爽久久v久久| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 久久久久久久精品精品| 国产成人aa在线观看| www日本在线高清视频| 欧美亚洲 丝袜 人妻 在线| 永久网站在线| 日本黄大片高清| 伊人亚洲综合成人网| 边亲边吃奶的免费视频| 一边亲一边摸免费视频| 曰老女人黄片| 美女中出高潮动态图| 国产精品久久久久久久电影| 国产欧美另类精品又又久久亚洲欧美| 国产精品熟女久久久久浪| 在线观看人妻少妇| 男女免费视频国产| 日韩大片免费观看网站| √禁漫天堂资源中文www| 国产精品久久久久久精品古装| 免费黄色在线免费观看| 国产69精品久久久久777片| 亚洲成人一二三区av| 国产成人欧美| 三上悠亚av全集在线观看| 国产精品蜜桃在线观看| 热re99久久精品国产66热6| 如何舔出高潮| 黄色配什么色好看| 久久这里只有精品19| 啦啦啦视频在线资源免费观看| 蜜桃国产av成人99| 日韩,欧美,国产一区二区三区| 日本av免费视频播放| 中文字幕最新亚洲高清| 亚洲精品第二区| 亚洲人成网站在线观看播放| 亚洲精品自拍成人| 欧美日韩视频高清一区二区三区二| a 毛片基地| 久久久国产欧美日韩av| 欧美最新免费一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 曰老女人黄片| 高清视频免费观看一区二区| 丝袜人妻中文字幕| 两个人看的免费小视频| 香蕉精品网在线| 亚洲性久久影院| 日本与韩国留学比较| 国产精品一区二区在线不卡| 国产无遮挡羞羞视频在线观看| 午夜免费男女啪啪视频观看| 国产极品天堂在线| 国精品久久久久久国模美| 久久久久久人人人人人| 免费av不卡在线播放| 日韩制服骚丝袜av| 99久国产av精品国产电影| 亚洲欧美色中文字幕在线| 成人免费观看视频高清| 欧美精品国产亚洲| 国产精品一区www在线观看| 国产一区有黄有色的免费视频| 中文字幕另类日韩欧美亚洲嫩草| 日韩av免费高清视频| 我要看黄色一级片免费的| 国产精品久久久av美女十八| 国产精品 国内视频| 一级a做视频免费观看| 国产 精品1| 久热这里只有精品99| 成人毛片a级毛片在线播放| 一本—道久久a久久精品蜜桃钙片| 丝袜美足系列| 免费少妇av软件| 成人毛片60女人毛片免费| 一级a做视频免费观看| 亚洲精品第二区| 80岁老熟妇乱子伦牲交| 日本黄色日本黄色录像| 成年美女黄网站色视频大全免费| freevideosex欧美| 只有这里有精品99| 国产一区二区在线观看日韩| 一区二区av电影网| 免费av中文字幕在线| 亚洲,一卡二卡三卡| 99热全是精品| 久久亚洲国产成人精品v| 久久国产精品大桥未久av| 肉色欧美久久久久久久蜜桃| 中文字幕人妻丝袜制服| 搡老乐熟女国产| 免费久久久久久久精品成人欧美视频 | 中文字幕人妻丝袜制服| 亚洲美女黄色视频免费看| 日韩av免费高清视频| 亚洲国产精品一区三区| 最近2019中文字幕mv第一页| 中文字幕制服av| 久久婷婷青草| 插逼视频在线观看| 桃花免费在线播放| 97精品久久久久久久久久精品| 18禁国产床啪视频网站| 亚洲欧美成人综合另类久久久| 国产免费视频播放在线视频| av黄色大香蕉| 久久久久久久久久久免费av| 欧美精品国产亚洲| av电影中文网址| 亚洲国产欧美日韩在线播放| 夫妻性生交免费视频一级片| 亚洲欧洲日产国产| 青春草国产在线视频| 久久鲁丝午夜福利片| 菩萨蛮人人尽说江南好唐韦庄| 我要看黄色一级片免费的| 久久这里有精品视频免费| 超色免费av| 啦啦啦中文免费视频观看日本| 国产深夜福利视频在线观看| 成人毛片60女人毛片免费| 久久久久人妻精品一区果冻| 十八禁高潮呻吟视频| 寂寞人妻少妇视频99o| 国产精品欧美亚洲77777| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久免费av| 欧美国产精品一级二级三级| 如何舔出高潮| 一级片免费观看大全| 青青草视频在线视频观看| 久久久久久人妻| 中文字幕人妻丝袜制服| 青青草视频在线视频观看| 国产在线一区二区三区精| 欧美xxⅹ黑人| 精品第一国产精品| 丁香六月天网| 91国产中文字幕| 在线观看免费高清a一片| 亚洲第一av免费看| 在线观看免费日韩欧美大片| 美国免费a级毛片| h视频一区二区三区| 如日韩欧美国产精品一区二区三区| 大码成人一级视频| 国产精品一二三区在线看| 性高湖久久久久久久久免费观看| 777米奇影视久久| 麻豆精品久久久久久蜜桃| 伦理电影大哥的女人| 日韩三级伦理在线观看| 蜜桃国产av成人99| 99精国产麻豆久久婷婷| 久久这里只有精品19| 欧美性感艳星| a 毛片基地| 又黄又爽又刺激的免费视频.| 色网站视频免费| 久久99精品国语久久久| 亚洲av男天堂| 人人澡人人妻人| a 毛片基地| av在线老鸭窝| 亚洲av电影在线进入| 精品国产一区二区三区久久久樱花| 午夜日本视频在线| 亚洲成国产人片在线观看| 热re99久久国产66热| 男女无遮挡免费网站观看| 欧美日韩视频精品一区| 人妻少妇偷人精品九色| 免费高清在线观看日韩| 国产综合精华液| 在线观看人妻少妇| 亚洲天堂av无毛| 欧美人与性动交α欧美软件 | 成人影院久久| 国产深夜福利视频在线观看| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| 成年动漫av网址| 成人黄色视频免费在线看| 2021少妇久久久久久久久久久| 欧美老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 亚洲精品中文字幕在线视频| 寂寞人妻少妇视频99o| 久久久久久久精品精品| 久热这里只有精品99| 中文字幕人妻熟女乱码| 在线免费观看不下载黄p国产| 国产精品.久久久| 多毛熟女@视频| 午夜精品国产一区二区电影| 婷婷色麻豆天堂久久| 卡戴珊不雅视频在线播放| 亚洲三级黄色毛片| 少妇人妻久久综合中文| 亚洲成人一二三区av| 亚洲av日韩在线播放| 天美传媒精品一区二区| 久久久精品免费免费高清| 日韩伦理黄色片| 老司机影院成人| 亚洲国产日韩一区二区| 亚洲欧洲精品一区二区精品久久久 | 亚洲美女视频黄频| 久久精品久久久久久久性| 你懂的网址亚洲精品在线观看| 亚洲情色 制服丝袜| tube8黄色片| 日本色播在线视频| 久久久久国产精品人妻一区二区| 熟女电影av网| 中文字幕av电影在线播放| h视频一区二区三区| 国产麻豆69| 99热6这里只有精品| 国产有黄有色有爽视频| 免费观看无遮挡的男女| 亚洲,欧美精品.| 日韩大片免费观看网站| 男人舔女人的私密视频| 国产精品成人在线| 大片免费播放器 马上看| 在线亚洲精品国产二区图片欧美| 精品人妻熟女毛片av久久网站| 国产一区二区三区av在线| 黑人欧美特级aaaaaa片| 一级黄片播放器| 午夜福利乱码中文字幕| 国产免费福利视频在线观看| 亚洲av福利一区| 国产精品熟女久久久久浪| 久久精品国产亚洲av天美| 午夜福利乱码中文字幕| 亚洲精品乱码久久久久久按摩| 国产国拍精品亚洲av在线观看| 王馨瑶露胸无遮挡在线观看| 国产在线一区二区三区精| 成人亚洲欧美一区二区av| 色婷婷av一区二区三区视频| 午夜福利视频精品| 极品少妇高潮喷水抽搐| 精品人妻熟女毛片av久久网站| 亚洲美女黄色视频免费看| 看免费av毛片| 久久人人97超碰香蕉20202| 久久精品人人爽人人爽视色| 国产一区二区三区av在线| 国产高清国产精品国产三级| 久久人人爽人人片av| 国产一区二区三区综合在线观看 | 亚洲精华国产精华液的使用体验| 亚洲综合色网址| 狠狠精品人妻久久久久久综合| 免费高清在线观看视频在线观看| 国产 精品1| 不卡视频在线观看欧美| 免费播放大片免费观看视频在线观看| 亚洲av电影在线进入| 日本-黄色视频高清免费观看| 五月玫瑰六月丁香| 国产无遮挡羞羞视频在线观看| 欧美日本中文国产一区发布| 国产极品天堂在线| 观看美女的网站| 男人添女人高潮全过程视频| 亚洲天堂av无毛| 欧美国产精品va在线观看不卡| 久久久久国产网址| 成人国语在线视频| 国产精品国产三级国产专区5o| 中文字幕人妻丝袜制服| 人人妻人人添人人爽欧美一区卜| 伊人久久国产一区二区| 国产白丝娇喘喷水9色精品| 国国产精品蜜臀av免费| 国产深夜福利视频在线观看| 国产极品天堂在线| 欧美人与性动交α欧美软件 | 大片电影免费在线观看免费| 久久久久久人妻| 22中文网久久字幕| 校园人妻丝袜中文字幕| 一级爰片在线观看| 美女主播在线视频| a级毛片黄视频| 亚洲在久久综合| 亚洲精华国产精华液的使用体验| 黄片无遮挡物在线观看| av电影中文网址| 中国美白少妇内射xxxbb| av又黄又爽大尺度在线免费看| 国产日韩欧美视频二区| 美女脱内裤让男人舔精品视频| 久久人人爽av亚洲精品天堂| 日日啪夜夜爽| 永久免费av网站大全| av天堂久久9| 欧美亚洲日本最大视频资源| 亚洲久久久国产精品| av在线观看视频网站免费| 久久 成人 亚洲| 丁香六月天网| 亚洲精品视频女| 黄片播放在线免费| 十八禁高潮呻吟视频| av网站免费在线观看视频| 啦啦啦中文免费视频观看日本| 黑人巨大精品欧美一区二区蜜桃 | 日韩免费高清中文字幕av| 久久国产精品男人的天堂亚洲 | 色婷婷久久久亚洲欧美| 国产精品人妻久久久久久| 欧美日韩精品成人综合77777| 国语对白做爰xxxⅹ性视频网站| 日韩精品免费视频一区二区三区 | 中文字幕制服av| 两性夫妻黄色片 | 母亲3免费完整高清在线观看 | 蜜桃国产av成人99| 亚洲熟女精品中文字幕| 18禁动态无遮挡网站| 国产 一区精品| 国产69精品久久久久777片| 汤姆久久久久久久影院中文字幕| 秋霞在线观看毛片| 在线观看免费日韩欧美大片| 亚洲成人一二三区av| 久久99蜜桃精品久久| 建设人人有责人人尽责人人享有的| 亚洲一区二区三区欧美精品| 一级黄片播放器| 国产黄色免费在线视频| 麻豆精品久久久久久蜜桃| 最新的欧美精品一区二区| 欧美日韩av久久| 欧美精品一区二区大全| 男人爽女人下面视频在线观看| 日本免费在线观看一区| 在线 av 中文字幕| 交换朋友夫妻互换小说| 水蜜桃什么品种好| 亚洲精品自拍成人| 一级黄片播放器| 亚洲精品久久久久久婷婷小说| 亚洲人与动物交配视频| 久久久久久久久久久久大奶| 免费黄色在线免费观看| 两性夫妻黄色片 | 91午夜精品亚洲一区二区三区| 国产精品久久久久久精品电影小说| 永久免费av网站大全| 曰老女人黄片| 这个男人来自地球电影免费观看 | 美女内射精品一级片tv| 国产熟女欧美一区二区| 色婷婷久久久亚洲欧美| 男女啪啪激烈高潮av片| 国产精品国产三级国产专区5o| 欧美日韩成人在线一区二区| 国产精品一二三区在线看| 街头女战士在线观看网站| 超碰97精品在线观看| 成人手机av| 欧美日韩av久久| 国产高清不卡午夜福利| 日韩成人av中文字幕在线观看| 亚洲第一av免费看| 亚洲欧洲国产日韩| 国产乱来视频区| 久久女婷五月综合色啪小说| 一级毛片电影观看| 精品亚洲乱码少妇综合久久| 91国产中文字幕| a级毛片黄视频| 亚洲成色77777| 天堂8中文在线网| 日韩一区二区视频免费看| 男女边吃奶边做爰视频| 亚洲国产精品999| 久久综合国产亚洲精品| 国产精品.久久久| 18禁在线无遮挡免费观看视频| 人体艺术视频欧美日本| 曰老女人黄片| 国产黄频视频在线观看| 久久久久久人人人人人| 蜜臀久久99精品久久宅男| 性色avwww在线观看| 午夜福利,免费看| 国产激情久久老熟女| 国产精品蜜桃在线观看| 国产免费一级a男人的天堂| 欧美性感艳星| 又黄又爽又刺激的免费视频.| 制服诱惑二区| 国产片特级美女逼逼视频| 免费大片黄手机在线观看| 色哟哟·www| 久久精品国产亚洲av天美| 中文欧美无线码| 人妻少妇偷人精品九色| 99国产综合亚洲精品| 久久青草综合色| 另类亚洲欧美激情| 成人漫画全彩无遮挡| 日本黄色日本黄色录像| 两个人看的免费小视频| 日韩精品免费视频一区二区三区 | 美国免费a级毛片| 精品人妻熟女毛片av久久网站| www.熟女人妻精品国产 | 久久99蜜桃精品久久| 在现免费观看毛片| 久久国产精品大桥未久av| 久久国产亚洲av麻豆专区| av视频免费观看在线观看| 成人国语在线视频| 国产深夜福利视频在线观看| 香蕉国产在线看| 狂野欧美激情性bbbbbb| 寂寞人妻少妇视频99o| 精品久久久精品久久久| 看十八女毛片水多多多| 精品少妇久久久久久888优播| 精品一区在线观看国产| 精品亚洲成a人片在线观看| 男人操女人黄网站| 久久久久精品性色| 免费观看av网站的网址| 亚洲,一卡二卡三卡| 亚洲,欧美精品.| 有码 亚洲区| 亚洲图色成人| 波多野结衣一区麻豆| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 久久国内精品自在自线图片| 国产免费现黄频在线看| 日本av手机在线免费观看| 赤兔流量卡办理| 午夜免费鲁丝| 欧美日韩一区二区视频在线观看视频在线| 成年人午夜在线观看视频| 亚洲av中文av极速乱| 女人被躁到高潮嗷嗷叫费观| 女人精品久久久久毛片| 美女中出高潮动态图| 视频区图区小说| 国产深夜福利视频在线观看| 高清av免费在线| 免费在线观看完整版高清| av卡一久久| 亚洲av日韩在线播放| 黄网站色视频无遮挡免费观看| 精品国产乱码久久久久久小说| 一个人免费看片子| 久久午夜综合久久蜜桃| 夫妻性生交免费视频一级片| 欧美精品亚洲一区二区| 哪个播放器可以免费观看大片| av在线app专区| 亚洲欧洲日产国产| 黄色一级大片看看| 亚洲综合精品二区| 亚洲精品久久久久久婷婷小说| 18禁观看日本| 亚洲精品乱久久久久久| 欧美变态另类bdsm刘玥| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频| 国产男人的电影天堂91| 精品视频人人做人人爽| 一级a做视频免费观看| 午夜免费男女啪啪视频观看| 在线观看国产h片| 成人午夜精彩视频在线观看| 男女高潮啪啪啪动态图| 精品人妻在线不人妻| 搡老乐熟女国产| 免费在线观看完整版高清| 亚洲欧洲精品一区二区精品久久久 | 91成人精品电影| 精品一区二区三区四区五区乱码 | 99久久中文字幕三级久久日本| 欧美变态另类bdsm刘玥| 美女福利国产在线| 一级片免费观看大全| 在线亚洲精品国产二区图片欧美| 又粗又硬又长又爽又黄的视频| 亚洲久久久国产精品| 亚洲精品国产av成人精品| 日产精品乱码卡一卡2卡三| 亚洲av在线观看美女高潮| 97在线视频观看| 女性生殖器流出的白浆| 午夜激情av网站| 最新中文字幕久久久久| 久久精品aⅴ一区二区三区四区 | 曰老女人黄片| 日韩中字成人| 日韩视频在线欧美| 国产av国产精品国产| 亚洲av日韩在线播放| 欧美亚洲日本最大视频资源| 777米奇影视久久| 精品少妇黑人巨大在线播放| 国产在视频线精品| 超色免费av| 在线观看人妻少妇| 国产成人av激情在线播放| 九九在线视频观看精品| 三级国产精品片| 日日撸夜夜添| 国产成人一区二区在线| 国内精品宾馆在线| 国产 一区精品| 国产免费又黄又爽又色| 校园人妻丝袜中文字幕| 成人毛片60女人毛片免费| 18禁动态无遮挡网站| 国产男女内射视频| 女人久久www免费人成看片| 日韩 亚洲 欧美在线| 又大又黄又爽视频免费| 久久精品aⅴ一区二区三区四区 | 少妇 在线观看| 菩萨蛮人人尽说江南好唐韦庄| kizo精华| 春色校园在线视频观看| 男人操女人黄网站| 亚洲国产看品久久| 美女福利国产在线| 丝袜人妻中文字幕| av在线老鸭窝| av在线播放精品| 一级片免费观看大全| 老熟女久久久| 亚洲国产精品一区三区| 欧美xxⅹ黑人| 久久久久久久国产电影| 一级毛片电影观看| 九九在线视频观看精品| 亚洲精品中文字幕在线视频| 日韩av免费高清视频| 国产免费现黄频在线看| 欧美成人午夜精品| 国产一区亚洲一区在线观看| www.av在线官网国产| 国产精品久久久久久精品电影小说| 视频区图区小说| 日韩在线高清观看一区二区三区| 春色校园在线视频观看| 五月伊人婷婷丁香| 欧美变态另类bdsm刘玥| 最近手机中文字幕大全| 欧美日韩精品成人综合77777| 久久久精品免费免费高清| 午夜老司机福利剧场| 午夜av观看不卡| 免费人成在线观看视频色| 久久 成人 亚洲| 这个男人来自地球电影免费观看 | 久久精品国产亚洲av天美| 成人18禁高潮啪啪吃奶动态图| 精品熟女少妇av免费看| 狠狠精品人妻久久久久久综合| 国产亚洲最大av| 插逼视频在线观看| 欧美成人精品欧美一级黄| 丰满乱子伦码专区| 99精国产麻豆久久婷婷| 国产一级毛片在线| 欧美少妇被猛烈插入视频| 大陆偷拍与自拍| 亚洲精品456在线播放app| 国国产精品蜜臀av免费| 在线天堂最新版资源| 亚洲国产成人一精品久久久| 亚洲精品国产色婷婷电影| 香蕉丝袜av| 午夜精品国产一区二区电影| 国产视频首页在线观看| 寂寞人妻少妇视频99o| 亚洲美女搞黄在线观看| 国产精品女同一区二区软件| 成人毛片a级毛片在线播放| 97在线人人人人妻| 久久99热这里只频精品6学生| 日韩av不卡免费在线播放| 日本91视频免费播放| 免费观看无遮挡的男女| 欧美亚洲 丝袜 人妻 在线| 青春草视频在线免费观看| 热re99久久国产66热|