• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure

    2022-06-29 08:55:40JunyuChen陳俊宇NaZhao趙娜JiacunWu武珈存KaiyueWu吳凱玥FurongZhang張芙蓉JunxiaRan冉俊霞PengyingJia賈鵬英XuexiaPang龐學(xué)霞andXuechenLi李雪辰
    Chinese Physics B 2022年6期
    關(guān)鍵詞:芙蓉

    Junyu Chen(陳俊宇) Na Zhao(趙娜) Jiacun Wu(武珈存) Kaiyue Wu(吳凱玥) Furong Zhang(張芙蓉)Junxia Ran(冉俊霞) Pengying Jia(賈鵬英) Xuexia Pang(龐學(xué)霞) and Xuechen Li(李雪辰)

    1College of Physics Science&Technology,Hebei University,Baoding 071002,China

    2School of Mathematics and Physics,Handan University,Handan 056005,China

    3Institute of Life Science&Green Development,Hebei University,Baoding 071002,China

    Keywords: plasma jet,oxygen addition,fast photography,optical emission spectra

    1. Introduction

    Without the need for any vacuum device, atmospheric pressure plasma jet can produce a kind of remote plasma in open atmosphere, which is also referred to as a plasma plume. Being abundant with active species in plasma plume,[1,2]plasma jet has extensive applications, such as material synthesis,[3–5]surface modification,[6–8]ozone generation,[9]water purification,[10]methane conversion,[11]sterilization,[12–14]catalysis,[15]and medicine.[16,17]

    For an inert-gas plasma jet in a barrier discharge configuration,three distinct operating modes are witnessed with varying input power, which include a chaotic mode, a bullet one,and a continuous one.[18]For the plasma jet operated in the bullet mode, a fast-moving bullet-like plasma is observed in plasma plume when imaged by fast photography.[19]The formation of plasma bullet is attributed to a streamer regime.[20]In addition to discharge regime, various discharge characteristics, such as plume length,[21–24]plume morphology,[25–30]and plasma parameters,[27–29,31–33]are investigated for inertgas plasma jet.

    In fact, oxygen is often added to promote the production of active species,[34]thus increasing the plasma treatment efficiency.[35]However, oxygen addition is harmful for plume length.[36,37]Besides,vibrational and gas temperatures increase with increasing oxygen content of a helium jet.[37]Due to the electronegativity of oxygen molecules, electron density decreases with increasing oxygen content of a helium jet.[38]For low-cost argon plasma jet,[39,40]a constant oxygen dose has been investigated.[41–43]In fact, discharge aspects are influenced by oxygen concentration(CO). Preliminary results have revealed thatCOaffects plume length,[36,37]electron density and gas temperature.[37,38]Detailed investigations are needed for the influence ofCOon the discharge characteristic of an argon plasma jet.

    In this paper, a single-electrode argon plasma jet is employed to investigate in detail the influence of oxygen addition on the discharge characteristics including plume morphology, discharge intensity, atomic oxygen concentration, electron density and electron temperature.

    2. Experimental setup

    The plasma jet is in a single-electrode geometry, whose schematic diagram is drawn in Fig. 1. A 12.0 cm long tungsten needle (both radius and tip radius are 0.5 mm) is poised at the axis of a quartz tube with inner and outer diameters of 5.0 mm and 8.0 mm, respectively. The needle tip is aligned with the quartz-tube nozzle. Argon and oxygen, both of which have a purity of 99.999%, are regulated by two independent gas flow meters (Sevenstar CS200A). Hence, oxygen content (CO, volume ratio) in argon is variable with a total flow rate (Q). A homemade power source that produces a sinusoidal voltage with an amplitude(Vp)of 10.0 kV and a frequency(f)of 3.0 kHz is electrically connected with the plasma jet. The voltage is detected by a probe (Tektronix P6015A).A lens is used to focus integrated light emitted from the jet, which is then collected by a photomultiplier tube(PMT)(ET 9130/100B).Utilizing a 4-channel digital oscilloscope(Tektronix DPO4104),waveforms of applied voltage and integrated light signal can be simultaneously obtained.In addition,a digital camera(Canon EOS 5D Mark IV)and an electron-multiplying intensified charge-coupled device(emICCD,PI MAX4)are utilized to capture the plume images.A spectrometer(ACTON SP2750)installed with an emICCD(PI MAX4) at the outlet slit is used to collect optical emission spectrum. A maximal spectral resolution is realized with a grating of 2400 grooves/mm. Temporally resolved spectrum is obtained with a method similar to that reported previously by us.[30]A TTL signal to trigger the emICCD is displayed along with the light emission signal by the digital oscilloscope. Hence, the optical gate of the emICCD is presented on the oscilloscope with reference to the discharge. Through varying the gate time,temporally resolved spectra can be obtained. The spatially resolved spectrum is realized by varying the detection position of an optical fiber connecting with the entrance slit of the spectrometer.

    3. Results and discussion

    Images of the argon plume are presented in Fig. 2 with varyingCO. When the working gas is pure argon(CO=0),the plasma jet emanates a solid plume, which is composed of a white part and a purple one from side-view images(left row).The white part shortens with increasingCO(0.2% to 0.4%).However,the length of the whole plume keeps almost constant with varyingCOin the small range. The purple part is diffuse,which transits to a hollow void whenCOreaches 0.6%. The morphology transition is observed more clearly from the frontview images(right row).Here,the central spot comes from the white part. Obviously, the cross section of the focus plane is diffuse with a lowCO. A purple ring resulting from the hollow structure is observed withCOof 0.6%. In brief, there is a transition from a diffuse morphology to a hollow structure with increasingCO.

    Figure 3 illustrates waveforms of applied voltage and light emission signal from the plasma plume with varyingCO.For the sake of convenience,we define positive discharge and negative one,which correspond to the discharges initiating at positive negative voltages, respectively. When the working gas is pure argon, some positive and negative discharges appear underVpof 10.0 kV,which is similar to that reported by Ouyanget al.[44]With increasingCO(0.2% and 0.4%), the number of positive and negative discharges decreases per voltage cycle. At the same time,the maximal intensity of positive discharges increases, while that of negative ones decreases.For the hollow plume(CO=0.6%),one can see that only one positive discharge initiates per voltage cycle and negative discharge is almost ignorable.

    Fast photography implemented by an ICCD was often used to reveal the propagation of streamers in a plasma jet.[1]Through using the emICCD that has a higher amplification than ICCD, negative discharge and positive one with varyingCOare imaged, as illustrated in Fig. 4. Discharge duration is around 300 ns, andtexpof 1.0 μs is used to capture single discharge image in Fig. 4. Apparently, diffuse negative discharge extends along the argon channel, which looks like a cone. With increasingCO,the length of the cone decreases. In contrast to the cone-like discharge,positive discharge is slimmer. The left side seems like a thin column, which appears mainly at the axis of the argon stream. The right side tends to be stochastically branched. Moreover, the thin column shortens and the branched part lengthens with increasingCO.WhenCOreaches 0.6%,the branches appear at the boundary layer of the argon channel (or the interface between the argon stream and the surrounding air),[27]which results in the hollow structure of the plume. From Fig. 4, it can be found that negative and positive discharges contribute to the white and purple parts of the argon plume,respectively.

    Figure 5 illustrates 300 nm to 900 nm scanned optical emission spectra of the argon plasma plume. The spectra mainly include the lines from OH (A2Σ+→X2Π) at 308.9 nm,[45]and those from the second positive system of N2(C3Πu→B3Πg).[46]Both of them come from the diffusion of H2O and N2in ambient air.[47,48]Besides, there are lots of spectral lines of Ar I(2p3→1s4,738.4 nm;2p1→1s2,750.4 nm; 2p6→1s5, 763.7 nm; 2p2→1s3, 772.7 nm) from the 4p→4s transitions, which are clearly presented in the spectra.[49]Moreover, the dissociation of oxygen molecule contributes to atomic oxygen emission at 844.6 nm.[50]

    Optical actinometry is used to investigate atomicCO,which is positively related with intensity ratio of the spectral lines (844.6 nm to 750.4 nm) in a small range ofCO.[21,51]From temporally and spatially resolved spectra,the spatial distribution of atomicCOcan be obtained for negative discharge and positive one,respectively,as indicated in Fig.6. Figure 6 reveals that with increasingCO,averaged atomic oxygen concentration (reflected by the intensity ratio) increases for both positive and negative discharges. Compared with that of negative discharge, atomic oxygen concentration of positive discharge is higher.AtomicCOincreases with increasing distance away from the needle tip. The above mentioned phenomenon can be explained as follows.

    With increasingCO, more oxygen molecules participate in the discharge process, leading to the production of more oxygen atoms by electron impact dissociation.[21]As a result,atomicCOincreases asCOincreases. On account of the same reason, more oxygen molecules that diffuse into the working gas contribute to the growing atomicCOwith increasing distance from the needle tip. Moreover,the difference of atomicCObetween negative discharge and positive one may come from their different plasma parameters (density and temperature of electrons), which will be shown later. With lower plasma parameters,less oxygen molecules will be dissociated by electron impact,leading to lower atomicCOin negative discharge.

    Intensity ratios of spectral lines can reflect plasma parameters,[52]such as density and temperature for electrons.[49,53]The line intensity ratios (738.4 nm to 763.7 nm, positively related with electron density) and(763.7 nm to 772.7 nm, positively related with electron temperature)as functions ofCOare shown in Fig.7. Here,intensity ratios are calculated from integrated spectra,which reflect space-averaged density and temperature of electrons. Apparently, with increasingCO, average electron density (reflected by the ratio of 738.4 nm to 763.7 nm) presents a decreasing tendency,while average electron temperature(the ratio of 763.7 nm to 772.7 nm) increases. Compared with those of negative discharge, average density and temperature of electrons are higher for positive discharge.

    As is well known, both negative and positive discharges of plasma jet operate in a streamer regime.[1,20,24,27–30,54]Compared with negative discharge(anode-directed streamer),positive discharge (cathode-directed streamer) has a higher electric field strength(E).[29,55]Electrons are mainly produced in the plasma through the impact of argon atoms by electrons,which is dominated by the first Townsend ionization coefficient (α).[56,57]αis a function ofE.[58]A higherEtends to produce a plasma with a higher electron density. Therefore,positive discharge has a higher electron density than negative discharge. Besides, electron temperature depends onEbecause electrons obtain more energy in one mean free path under a strongerE. Hence, a plasma with a higher electron temperature can be generated with a higherE.[59]Due to the discrepancy ofE,negative discharge is lower than positive one in plasma parameters(density and temperature of electrons).

    Long-life active species,such as metastable argon atoms(Ar*),play an important role in gas discharge.[60]Since residual Ar*can greatly decrease the field threshold for breakdown(Eth)due to stepwise ionization,[60]which is described by the following reactions:

    where e=electron,Ar=ground state argon atom,and Ar+=positive argon ion. Consequently, the forthcoming discharge is inclined to initiate in the argon channel abundant with Ar*.Resultantly,negative discharge always extends along and covers the left side of the argon channel because the previous discharge (positive discharge) distributes the channel axis with Ar*. Based on the same reason, the left side of positive discharge appears in the axis of the argon stream because abundant residual Ar*are concentrated in the axis, which result from the previous positive and negative discharges.

    Compared with the left side,more oxygen molecules exist at the right side of the argon stream due to the diffusion of ambient air. Oxygen molecules can quench Ar*through the following reaction:[60,61]

    Therefore,the right side of the argon stream has a lower concentration of Ar*. As a result,a positive discharge can only be initiated under a strongerEat the right side. Numerical simulation has revealed that streamer bifurcates under a stronger field.[62]Consequently, the right side of positive discharge is branched. With increasingCOof the working gas,more residual Ar*will be quenched,[26,61]leading to a higherEthof the argon stream. This leads to the shortening column and lengthening branched part of positive discharge. In fact, the argon stream is surrounded by negative oxygen ions,[63]which can provide the forthcoming discharge with seed electrons through detachment. This factor will decreaseEthof the boundary layer. With the increasedEthof the argon stream and the reducedEthin the interfacial layer,discharge tends to appear in the interfacial layer whenCOreaches a certain value(0.6%).

    As mentioned above,Ethmonotonously increases with increasingCO. This means that discharge will initiate under a strongerEwith a higherCO. Since electron temperature depends onE, electron temperature is higher under a strongerE. Hence, electron temperature increases for both negative and positive discharges with increasingCO. Coefficientαis not only a function ofE, but also related with gas ingredient.[55]The quenching of Ar*by oxygen molecules decreases the number of electrons produced by stepwise ionization, thus decreasingαcoefficient.[60]Moreover, some electrons are attached by oxygen molecules, which also decrease electron density in the plasma. Consequently, electron density decreases for both positive and negative discharges with increasingCO.

    4. Conclusion

    In this paper, the influence of oxygen addition on discharge characteristics has been investigated in detail for a single-electrode argon plasma jet. Within a small range ofCO(≤0.6%), the emanated plasma plume keeps almost constant in length, which is composed of the left white and the right purple parts. With increasingCO,the purple part transits from the diffuse morphology to a hollow void. During this process,the number of positive and negative discharges decreases per voltage cycle. At the same time,the maximal intensity shows an increasing trend for positive discharge, while a decreasing trend for negative one. Moreover,emICCD images reveal that negative discharge looks like a cone,while positive discharge is composed of a column and some branches. With increasingCO, both the cone and the column turn shorter, however,the branches become longer. From optical emission spectra,atomicCO, density and temperature of electrons are investigated as functions ofCO. Finally, these variation trends have been analyzed qualitatively.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 51977057 and 11875121), the Natural Science Foundation of Hebei Province, China(Grant Nos. A2020201025 and A2019201100), the Natural Science Interdisciplinary Research Program of Hebei University(Grant Nos. DXK202011 and DXK201908), Post-graduate’s Innovation Fund Project of Hebei Province, China (Grant Nos. CXZZBS2019023 and CXZZBS2019029), and Postgraduate’s Innovation Fund Project of Hebei University(Grant Nos.HBU2021ss063 and HBU2021bs011).

    猜你喜歡
    芙蓉
    彎彎歌
    俞百圣《臨風(fēng)》《清水出芙蓉》《風(fēng)竹》
    逢雪宿芙蓉山主人
    培育芙蓉李摘窮帽,拓展鄉(xiāng)村游奔小康
    紅土地(2018年11期)2018-12-19 05:10:54
    我的芙蓉李樹(shù)
    金菊對(duì)芙蓉 本意 (外二首)
    清水芙蓉不自夸
    金秋(2016年24期)2016-05-03 18:15:20
    福州芙蓉園的文采風(fēng)流
    故夢(mèng)染上芙蓉色
    輕嗅芙蓉妝
    火花(2015年6期)2015-02-27 07:43:00
    给我免费播放毛片高清在线观看| 床上黄色一级片| 国产成人精品婷婷| 久久久久九九精品影院| 中文在线观看免费www的网站| 亚洲不卡免费看| 欧美变态另类bdsm刘玥| 男女啪啪激烈高潮av片| 黑人高潮一二区| 午夜福利在线观看吧| 99久国产av精品| 色5月婷婷丁香| 亚洲一区二区三区色噜噜| 免费av毛片视频| 99国产精品一区二区蜜桃av| 亚洲第一电影网av| 免费无遮挡裸体视频| 村上凉子中文字幕在线| 国产黄色小视频在线观看| 99热6这里只有精品| 成人一区二区视频在线观看| 国产成人精品久久久久久| www.色视频.com| 在线观看美女被高潮喷水网站| 三级毛片av免费| 国产欧美日韩精品一区二区| 国产精品综合久久久久久久免费| 男女边吃奶边做爰视频| 秋霞在线观看毛片| 搞女人的毛片| 国产精品av视频在线免费观看| 69人妻影院| 啦啦啦啦在线视频资源| 国产精品一区二区三区四区免费观看| 一区福利在线观看| 一本久久精品| 成人综合一区亚洲| 久久精品人妻少妇| 日韩强制内射视频| 免费看日本二区| 国产免费男女视频| 国产伦精品一区二区三区视频9| av视频在线观看入口| 国产一级毛片在线| 国产高清不卡午夜福利| 五月玫瑰六月丁香| 狂野欧美白嫩少妇大欣赏| 国产av麻豆久久久久久久| 12—13女人毛片做爰片一| 国产亚洲91精品色在线| 欧美xxxx性猛交bbbb| 99久久精品一区二区三区| 国产一级毛片七仙女欲春2| 国产精品,欧美在线| 中国美女看黄片| 直男gayav资源| 欧美不卡视频在线免费观看| 亚洲av.av天堂| 欧美成人一区二区免费高清观看| 国产成人精品一,二区 | 91久久精品国产一区二区成人| 国产一级毛片在线| 亚洲av二区三区四区| 热99在线观看视频| 国产精品嫩草影院av在线观看| 国产成人a区在线观看| 精品不卡国产一区二区三区| 欧美精品国产亚洲| 欧美xxxx性猛交bbbb| 国产精品人妻久久久久久| 在线观看av片永久免费下载| 亚洲欧洲日产国产| 狂野欧美白嫩少妇大欣赏| 国产精品人妻久久久久久| 国产av在哪里看| 我要搜黄色片| 又爽又黄a免费视频| 国产熟女欧美一区二区| 国产成人精品婷婷| 成人二区视频| 女同久久另类99精品国产91| 亚洲av免费在线观看| 国产精华一区二区三区| 联通29元200g的流量卡| 在线a可以看的网站| 精华霜和精华液先用哪个| 日本免费a在线| 成人鲁丝片一二三区免费| 亚洲国产日韩欧美精品在线观看| 3wmmmm亚洲av在线观看| 亚洲av免费高清在线观看| 观看免费一级毛片| 日本黄大片高清| 国产国拍精品亚洲av在线观看| 亚洲欧美中文字幕日韩二区| 国产探花极品一区二区| 26uuu在线亚洲综合色| 毛片一级片免费看久久久久| 亚洲欧美日韩高清在线视频| 12—13女人毛片做爰片一| 久久久久久大精品| 日本黄大片高清| 变态另类丝袜制服| 成人二区视频| 亚洲欧美日韩高清专用| 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 亚洲精品国产成人久久av| 亚洲人与动物交配视频| 少妇熟女aⅴ在线视频| 最新中文字幕久久久久| 能在线免费看毛片的网站| 久久久久久久亚洲中文字幕| 久久人人精品亚洲av| 黄色视频,在线免费观看| 久久久国产成人精品二区| 国产精品一区二区三区四区免费观看| 哪里可以看免费的av片| 国产精品美女特级片免费视频播放器| 亚洲在久久综合| 国产午夜精品久久久久久一区二区三区| 黄色视频,在线免费观看| 韩国av在线不卡| 日本一本二区三区精品| 美女脱内裤让男人舔精品视频 | 乱系列少妇在线播放| 看片在线看免费视频| 国产av在哪里看| 精品免费久久久久久久清纯| 又黄又爽又刺激的免费视频.| 1000部很黄的大片| 我要看日韩黄色一级片| 如何舔出高潮| 成人毛片60女人毛片免费| 日韩强制内射视频| 一卡2卡三卡四卡精品乱码亚洲| 一级黄色大片毛片| 青春草亚洲视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 九九在线视频观看精品| 青春草亚洲视频在线观看| 欧美极品一区二区三区四区| 国产免费一级a男人的天堂| 舔av片在线| 成人亚洲精品av一区二区| 小说图片视频综合网站| 噜噜噜噜噜久久久久久91| 特大巨黑吊av在线直播| 我的老师免费观看完整版| 舔av片在线| 高清毛片免费看| 精品熟女少妇av免费看| 国产成人av激情在线播放 | 超色免费av| 国产av国产精品国产| 丁香六月天网| 欧美精品一区二区免费开放| 一本久久精品| 热99久久久久精品小说推荐| 我的女老师完整版在线观看| 韩国高清视频一区二区三区| 99国产综合亚洲精品| 九色成人免费人妻av| 天堂俺去俺来也www色官网| 国产在线免费精品| 国产亚洲午夜精品一区二区久久| 国产在线一区二区三区精| 三级国产精品欧美在线观看| 久久人人爽av亚洲精品天堂| 新久久久久国产一级毛片| 母亲3免费完整高清在线观看 | 精品久久久久久久久亚洲| 一级毛片我不卡| 日韩电影二区| 亚洲美女视频黄频| 日本黄色片子视频| 高清午夜精品一区二区三区| 观看美女的网站| 伊人久久国产一区二区| 男女边摸边吃奶| 国产高清有码在线观看视频| 日韩欧美一区视频在线观看| 亚洲怡红院男人天堂| 午夜激情av网站| 久久久久国产网址| 国产成人免费观看mmmm| 水蜜桃什么品种好| 大陆偷拍与自拍| 夫妻午夜视频| 国产色爽女视频免费观看| 久久久亚洲精品成人影院| 久久精品久久精品一区二区三区| 在线观看免费视频网站a站| 久久99精品国语久久久| 亚洲精品日本国产第一区| 麻豆成人av视频| 中国三级夫妇交换| 欧美3d第一页| 大话2 男鬼变身卡| 精品国产国语对白av| 久久久精品免费免费高清| 又大又黄又爽视频免费| 国产乱来视频区| 夫妻性生交免费视频一级片| 欧美日韩视频高清一区二区三区二| 亚洲美女搞黄在线观看| 在线观看免费日韩欧美大片 | 日韩一本色道免费dvd| 一区二区三区四区激情视频| 黄色欧美视频在线观看| 国产熟女午夜一区二区三区 | 男女边摸边吃奶| av卡一久久| 日韩一区二区视频免费看| 久久精品国产自在天天线| 色婷婷久久久亚洲欧美| 黑丝袜美女国产一区| 中国国产av一级| 97在线人人人人妻| 亚洲精品日韩av片在线观看| 最近2019中文字幕mv第一页| 精品熟女少妇av免费看| 大片免费播放器 马上看| 99久久精品一区二区三区| 亚洲av成人精品一二三区| 久久久久精品性色| 欧美最新免费一区二区三区| 亚洲精品久久午夜乱码| 在线播放无遮挡| 十分钟在线观看高清视频www| 麻豆精品久久久久久蜜桃| 欧美日韩综合久久久久久| 97在线视频观看| 亚洲图色成人| 免费观看a级毛片全部| 色婷婷久久久亚洲欧美| 亚洲成人av在线免费| 成人影院久久| 在线观看免费视频网站a站| 日本色播在线视频| 国产成人aa在线观看| 免费人妻精品一区二区三区视频| av国产久精品久网站免费入址| 国产精品国产av在线观看| 日韩大片免费观看网站| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 啦啦啦啦在线视频资源| 成人毛片a级毛片在线播放| 久久国产亚洲av麻豆专区| 午夜免费观看性视频| 日本vs欧美在线观看视频| 国产黄色视频一区二区在线观看| 一级毛片黄色毛片免费观看视频| 久久 成人 亚洲| 午夜视频国产福利| 啦啦啦在线观看免费高清www| 亚洲国产成人一精品久久久| 如日韩欧美国产精品一区二区三区 | a级毛片黄视频| 亚洲成色77777| 亚洲av电影在线观看一区二区三区| 久久久久久久亚洲中文字幕| 美女主播在线视频| 国产日韩欧美视频二区| 满18在线观看网站| 成人无遮挡网站| 91精品一卡2卡3卡4卡| av又黄又爽大尺度在线免费看| 亚洲精品国产av蜜桃| 亚洲精品久久久久久婷婷小说| 欧美日韩国产mv在线观看视频| 亚洲久久久国产精品| 精品久久国产蜜桃| 青春草视频在线免费观看| 亚洲欧美成人综合另类久久久| 建设人人有责人人尽责人人享有的| 天堂中文最新版在线下载| 久久韩国三级中文字幕| www.av在线官网国产| 伦理电影免费视频| 少妇的逼水好多| 一本—道久久a久久精品蜜桃钙片| 香蕉精品网在线| freevideosex欧美| 午夜激情福利司机影院| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 久久人妻熟女aⅴ| 毛片一级片免费看久久久久| 精品少妇黑人巨大在线播放| 亚洲av电影在线观看一区二区三区| 久久狼人影院| 亚洲国产欧美在线一区| 在线观看一区二区三区激情| 99久久中文字幕三级久久日本| 久久久久久久国产电影| 一区在线观看完整版| 久久精品国产亚洲网站| 伊人亚洲综合成人网| 亚洲精品国产av成人精品| 精品酒店卫生间| 综合色丁香网| 人妻一区二区av| 国产男人的电影天堂91| 亚洲国产毛片av蜜桃av| 久久久久视频综合| 在线观看一区二区三区激情| 亚州av有码| 黑人巨大精品欧美一区二区蜜桃 | 亚洲情色 制服丝袜| 国产亚洲欧美精品永久| 久久精品国产鲁丝片午夜精品| 欧美精品一区二区免费开放| 妹子高潮喷水视频| 最新的欧美精品一区二区| 中文乱码字字幕精品一区二区三区| 久久国产精品大桥未久av| 国产av国产精品国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品熟女少妇av免费看| 午夜福利影视在线免费观看| 国产精品久久久久久久电影| 免费观看的影片在线观看| 人人妻人人澡人人爽人人夜夜| 久久精品久久精品一区二区三区| 成年人免费黄色播放视频| 久久人人爽av亚洲精品天堂| 99国产精品免费福利视频| 国产高清国产精品国产三级| 中国美白少妇内射xxxbb| 国产精品欧美亚洲77777| 在线观看一区二区三区激情| 啦啦啦在线观看免费高清www| 国产色爽女视频免费观看| 99热网站在线观看| av在线app专区| 日本wwww免费看| 精品99又大又爽又粗少妇毛片| 国产精品一国产av| 欧美3d第一页| 国产熟女午夜一区二区三区 | 99久久中文字幕三级久久日本| 丝瓜视频免费看黄片| 最新中文字幕久久久久| 久久精品国产a三级三级三级| 日韩伦理黄色片| 欧美 日韩 精品 国产| 亚洲熟女精品中文字幕| 另类精品久久| 日本午夜av视频| 啦啦啦啦在线视频资源| 日本色播在线视频| 精品99又大又爽又粗少妇毛片| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 亚洲欧洲国产日韩| 狠狠精品人妻久久久久久综合| 成人黄色视频免费在线看| 国产亚洲一区二区精品| 欧美日韩在线观看h| 欧美3d第一页| 欧美bdsm另类| 内地一区二区视频在线| 亚洲国产av新网站| 涩涩av久久男人的天堂| 亚洲国产欧美在线一区| 精品人妻在线不人妻| 国国产精品蜜臀av免费| 熟女av电影| 中文精品一卡2卡3卡4更新| 国产高清三级在线| 少妇的逼好多水| 大又大粗又爽又黄少妇毛片口| 五月玫瑰六月丁香| 久久这里有精品视频免费| 一级a做视频免费观看| 久久久精品免费免费高清| 欧美另类一区| 欧美+日韩+精品| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看| 亚洲综合精品二区| 亚洲欧美精品自产自拍| 下体分泌物呈黄色| 最新的欧美精品一区二区| a级毛色黄片| 91aial.com中文字幕在线观看| 韩国高清视频一区二区三区| 最黄视频免费看| 精品99又大又爽又粗少妇毛片| 亚洲欧美成人综合另类久久久| 久久精品国产亚洲av天美| 色婷婷av一区二区三区视频| 精品久久久噜噜| 亚洲综合色网址| 男人添女人高潮全过程视频| 黑人猛操日本美女一级片| 久久毛片免费看一区二区三区| 精品久久久久久久久av| 免费看不卡的av| 日本猛色少妇xxxxx猛交久久| 考比视频在线观看| 久久久精品94久久精品| 在线精品无人区一区二区三| 亚洲成人手机| 国产成人精品久久久久久| 在线 av 中文字幕| 亚洲精品乱码久久久久久按摩| 欧美精品亚洲一区二区| 欧美精品一区二区免费开放| 高清毛片免费看| 少妇人妻 视频| 涩涩av久久男人的天堂| 日韩av免费高清视频| 国产精品国产av在线观看| 黑人欧美特级aaaaaa片| 看十八女毛片水多多多| 午夜福利影视在线免费观看| 美女大奶头黄色视频| 午夜激情福利司机影院| 久久久久久伊人网av| 在线观看一区二区三区激情| 精品一区在线观看国产| 亚洲精品美女久久av网站| 国产精品久久久久久av不卡| 日本免费在线观看一区| 久久久久精品性色| 亚洲美女黄色视频免费看| 香蕉精品网在线| 亚洲国产av影院在线观看| tube8黄色片| √禁漫天堂资源中文www| 热99久久久久精品小说推荐| 一区二区三区四区激情视频| 全区人妻精品视频| 久久久久国产精品人妻一区二区| 哪个播放器可以免费观看大片| 亚洲精品乱码久久久v下载方式| 日韩大片免费观看网站| 人妻 亚洲 视频| 亚洲国产精品一区三区| 国产精品一区二区三区四区免费观看| 亚洲欧美清纯卡通| 亚洲精品乱码久久久久久按摩| 热re99久久精品国产66热6| av福利片在线| 国产高清三级在线| 搡老乐熟女国产| 亚洲精品美女久久av网站| videossex国产| 午夜福利在线观看免费完整高清在| 九色亚洲精品在线播放| 观看av在线不卡| 久久精品久久精品一区二区三区| 色94色欧美一区二区| 国产亚洲精品久久久com| 男的添女的下面高潮视频| 麻豆精品久久久久久蜜桃| 国产欧美日韩综合在线一区二区| 一个人免费看片子| 精品一区在线观看国产| 日韩,欧美,国产一区二区三区| 丰满少妇做爰视频| 91午夜精品亚洲一区二区三区| 另类精品久久| 我的女老师完整版在线观看| 两个人免费观看高清视频| av一本久久久久| 十八禁网站网址无遮挡| 一本大道久久a久久精品| 日韩人妻高清精品专区| 国产精品久久久久久精品古装| 亚洲国产av影院在线观看| 黄色欧美视频在线观看| 在线观看美女被高潮喷水网站| 看免费成人av毛片| 丰满少妇做爰视频| 亚洲av中文av极速乱| 纯流量卡能插随身wifi吗| 久久久久视频综合| 人妻一区二区av| 男男h啪啪无遮挡| 日本免费在线观看一区| 麻豆精品久久久久久蜜桃| 人人妻人人澡人人看| 精品一区二区三卡| xxxhd国产人妻xxx| 欧美日韩一区二区视频在线观看视频在线| 久久人人爽人人片av| av福利片在线| 久久狼人影院| 一区二区三区四区激情视频| 男女免费视频国产| 欧美亚洲日本最大视频资源| 免费不卡的大黄色大毛片视频在线观看| 国产精品国产av在线观看| 国产免费视频播放在线视频| 交换朋友夫妻互换小说| 亚洲av不卡在线观看| 五月玫瑰六月丁香| 国产探花极品一区二区| 国内精品宾馆在线| 大香蕉久久成人网| 久久久国产欧美日韩av| 9色porny在线观看| 精品国产一区二区三区久久久樱花| 最近的中文字幕免费完整| 久久久久精品久久久久真实原创| 成人综合一区亚洲| 一区二区三区四区激情视频| 高清黄色对白视频在线免费看| 另类精品久久| 日韩中文字幕视频在线看片| 麻豆成人av视频| 日韩免费高清中文字幕av| 欧美亚洲 丝袜 人妻 在线| 国产乱人偷精品视频| 亚洲欧洲日产国产| 久久久国产精品麻豆| 美女国产高潮福利片在线看| 看非洲黑人一级黄片| 久久狼人影院| 久久 成人 亚洲| 成人毛片a级毛片在线播放| 亚洲av不卡在线观看| 久久久国产一区二区| 亚洲国产日韩一区二区| 美女国产高潮福利片在线看| 少妇丰满av| 秋霞伦理黄片| 精品少妇内射三级| 这个男人来自地球电影免费观看 | 夫妻午夜视频| 国产成人精品在线电影| 亚洲人与动物交配视频| 亚洲国产av影院在线观看| 免费看不卡的av| 99九九在线精品视频| 日产精品乱码卡一卡2卡三| 精品人妻一区二区三区麻豆| 成人漫画全彩无遮挡| 你懂的网址亚洲精品在线观看| 丰满饥渴人妻一区二区三| 18禁裸乳无遮挡动漫免费视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产伦精品一区二区三区视频9| 欧美变态另类bdsm刘玥| 午夜91福利影院| 婷婷色麻豆天堂久久| 国产日韩欧美亚洲二区| 天堂8中文在线网| 制服丝袜香蕉在线| 欧美亚洲日本最大视频资源| 一级片'在线观看视频| 欧美日本中文国产一区发布| 简卡轻食公司| av免费观看日本| 精品一品国产午夜福利视频| 国产成人a∨麻豆精品| 亚洲精品日韩在线中文字幕| 丁香六月天网| 亚洲精品久久午夜乱码| 天天操日日干夜夜撸| 国产欧美日韩一区二区三区在线 | 岛国毛片在线播放| 最近的中文字幕免费完整| 美女国产视频在线观看| 国产精品99久久久久久久久| 国产片特级美女逼逼视频| 免费播放大片免费观看视频在线观看| 少妇的逼水好多| 插阴视频在线观看视频| 国产精品无大码| 黄色欧美视频在线观看| 午夜福利视频精品| 超色免费av| 欧美一级a爱片免费观看看| 高清不卡的av网站| 亚洲av国产av综合av卡| 在线观看人妻少妇| 久久精品久久精品一区二区三区| 精品人妻偷拍中文字幕| 国产在线一区二区三区精| 人人澡人人妻人| 人成视频在线观看免费观看| 久久精品国产a三级三级三级| 18禁在线播放成人免费| 永久免费av网站大全| 亚洲图色成人| 免费大片18禁| 三级国产精品欧美在线观看| 国产深夜福利视频在线观看| 亚洲情色 制服丝袜| 午夜福利网站1000一区二区三区| 老熟女久久久| 国产成人av激情在线播放 | 午夜福利视频精品| 2022亚洲国产成人精品| av在线老鸭窝| 中国国产av一级| 满18在线观看网站| 久久久久久久久久久丰满| 综合色丁香网| 天天躁夜夜躁狠狠久久av| 亚洲少妇的诱惑av| 国产黄片视频在线免费观看| 日韩av在线免费看完整版不卡| 丁香六月天网| 日日摸夜夜添夜夜爱| av在线观看视频网站免费| 大又大粗又爽又黄少妇毛片口| 精品国产国语对白av| 国产熟女午夜一区二区三区 | 秋霞在线观看毛片|