• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST

    2022-06-29 08:55:40YuQiangTao陶余強(qiáng)GuoShengXu徐國(guó)盛LingYiMeng孟令義RuiRongLiang梁瑞榮LinYu余林XiangLiu劉祥NingYan顏寧QingQuanYang楊清泉XinLin林新andLiangWang王亮
    Chinese Physics B 2022年6期
    關(guān)鍵詞:顏寧王亮徐國(guó)

    Yu-Qiang Tao(陶余強(qiáng)) Guo-Sheng Xu(徐國(guó)盛) Ling-Yi Meng(孟令義) Rui-Rong Liang(梁瑞榮)Lin Yu(余林) Xiang Liu(劉祥) Ning Yan(顏寧) Qing-Quan Yang(楊清泉)Xin Lin(林新) and Liang Wang(王亮)

    1Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China

    2University of Science and Technology of China,Hefei 230026,China

    3Institute of Energy,Hefei Comprehensive National Science Center,Hefei 230031,China

    Keywords: EAST tokamak,divertor plasma,sweeping strike point,decay length

    1. Introduction

    In tokamaks, heat and particles exhausted from the hot magnetically confined plasma, stream along open magnetic field lines and mainly localize over lengths much shorter than the size of divertor target plates. For future reactors, the unmitigated heat load on divertor target is more than one order larger than the engineering safety limit,~10 MW/m2,which is a severe challenge.[1]Several solutions are proposed to mitigate the high heat load: distribute heat fluxes through manipulating divertor poloidal magnetic configurations, such as snowflake divertor[2]and super-X divertor;[3]facilitate detachment through trapping neutrals and impurities in a highly closed divertor,such as SAS divertor on DIII-D[4]and the new‘corner slot’divertor on EAST.[1]There is another simple and robust method, sweeping strike point, to spread the heat load over a large surface area. Sweeping strike point experiments have been successfully conducted in JET experiments,and this method may be adopted in the future campaign with 40 MW of source auxiliary heating power.[5]Similar concept,the fish tail divertor(FTD),has been proposed and experimentally performed on EAST,[6,7]which needs an additional alternating magnetic field coil behind the divertor. Some studies have so far found that sweeping appears to be compatible with implementation and use on DEMO.[8]

    In this year,EAST superconducting tokamak has replaced the old lower graphite divertor with tungsten divertor to increase the power handling capacity to~10 MW/m2. The most attractive characteristic of this new divertor is the‘corner slot’,i.e.,a closed right-angle corner consisted by the horizontal target and vertical target. This special structure can bring the‘corner effect’,i.e.,when the outer strike point locates on the horizontal target plate near the corner,the horizontal target plate reflects impinging particles mostly towards the scrapeoff layer (SOL), where the particles are confined by the vertical target plate and trapped in the closed corner, thus high neutral pressure is achieved near the corner. The corner effect has been studied by SOLPS-ITER simulation.[1]

    In this paper, the divertor plasma behavior will be studied through sweeping strike point in the new lower divertor on EAST. Owning to the powerful control ability of poloidal field coils, the plasma control system (PCS) adjusts the location of primaryX-point flexibly and controls the lower outer strike point sweeping from the horizontal target to the vertical target. Surface temperature will be monitored by infrared(IR) thermography to demonstrate that sweeping strike point can mitigate the heat load on divertor target. Plasma behavior,such as divertor particle flux and heat flux, will be diagnosed by divertor Langmuir probe array. To avoid the effect of probe tip damage, a method based on sweeping strike point is applied to get the normalized distributions on the divertor target,similar to the technique in the work.[9]And the decay lengths of divertor particle flux and heat flux,λjs,λq,will be discussed and compared with previous work.[10–12]

    This paper is organized as follows: Section 2 describes the experimental setup and introduces the relevant diagnostics; Section 3 presents the experimental results and discussion. Summary is given in Section 4.

    2. Experimental setup and main diagnostics

    A series of sweeping strike point experiments have been conducted in EAST low confinement mode (L-mode) discharges with high RF heating power. The discharges are operated in lower single null(LSN)or double null(DN)divertor configuration. The central magnetic field isBt=2.4 T with the ionB×?Bdrift direction into upper divertor. Figure 1(a)shows the configuration of one typical LSN shot#98332,calculated from EFIT magnetic reconstruction. The PCS controls theX-point moving towards low field side fromRx~159 cm(3 s) toRx~166 cm (8 s), whereRxis the major radius of the lowerX-point. Consequently,the lower outer strike point sweeps from the horizontal target to the vertical target,as seen in Fig.1(c). The distance between strike point and the corner is nearly linear with time,when the strike point locates on the horizontal target or vertical target,as shown in Fig.1(b).

    Fig.1. In shot#98332,(a)the magnetic configurations at different times;(b)the distance(s)between lower outer strike point and the corner versus time(t)with linear fit on the horizontal target(s <0)and vertical target(s >0);(c)detail view in the lower outer divertor region with the distribution of divertor Langmuir probe array(Div-LP),the intersection angle θ (θ <90°)between the poloidal magnetic field and the target plate,and the pixel location N1,N2,N3 (red ellipses).

    During these discharges, the plasma current isIp=500 kA in Fig. 2(a). The source auxiliary heating power isPtotal=3.2 MW including 0.7 MW from 2.45G low hybrid wave (LHW), 2 MW from 4.6G LHW, and 0.5 MW from electron cyclotron resonance heating (ECRH), as shown in Fig. 2(b). The displacement of primaryX-point unavoidably brings the change of the main plasma shape. The main change is the lower triangularity, which varies up to~20%. However,the elongation only varies below 2%and the edge safety factor varies below 0.5%. It is worthy to mention that the magnetic geometry on the outer mid-plane differs slightly, as shown in Fig.1(a),where the auxiliary heating system locates.The main plasma keeps stable as the strike point sweeps. The central-line averaged electron density isnel~2×1019m-3,which has slight increase (≤10%) in Fig. 2(c). And the plasma stored energy is~110 kJ,as seen in Fig.2(d).Besides,two Ohmic discharges are also conducted in DN configuration with the similar parameters(shots#98895 and#98896).

    Main diagnostics used in this work include the infrared(IR)thermography[13]and the divertor Langmuir probe array.[14,15]Two integrated infrared and visible tangential wide-angle viewing systems have been mounted in EAST to provide real-time, simultaneously visible and infrared imaging of the vacuum vessel,including the lower divertor region.The principle of infrared thermography to monitor the surface temperature of objects is based on black-body radiation law with considering the impact of the radiometric factors on the measurement of the camera.[13]Though the heat flux code of

    the infrared thermography is under programming,the surface temperature roughly reveals the heat load on divertor target.EAST has installed two divertor Langmuir probe array[14,15]in port D and port P with the same poloidal distribution, as shown in Fig. 1(c). Each array has 16 channels: four localize on the horizontal target(#13–#16),and the others localize on the vertical target (#1–#12). The probe array is based on triple probe and used to measure the positive biased potentialVp, the ion saturation currentIsand the floating potentialVf.Based onTe=(Vp-Vf)/ln2 andJs=Is/Apr, electron temperatureTeand particle fluxΓion=Js/eare obtained, whereeis elementary charge andApris the effective area of a probe tip.The parallel heat fluxq‖and electron densityneare further obtained byq‖=γshΓionTe,ne=Is/[eApr(2Te/mi)1/2], whereγsh≈7 is the electron sheath heat transmission coefficient,miis the ion mass.

    3. Experimental results and discussion

    3.1. Surface temperature

    When the strike point sweeps, the heat flux also moves with strike point and the heat load on divertor target is mitigated through large surfaces. In the shot#98332 withPtotal=3.2 MW,the bright ring moves with strike point from the horizontal target to the vertical target,as shown in Fig.3. And the ring is brightest when the strike point is near the corner, and darkest when the strike point is on the vertical target.

    A pixel path is chosen,as shown in the Fig.3(b),to get the time trace of surface temperature,as seen in Fig.4. Limited to spatial resolution and mechanical vibration,it is hard to obtain the exact location of each pixel. Here we give numbers to the pixels,andNpixel<0 is on the horizontal target,Npixel>0 is on the vertical target, andNpixel=0 is around the corner. From 3 s–8 s, the peak surface temperature obviously moves with strike point. After the strike point moves away, the local surface temperature decreases,which demonstrate that sweeping strike point mitigates the heat load on divertor target.

    The peak surface temperature differs largely for different regions. The peak surface ofNpixel=-4 on the horizontal target(away from corner)is~240°C,~40%larger compared toNpixel=9 on the vertical target,as shown in Figs.4(b)and 4(d). This difference is mainly attributed to the intersection angleθ(θ <90°)between the poloidal magnetic field and the target plate,as shown in Fig.1(c). Without significant energy dissipation,the parallel heat fluxq‖should have slight change in the divertor region as the strike point sweeps. And the heat loadqton the target plate is expressed asqt≈q‖sinφsinθ,

    where the intersection angleφbetween the magnetic field and the toroidal direction is almost the same as the strike point sweeps. The intersection angleθis larger when the strike point locates on the horizontal target compared to the vertical target,as shown in Fig.1(c). Thus,the heat loadqton the horizontal target is larger than that on the vertical target.

    Another remarkable phenomenon is that as the strike point moves near the corner,the surface temperature becomes very high,as shown in Fig.4(a). The maximum surface temperature even exceeds 400°C,as seen in Fig.4(c). There are several possibilities for this phenomenon. (I)The distance between the surface and the water-cooling copper tubes near the corner is larger compared to other locations on the target plate,as seen in Fig. 6 of the article,[1]which leads to relatively weaker cooling capacity. (II) The reflection of light and energetic neutral particle by smooth tungsten surface becomes important as the strike point moves near the corner, which leads to heat accumulation. One evidence for (II) is that the reflective ring is observed in the Fig.4(a).

    3.2. The method to get normalized distributions of particle and heat flux on the divertor target

    As the strike point sweeps, the plasma behavior can be diagnosed by divertor Langmuir probe array. However, the measured absolute values of electron density,particle and heat flux are affected by the serious ablation of graphite probe tips, especially during long-pulse operation or unmitigated disruptions.[14]In this paper,a method to overcome this drawback is applied to get the normalized distributions of particle and heat flux on the divertor target and study the decay lengthsλjs,λq, similar to the technique in the work.[9]As shown in Fig. 1(b), the movement of strike point on the horizontal target or vertical target is almost under the constant velocity,thus the time signal can be transferred to relative location information. The moment of peakTeis transferred as the separatrix location.

    With the assumption that the distribution on the divertor target changes slowly as the strike point sweeps, each probe can obtain the whole normalized distribution information of particle flux and heat flux.This assumption is checked through comparing the distributions provided by different probes. As shown in Fig.5(a),probes#15,#14,and#13 on the horizontal target get the similar distributions of particle flux on the target,which verifies the assumption. The distributions on the vertical target also support the statement,as shown in Fig.5(b).

    3.3. Divertor plasma behavior with high RF heating power

    In the discharges with high RF heating power,the plasma behaviors differ largely when the strike point locates on the horizontal target or vertical target. The plasma distributions on the divertor target in shot #98332 withPtotal= 3.2 MW are shown in Fig. 6. To studyλjs,λq, a widespread fitting function[16,17]is used

    where erfc is the Gauss error function,x0andyBGare the separatrix location and background flux,Sis introduced for the radial diffusion. The decay lengthλis mapped to the outer midplane (OMP) to avoid the influence of connection length difference.As shown in Fig.6(a),λjs=5.6 mm on the horizontal target is about twice as that on the vertical target(~2.7 mm).This difference may be due to the corner effect. When the strike point locates on the horizontal target, the target plate reflects impinging particles mostly towards the SOL.As a result, high neutral pressure is achieved near the corner, which significantly reduces localTein Fig. 6(b) and promotenein Fig. 6(d).λqon the horizontal target is also larger compared to the vertical target,as seen in Fig.6(c).

    We calculateλjs,λqin several similar discharges withPtotal=3.2 MW,including shots#98313,#98332 in LSN configuration and shot#98338 in DN configuration. It is worthy to mention that the results of probes #12 and #11 are not included due to the following reason: both probes are close to

    corner on the vertical target as seen in Fig.1(c),as a result,the obtained distributions have the mixed information in which the SOL side are partly with strike point on the horizontal target,while the rest are with strike point on the vertical target. As shown in Fig.7(a),λjson the horizontal target is nearly twice as that on the vertical target.λqon the horizontal target is also larger compared to the vertical target,as seen in Fig.7(b). The weak corner effect on heat flux is probably due to low electron density or lack of energy dissipation, which still needs more research.

    It is worthy to mention that the DN configuration does not narrow the decay length compared to LSN configuration,as seen in Fig. 7, consistent with previous work.[10]Besides,for the vertical target,λjs/λq≈1.3, which shows that the divertor heat flux is mainly dominated by the divertor particle flux.[10,11]However,the ratio is much larger for the horizontal target,i.e.~2,which may be due to the corner effect.

    3.4. Divertor plasma behavior in the Ohmic discharges

    The Ohmic discharges are also conducted with strike point sweeping,i.e., shots #98895 and #98896. In the two shots,nel≈2×1019m-3andIp=500 kA, which are similar with the shots mentioned above. Typical divertor plasma distributions are shown in Fig. 8. WithTe,peak~12 eV, the heat flux distribution on the target is mainly dominated by the particle flux.λjs=11.4 mm andλq=10.3 mm are obtained,which are significantly larger compared to the discharges with high RF heating power.

    In these Ohmic discharges, the corner effect becomes weak.λjson the horizontal and vertical target is obtained, as shown in Fig.9. And there is no clear difference between the horizontal target and vertical target,which implies that the corner effect is weak. TheTemeasurement is poor in these two shots,and only few probes can provide the heat flux distributions,which are almost the same as Fig.8(c).

    3.5. Discussion on the decay length

    4. Summary

    In this paper,divertor plasma behavior through sweeping strike point recently conducted on EAST,which has upgraded the lower divertor with closed corner structure. As the strike point sweeps from the horizontal target and vertical target,the peak surface temperature of the divertor target measured by IR camera moves with strike point. And the local surface temperature successfully cools down as the strike point moves away,which indicate that the heat load is mitigated by sweeping strike point.

    To study the behavior of particle flux and heat flux on the divertor target,a method based on sweeping strike point is used to avoid the effect of probe tip damage.λjson the horizontal target is almost twice as that on the vertical target,andTeis also lower for the horizontal target. These differences may be due to the corner effect, which is one of the design thoughts of the new divertor with closed corner. In the Ohmic discharges,the corner effect seems weak andλjs,λqare much larger than the discharges with high RF heating power. The underlying mechanism may be that higher edgeTecan narrow theλjs,λq,consistent with the simulation results.[12]

    Acknowledgments

    The authors would like to acknowledge collaboration of the EAST team. Project supported by the National Key Research and Development Program of China(Grant No. 2017YFE0301300), the National Natural Science Foundation of China (Grant Nos. 12005257, 12005004,11905143, and 11922513), the Fund from the Institute of Energy, Hefei Comprehensive National Science Center(Grant No. GXXT-2020-004), the CASHIPS Director’s Fund(Grant Nos. BJPY2019A01 and YZJJ2020QN13), the Special Research Assistant Funding of CAS and China Postdoctoral Science Foundation (Grant No. 2020M671913),and Anhui Provincial Natural Science Foundation (Grant No.2008085QA38).

    猜你喜歡
    顏寧王亮徐國(guó)
    Development of a 2D spatial displacement estimation method for turbulence velocimetry of the gas puff imaging system on EAST
    Fast-sweeping Langmuir probes:what happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?
    Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs
    “清華學(xué)術(shù)女神”在線打假
    東西南北(2019年19期)2019-12-12 06:10:24
    請(qǐng)你吃飯
    故事會(huì)(2019年6期)2019-03-27 05:12:18
    陽關(guān)故人
    飛魔幻A(2019年11期)2019-02-06 03:58:09
    王亮:用音樂致敬家鄉(xiāng)
    商周刊(2018年16期)2018-08-14 01:51:52
    追本溯源提升素養(yǎng)
    一段苦澀又奇特的成長(zhǎng)經(jīng)歷
    Study on parameters optimization in resistance spot welding of stainless steel with rectangular electrodes*
    China Welding(2015年3期)2015-10-31 10:57:38
    在线亚洲精品国产二区图片欧美| 汤姆久久久久久久影院中文字幕| 狂野欧美激情性xxxx| 一区二区三区四区激情视频| 18禁动态无遮挡网站| 男人添女人高潮全过程视频| 狠狠婷婷综合久久久久久88av| 视频在线观看一区二区三区| 亚洲美女黄色视频免费看| 日韩一本色道免费dvd| 人成视频在线观看免费观看| 两性夫妻黄色片| 青草久久国产| 国产精品 国内视频| 男的添女的下面高潮视频| 91aial.com中文字幕在线观看| 久久久久精品久久久久真实原创| 亚洲一级一片aⅴ在线观看| 日本猛色少妇xxxxx猛交久久| 两个人看的免费小视频| 卡戴珊不雅视频在线播放| 亚洲自偷自拍图片 自拍| 777久久人妻少妇嫩草av网站| 婷婷成人精品国产| 午夜福利视频在线观看免费| avwww免费| 国产成人精品无人区| 七月丁香在线播放| 色婷婷久久久亚洲欧美| 日韩一区二区视频免费看| 国产成人精品久久久久久| 99热网站在线观看| 不卡av一区二区三区| 亚洲国产毛片av蜜桃av| 欧美精品一区二区大全| 伦理电影免费视频| 国产精品一二三区在线看| 国产不卡av网站在线观看| 男女边摸边吃奶| 男女边吃奶边做爰视频| 黄网站色视频无遮挡免费观看| av视频免费观看在线观看| 亚洲精品aⅴ在线观看| 精品午夜福利在线看| 又黄又粗又硬又大视频| 日韩精品免费视频一区二区三区| 美女大奶头黄色视频| 又粗又硬又长又爽又黄的视频| 欧美人与性动交α欧美软件| 在线观看免费视频网站a站| 亚洲一码二码三码区别大吗| 国产精品 欧美亚洲| a 毛片基地| h视频一区二区三区| 男女下面插进去视频免费观看| 狂野欧美激情性xxxx| 我要看黄色一级片免费的| 精品亚洲成a人片在线观看| 亚洲人成77777在线视频| 麻豆乱淫一区二区| 日韩精品免费视频一区二区三区| 亚洲av日韩在线播放| 亚洲av福利一区| 最近手机中文字幕大全| 国产一区有黄有色的免费视频| 国产有黄有色有爽视频| 国产一区亚洲一区在线观看| 亚洲精品日本国产第一区| 欧美97在线视频| 亚洲精品aⅴ在线观看| 午夜久久久在线观看| 最近2019中文字幕mv第一页| 中文字幕人妻丝袜一区二区 | 婷婷色综合www| 涩涩av久久男人的天堂| 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久 | 久久久久久人人人人人| 国产av精品麻豆| 国产成人免费观看mmmm| 午夜激情av网站| 国产免费又黄又爽又色| 男女边摸边吃奶| 成人漫画全彩无遮挡| 在线观看www视频免费| 亚洲男人天堂网一区| 国产 一区精品| av国产精品久久久久影院| 久久久久久久国产电影| 成年美女黄网站色视频大全免费| 久久久国产一区二区| 黄色视频在线播放观看不卡| 亚洲精品美女久久久久99蜜臀 | av在线播放精品| 国产精品久久久久久久久免| 欧美av亚洲av综合av国产av | 精品国产一区二区久久| 日韩大片免费观看网站| 激情五月婷婷亚洲| 国精品久久久久久国模美| 下体分泌物呈黄色| 熟妇人妻不卡中文字幕| 一区二区日韩欧美中文字幕| 欧美激情极品国产一区二区三区| 国产精品久久久久久人妻精品电影 | 又大又爽又粗| 日本爱情动作片www.在线观看| 亚洲国产成人一精品久久久| 久久99一区二区三区| 国产精品欧美亚洲77777| 秋霞在线观看毛片| 成人亚洲精品一区在线观看| 色吧在线观看| 亚洲欧美激情在线| 老司机影院毛片| 亚洲成国产人片在线观看| 中文乱码字字幕精品一区二区三区| 久热这里只有精品99| 久久精品亚洲av国产电影网| 一级毛片我不卡| 欧美av亚洲av综合av国产av | 欧美日韩亚洲高清精品| 51午夜福利影视在线观看| svipshipincom国产片| 丰满饥渴人妻一区二区三| 欧美激情极品国产一区二区三区| 国产亚洲欧美精品永久| 999精品在线视频| 欧美最新免费一区二区三区| www.熟女人妻精品国产| 久久人人97超碰香蕉20202| 中文字幕人妻丝袜制服| 夫妻午夜视频| 久久久久久久大尺度免费视频| 色94色欧美一区二区| 七月丁香在线播放| 精品国产超薄肉色丝袜足j| 久久鲁丝午夜福利片| 久久久精品国产亚洲av高清涩受| 水蜜桃什么品种好| 午夜福利在线免费观看网站| 高清av免费在线| 99热全是精品| 美女脱内裤让男人舔精品视频| 一边亲一边摸免费视频| 在线亚洲精品国产二区图片欧美| 亚洲国产欧美一区二区综合| 一二三四中文在线观看免费高清| 在线观看免费视频网站a站| 黄片无遮挡物在线观看| 毛片一级片免费看久久久久| h视频一区二区三区| 亚洲美女黄色视频免费看| 色播在线永久视频| 蜜桃在线观看..| 国产欧美日韩综合在线一区二区| 国产黄色视频一区二区在线观看| 欧美黑人欧美精品刺激| 中文精品一卡2卡3卡4更新| 久久人人爽人人片av| 在线天堂中文资源库| av片东京热男人的天堂| 国产黄色视频一区二区在线观看| 亚洲人成77777在线视频| 国产激情久久老熟女| 在线观看www视频免费| 夫妻性生交免费视频一级片| 国产精品 欧美亚洲| 女人被躁到高潮嗷嗷叫费观| 久久久久久久久久久久大奶| 丰满少妇做爰视频| 少妇被粗大的猛进出69影院| 日韩精品有码人妻一区| 国产精品免费视频内射| 色网站视频免费| 国产精品欧美亚洲77777| 国产精品久久久久久精品古装| 日韩一区二区视频免费看| 国产一区二区激情短视频 | 两性夫妻黄色片| 精品久久久精品久久久| 男女床上黄色一级片免费看| 中文精品一卡2卡3卡4更新| 国产无遮挡羞羞视频在线观看| 久久国产精品大桥未久av| 免费久久久久久久精品成人欧美视频| 亚洲欧美激情在线| 国产成人精品无人区| 久久久久久久精品精品| 日韩欧美一区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 下体分泌物呈黄色| 美女脱内裤让男人舔精品视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲少妇的诱惑av| 午夜日本视频在线| 热99国产精品久久久久久7| 亚洲,欧美精品.| 99热网站在线观看| 黄色 视频免费看| 亚洲七黄色美女视频| 欧美少妇被猛烈插入视频| 成年av动漫网址| 午夜福利网站1000一区二区三区| 看免费av毛片| av视频免费观看在线观看| 亚洲av成人精品一二三区| 丝袜脚勾引网站| 九草在线视频观看| 青春草亚洲视频在线观看| 免费黄网站久久成人精品| 美女大奶头黄色视频| 美女福利国产在线| 99国产精品免费福利视频| 日韩大片免费观看网站| 如何舔出高潮| 国产黄色免费在线视频| 国语对白做爰xxxⅹ性视频网站| 久久久欧美国产精品| 亚洲欧美成人综合另类久久久| 国产精品久久久久久精品电影小说| 黄色一级大片看看| 欧美久久黑人一区二区| 美女中出高潮动态图| 哪个播放器可以免费观看大片| 免费日韩欧美在线观看| 欧美日韩综合久久久久久| 久久ye,这里只有精品| 韩国精品一区二区三区| 国产精品无大码| 欧美 亚洲 国产 日韩一| 国产在线视频一区二区| 伦理电影免费视频| 日韩 欧美 亚洲 中文字幕| 99热国产这里只有精品6| 欧美日韩精品网址| 中文字幕人妻丝袜制服| 99久久99久久久精品蜜桃| 18禁国产床啪视频网站| 国产亚洲欧美精品永久| 亚洲国产毛片av蜜桃av| 婷婷色麻豆天堂久久| 国产一区二区 视频在线| 国产一级毛片在线| 日本欧美视频一区| 大话2 男鬼变身卡| 久久99精品国语久久久| 亚洲国产av新网站| 各种免费的搞黄视频| 日本av手机在线免费观看| 一区二区三区激情视频| 午夜福利,免费看| 国产精品一国产av| 午夜免费鲁丝| 美女视频免费永久观看网站| 中文字幕人妻丝袜一区二区 | 中文字幕亚洲精品专区| www.av在线官网国产| 免费观看a级毛片全部| 色播在线永久视频| 中文字幕人妻丝袜一区二区 | 国产欧美亚洲国产| 综合色丁香网| 国产毛片在线视频| 国产男人的电影天堂91| av在线老鸭窝| 久久精品久久久久久噜噜老黄| 少妇 在线观看| 欧美xxⅹ黑人| 亚洲综合精品二区| 伦理电影大哥的女人| 成人漫画全彩无遮挡| 美女中出高潮动态图| 精品一区二区免费观看| 纯流量卡能插随身wifi吗| 亚洲国产欧美一区二区综合| 一区二区三区乱码不卡18| 在线精品无人区一区二区三| 成人影院久久| 人妻 亚洲 视频| 国产精品亚洲av一区麻豆 | 国产精品人妻久久久影院| 自线自在国产av| 欧美精品一区二区免费开放| 秋霞在线观看毛片| 男女下面插进去视频免费观看| 精品国产国语对白av| 1024香蕉在线观看| 又粗又硬又长又爽又黄的视频| av线在线观看网站| 亚洲欧美成人综合另类久久久| 热re99久久精品国产66热6| 一级片免费观看大全| av电影中文网址| 美女高潮到喷水免费观看| 国产人伦9x9x在线观看| 国产av一区二区精品久久| 最近最新中文字幕免费大全7| 三上悠亚av全集在线观看| 在线观看免费日韩欧美大片| 青春草国产在线视频| 亚洲精品aⅴ在线观看| 亚洲综合精品二区| 免费观看人在逋| 在线观看免费高清a一片| 在线精品无人区一区二区三| 人人澡人人妻人| 日韩欧美一区视频在线观看| 国产亚洲午夜精品一区二区久久| 青春草视频在线免费观看| 99热网站在线观看| 国产亚洲精品第一综合不卡| 成人国产av品久久久| 看非洲黑人一级黄片| 丰满饥渴人妻一区二区三| 国产精品 国内视频| 国产精品嫩草影院av在线观看| 99国产综合亚洲精品| 久久97久久精品| 久久av网站| 男女国产视频网站| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频精品一区| 大片免费播放器 马上看| 纯流量卡能插随身wifi吗| 天天躁夜夜躁狠狠躁躁| 制服丝袜香蕉在线| 色视频在线一区二区三区| 久久久久久人人人人人| 国产免费福利视频在线观看| 人人澡人人妻人| 国产xxxxx性猛交| 91国产中文字幕| 日本欧美国产在线视频| 久久鲁丝午夜福利片| www.精华液| 一级毛片我不卡| 国产日韩欧美视频二区| 亚洲成人国产一区在线观看 | 国产精品秋霞免费鲁丝片| 女的被弄到高潮叫床怎么办| bbb黄色大片| 狠狠精品人妻久久久久久综合| 伊人亚洲综合成人网| 七月丁香在线播放| 别揉我奶头~嗯~啊~动态视频 | 涩涩av久久男人的天堂| av网站免费在线观看视频| 久久久久久久精品精品| 一本色道久久久久久精品综合| 日韩欧美精品免费久久| 国产精品国产av在线观看| 久久久精品国产亚洲av高清涩受| 97精品久久久久久久久久精品| 国产av精品麻豆| 我的亚洲天堂| 亚洲欧美色中文字幕在线| 99热国产这里只有精品6| 一级黄片播放器| 精品免费久久久久久久清纯 | 久久久久国产一级毛片高清牌| 丝袜在线中文字幕| 久久久久久久久久久久大奶| 国产成人免费无遮挡视频| kizo精华| 18禁裸乳无遮挡动漫免费视频| 日韩 亚洲 欧美在线| 波野结衣二区三区在线| √禁漫天堂资源中文www| 秋霞在线观看毛片| 欧美变态另类bdsm刘玥| 成人国产麻豆网| 久久精品久久久久久久性| 国产av精品麻豆| 又粗又硬又长又爽又黄的视频| 777久久人妻少妇嫩草av网站| 男女床上黄色一级片免费看| 一本色道久久久久久精品综合| 亚洲欧美激情在线| 黄频高清免费视频| 久久人人爽av亚洲精品天堂| av在线app专区| 欧美在线一区亚洲| 一二三四中文在线观看免费高清| avwww免费| 国产欧美日韩综合在线一区二区| 一区二区三区乱码不卡18| 蜜桃在线观看..| 操出白浆在线播放| www日本在线高清视频| 午夜福利,免费看| 亚洲伊人久久精品综合| 国产精品99久久99久久久不卡 | 各种免费的搞黄视频| 99热网站在线观看| 免费日韩欧美在线观看| 91精品三级在线观看| 少妇人妻 视频| 无限看片的www在线观看| 亚洲人成网站在线观看播放| 精品一区二区三区四区五区乱码 | 国产男人的电影天堂91| 飞空精品影院首页| 中文字幕人妻丝袜制服| 欧美久久黑人一区二区| 免费黄频网站在线观看国产| 香蕉国产在线看| 久久精品亚洲熟妇少妇任你| 老汉色av国产亚洲站长工具| 别揉我奶头~嗯~啊~动态视频 | 国产日韩一区二区三区精品不卡| a级片在线免费高清观看视频| 爱豆传媒免费全集在线观看| 三上悠亚av全集在线观看| 一区在线观看完整版| 一边摸一边做爽爽视频免费| 天天操日日干夜夜撸| 中文字幕精品免费在线观看视频| 欧美黄色片欧美黄色片| 精品一区二区三区四区五区乱码 | 丰满迷人的少妇在线观看| 97在线人人人人妻| 只有这里有精品99| 国产精品99久久99久久久不卡 | 久久精品国产综合久久久| 尾随美女入室| 精品久久久久久电影网| 国产无遮挡羞羞视频在线观看| 亚洲av日韩在线播放| 日日爽夜夜爽网站| 久久天堂一区二区三区四区| 亚洲一级一片aⅴ在线观看| 丝袜在线中文字幕| 国产精品 国内视频| 王馨瑶露胸无遮挡在线观看| 久久av网站| 欧美中文综合在线视频| 午夜影院在线不卡| 菩萨蛮人人尽说江南好唐韦庄| 另类精品久久| 国产黄色免费在线视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲av中文av极速乱| 中文字幕av电影在线播放| 国产亚洲av片在线观看秒播厂| 午夜av观看不卡| 9热在线视频观看99| 99精国产麻豆久久婷婷| 久久青草综合色| 欧美激情 高清一区二区三区| 欧美中文综合在线视频| 亚洲,欧美,日韩| 嫩草影院入口| 在线看a的网站| 侵犯人妻中文字幕一二三四区| 午夜av观看不卡| 亚洲伊人色综图| 精品午夜福利在线看| 午夜免费男女啪啪视频观看| 免费观看性生交大片5| 99精国产麻豆久久婷婷| 狂野欧美激情性bbbbbb| 少妇被粗大猛烈的视频| 亚洲第一av免费看| 久久人人爽av亚洲精品天堂| 亚洲成人av在线免费| 曰老女人黄片| 香蕉国产在线看| 亚洲精品一区蜜桃| 美女扒开内裤让男人捅视频| 亚洲精品美女久久久久99蜜臀 | 国产亚洲精品第一综合不卡| 男女高潮啪啪啪动态图| 伦理电影大哥的女人| 国产精品熟女久久久久浪| 国产精品国产三级专区第一集| 中文字幕亚洲精品专区| 亚洲av福利一区| 亚洲,欧美精品.| 丝袜美足系列| 日韩人妻精品一区2区三区| 亚洲精品中文字幕在线视频| 女人精品久久久久毛片| 国产不卡av网站在线观看| 卡戴珊不雅视频在线播放| 大话2 男鬼变身卡| 国产精品久久久久久精品古装| 操美女的视频在线观看| 免费看不卡的av| 91精品伊人久久大香线蕉| 永久免费av网站大全| 国产亚洲一区二区精品| 色婷婷av一区二区三区视频| 热99久久久久精品小说推荐| 嫩草影院入口| 男女边摸边吃奶| 999久久久国产精品视频| 在线观看三级黄色| 国产成人一区二区在线| 欧美乱码精品一区二区三区| 日韩大码丰满熟妇| 国产深夜福利视频在线观看| 黑人猛操日本美女一级片| 国产成人精品福利久久| 一边摸一边抽搐一进一出视频| 午夜av观看不卡| 少妇精品久久久久久久| 十八禁人妻一区二区| 午夜精品国产一区二区电影| 一边亲一边摸免费视频| 黄色视频不卡| 国语对白做爰xxxⅹ性视频网站| 亚洲一区二区三区欧美精品| 久久久久久人妻| 日本猛色少妇xxxxx猛交久久| 亚洲精品美女久久av网站| 无限看片的www在线观看| 欧美日韩成人在线一区二区| videos熟女内射| 久久久久精品国产欧美久久久 | 国产爽快片一区二区三区| 精品午夜福利在线看| 91精品三级在线观看| 不卡av一区二区三区| 日本av免费视频播放| 午夜福利视频在线观看免费| 久久综合国产亚洲精品| 黄频高清免费视频| 美女视频免费永久观看网站| av网站在线播放免费| 日韩,欧美,国产一区二区三区| 老司机深夜福利视频在线观看 | 亚洲激情五月婷婷啪啪| 亚洲av在线观看美女高潮| 国产成人啪精品午夜网站| 五月开心婷婷网| 女人爽到高潮嗷嗷叫在线视频| 99国产精品免费福利视频| 午夜福利在线免费观看网站| 久久人人爽av亚洲精品天堂| 中文字幕人妻丝袜一区二区 | 九九爱精品视频在线观看| 精品久久久久久电影网| 午夜福利视频在线观看免费| 亚洲成国产人片在线观看| 日韩视频在线欧美| 啦啦啦在线观看免费高清www| 搡老岳熟女国产| 七月丁香在线播放| 日本欧美视频一区| 久久久国产一区二区| 欧美黑人精品巨大| 久久久精品94久久精品| 亚洲精品一二三| 成人漫画全彩无遮挡| 高清视频免费观看一区二区| 看免费av毛片| 日韩熟女老妇一区二区性免费视频| 嫩草影院入口| 精品国产乱码久久久久久男人| 欧美人与性动交α欧美软件| 51午夜福利影视在线观看| 一边摸一边抽搐一进一出视频| 男的添女的下面高潮视频| 国产 精品1| 免费高清在线观看视频在线观看| 亚洲精品中文字幕在线视频| 亚洲欧洲国产日韩| 中文字幕色久视频| 国产亚洲精品第一综合不卡| 久久久久视频综合| 午夜福利乱码中文字幕| 中国国产av一级| 国产在线视频一区二区| 精品国产国语对白av| 在线看a的网站| 国产日韩欧美视频二区| 美女主播在线视频| 极品少妇高潮喷水抽搐| 精品午夜福利在线看| 国产精品国产av在线观看| 看免费av毛片| 国产熟女欧美一区二区| 午夜激情av网站| 中文欧美无线码| 18禁观看日本| 日韩中文字幕视频在线看片| 热99久久久久精品小说推荐| 人人妻人人添人人爽欧美一区卜| 欧美激情极品国产一区二区三区| 人妻人人澡人人爽人人| 男的添女的下面高潮视频| 啦啦啦啦在线视频资源| 亚洲国产av影院在线观看| 欧美97在线视频| 久久综合国产亚洲精品| 亚洲人成77777在线视频| 国产老妇伦熟女老妇高清| 欧美日韩成人在线一区二区| 如何舔出高潮| 国产精品三级大全| 国产av码专区亚洲av| 久久久久久久大尺度免费视频| 伦理电影免费视频| 制服丝袜香蕉在线| 亚洲av成人不卡在线观看播放网 | 精品国产乱码久久久久久小说| 亚洲精华国产精华液的使用体验| 久久精品亚洲熟妇少妇任你| 午夜老司机福利片| 亚洲成av片中文字幕在线观看| 美女国产高潮福利片在线看| 国产成人91sexporn| 国产一区二区三区综合在线观看| 免费黄色在线免费观看|