• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma

    2022-06-29 08:55:40QianZhang張茜YongliPing平永利WeimingAn安維明WeiSun孫偉andJiayongZhong仲佳勇
    Chinese Physics B 2022年6期
    關(guān)鍵詞:張茜孫偉永利

    Qian Zhang(張茜) Yongli Ping(平永利) Weiming An(安維明) Wei Sun(孫偉) and Jiayong Zhong(仲佳勇)

    1Department of Astronomy,Beijing Normal University,Beijing 100875,China

    2CAS Key Laboratory of Geospace Environment,University of Science&Technology of China,Hefei 230026,China

    Keywords: collisionless shocks,magnetic reconnection,magnetization parameter,electron acceleration

    1. Introduction

    There are a number of particle acceleration processes involved in astrophysical phenomena such as gamma ray bursts,jets from active galactic nuclei, and cosmic rays from the super-nova remnants.[1–5]Two of these processes are magnetic reconnection (MR) and collisionless shocks (CSs). Both of these processes lead to the acceleration of charged particles and will be discussed in this work. MR, for example, leads to the conversion of magnetic energy to kinetic energy. In the heliosphere, the current sheet formed by the interaction between the solar wind and the geomagnetic field is also considered as a region where magnetic fields reconnect,and thus energy conversion and dissipation occur.[6]Energetic particles accelerated by MR and/or CS have also been observed in the laboratory.

    In the laboratory,the use of nanosecond lasers focused on plastic or metal targets produces a warm dense plasma and a mega-Gauss(MG)magnetic field due to the Biermann battery effect, which is similar to the astrophysical environment.[7,8]Key features of MR have been found in plasmas generated by the interaction of two laser beams with a target,including the MR structure and two high-velocity collimated jets in the reconnection layer.[9,10]The MR-induced ring top x-ray source and outflow/jet in solar flares were first simulated in the laboratory using MG magnetic field generated by the interaction of a high-intensity laser with a target. In addition,the decoupling of ions and electrons at the length of the ion inertia of the diffusion region has been determined.[11]Electrons are accelerated to relativistic velocity driven by MR in the laboratory.[12–17]The pre-magnetized plasma CS front increases the reflection of particles on the shock surface before the collision of the two plasmas to form magnetic reconnection.[18]Electrons are effectively accelerated to relativistic non-thermal energy in the small-scale turbulence generated by shock by first-order Fermi acceleration.[19]In our work we will employ particle-in-cell(PIC)simulation methods;such methods have previously been used in comprehensive studies of high-energy-density plasmas and MR.[20–23]The high-energy electrons were accelerated and injected in the reconnection zone.[24]It is found that the electron “pick-up ring” and the electrons accelerated by MR have a flatter spectrum compared with single laser and target interaction.[25]

    The energy spectrum index is an important parameter of reaction electron acceleration efficiency.[26,27]In the relativistic MR regime, a large number of studies have shown that the electron energy spectrum indexpapproaches 1, where the distribution of the electron energy isN(γ) =Cγ-pandCis a constant.[28]The acceleration driven by the reconnection electric field is so intense that the power-law index of the non-thermal particle energy spectrum tail is close to 1.[29–31]For relativistic MR,the magnetization parameterσ=B2/(μ0nemec2) is usually much larger than 1,[32]whereσis the ratio of the energy density in reconnecting the magnetic field to the rest mass energy density andneis the electron density.

    In this paper, we present 3D PIC simulation results for relativistic MR driven by two ultra-intense lasers with different spot separation distance. The purpose of our simulation is to obtain the changing plasma environment(magnetization parameterσ)in the reconnection region with a variable separation of the laser spots and to study the influence of electron acceleration in different plasma environments. The simulation results show that the magnetization parameter in the reconnection region will increase when the distance between the two laser spots decreases. Because a larger magnetization parameter represents stronger magnetic energy, particles can be efficiently accelerated by MR and have a higher reconnection rate. It is found that CS plays an important role in electron acceleration in MR driven by ultra-intense lasers. Lastly, the 3D momentum configuration is presented.

    2. Simulation and setup

    We used KLAP,which is a PIC code used to study energetic particle acceleration under ultra-intense laser and plasma interactions.[33,34]In a previous simulation of MR, electrons with relativistic energies were generated in the MR process via an ultra-intense laser–plasma interaction.[25]In this paper,the relativistic MR process driven by two ultra-intense lasers with different spot separation distance is simulated. The simulation box size wasLx×Ly×Lz=30 μm×24 μm×50 μm,which was divided into 600×480×1000 cells. The number of particles per cell was 8 and there were more than 2.3 billion particles in total. Both particles and fields had periodic boundary conditions in thexandydirections, and radiating boundary conditions in thezdirection.

    Initially, two identical circularly polarized laser pulses were injected into the plasma target along thezdirection. Two laser pulses had a peak intensity of 5×1020W/cm2, with a 3 μm spot diameter size. The wavelength of the laser wasλ0=1 μm, and its period wasT0=λ/c ≈3.33 fs. The normalized laser vector potential wasa0=13.5. So,the upstream side of the MR region showed the bulk Lorentz factor ofγ0=(1+a20)1/2=13.5. The initial electron and ion temperatures were 10 keV and 0.01 keV respectively. The Debye length wasλD=(kTe/μ0nee2)1/2≈0.235 μm≈4.7L(L=0.05 μm is the cell size in the simulation box). The electron skin depth wasde=c/ωpe≈0.71 μm,whereωpe=(μ0e2n0/γ0me)1/2is the electron plasma frequency. In addition,deis close to the laser wavelengthλ0. Throughout this paper we set the laser frequency tof=c/λ, and we use the normal value of the mass ratio of a proton to an electron:mp/me=1836. In this paper, we normalize the magnetic field, the electric field and the electron density toB0=(I/εc)1/2/c=1.45×105T,E0=4.34×1013V/m,n0=nc=meω20/μ0e2=1.15×1021cm-3,respectively,wherencis the critical plasma density.

    The initial plasma density in the simulation box had a varying profile along thezdirection

    wherez0=5 μm,z1=15 μm,andL0=20 μm.

    Figure 1 shows the evolution of the reconnection rateEz/VAeBAversus time, whereEzare the electric fields in the reconnection points(X-point)versus time.VAeis the velocity of Alfv′en andBAis the asymptotic magnetic field strength at the time of the maximum reconnection field. With the laser separation distance ofdsof 8 μm(black solid line)in case A,the reconnection rate is almost zero between 20T0and 35T0,and MR does not occur. The reconnection rate increases from 40T0and reaches its maximum 0.28 att=50T0; then the reconnection rate starts to go down. For the cases with a laser separation distance of 9 μm (red dashed line) in case B and 10 μm (blue dotted line) in case C, the reconnecting rates reach their maximum,0.37 and 0.49,att=55T0,respectively.The reconnection rate increases with increasing spots separation distance,which means that the magnetic energy dissipates faster in the corresponding reconnection region.The evolution trend of the reconnection rate with the separation distance is consistent with the formula[35]

    wheredrdescribes the distance of the laser spot to the reconnection point andI0is the laser peak intensity. Att=75T0,there is a second bump in the reconnecting rate.

    Fig. 1. The reconnection rates for the lasers’ separation with 8 μm (black solid line)in case A,9 μm(red dashed line)in case B and 10 μm(blue dotted line)in case C are 50T0, 55T0 and 55T0, respectively, where the electric field is normalized by Ez/VAeBA.

    3. Electron acceleration in magnetic reconnection with different separation distances

    When two laser beams are injected into a plasma target with near-critical density,the laser will push the electrons forward and generate a co-directional current and a quasi-static in-plane magnetic field. The anti-parallel magnetic fields encounter each other and MR occurs in the middle of the two lasers, as shown enclosed by the white dotted rectangle in Figs. 2(a) and (b). Relativistic energetic electrons are generated through the interaction between the high-power ultrashort femetosecond laser pulses and the target.According to a previous study,the current layer of the MR driven by ultra-intense lasers is smaller than the ion scale (ion skin depth).[35]This means that the electrons are frozen with the magnetic field line and move towards one another. Therefore, this MR process happens in the electron diffusion region(EDR).

    Fig.2. The in-plane magnetic field|B⊥|for case A is on the x–y plane with z=20 μm at t =50T0 (a) and 55T0 (b), where the magnetic fields are normalized by the initial laser B0 =1.45×105 T. The electron energy density distributions(electron energy in the range of 3 <γe <20)for case A[(c),(d)],case B [(e),(f)], and case C [(g),(h)] are at t =50T0 (left column) and 55T0(right column),respectively.

    Figures 2(c)–2(h) show the electron energy density distribution electron energy in the range of (3<γe<20) along thezdirection att= 50T0and 55T0. It clearly shows that there are high-density electrons in the reconnection region and outflow region, where the black arrow points the outflow direction. In case A, a large number of the energetic particles are accelerated by the reconnection field of MR in the central X-line,where the dissipated magnetic energy is converted into electron kinetic energy. The larger the separation of the two laser spots, the fewer the high-energy particles accelerated at the magnetic energy dissipation area. However, we find that a large number of electrons have been accelerated to the high-energy state when two magnetic tubes compress each other before MR occurs, possibly due to magnetic pressure or/and CS(Fermi-like acceleration)as Luet al.presented.[21]As shown in Fig.2(g),more energetic electrons pile up to create a double-layer structure at the compressing magnetic rings,near the X-line region in the bottom of Fig. 2(g), shown in black dotted rectangle. Att=55T0, this double-layer structure still exists,as seen in Fig.2(h).

    Fig.3. Electron distribution in the phase space of(pz, py). From top to bottom,the rows correspond to case A,B,and C.From left to right,the columns correspond to 45T0,50T0,and 55T0,in chronological order.

    In order to study electron acceleration by MR, we select the electrons in the volume of 14 μm<x <16 μm,7 μm<y <17 μm, and 10 μm<z <25 μm fromt=45T0to 55T0, where the current sheet is located. In the previous work, we found there is a bubble (which is in the black rectangle)in the electron momentum distribution ofpz–py,which is called the pick-up ring.[25]As shown in Figs.3(c)–3(i),the smaller the lasers’separation distance is,the larger the“pickup ring”. The reconnection electric field isEz=0.037,0.032,and 0.028 in case A, B, and C, respectively. When the separation distance between the two lasers becomes smaller, the reconnection electric field becomes stronger and more electrons will be accelerated to higher energy along thezdirection in our simulation and induce a larger pick-up ring.

    Figure 4 shows the electron energy spectra in the reconnection region of case A, case B, and case C driven by two lasers with MR (shown as the black line) corresponding to a single laser case without MR(shown as the blue line). In the range ofγ0<γe<50,the electron energy spectrum is fit as a power-law distribution and its spectrum indexes arep2=2.5,3.0, and 3.2 in case A, B, C respectively as the pink dotted lines shown in Figs. 4(a)–4(c), which are as the same as the spectrum indexes obtained by single laser driving. Compared with the energy spectrum generated by the interaction of the single-sided laser and target,the range of the power-law spectrum with the same index is wider than that generated by the interaction of two lasers and plasma. With the increase of the laser separation distance,fewer electrons are accelerated in reconnection region that we selected,which makes the index of the power-law spectrum increase.

    In the range of 1<γe<γ0,the power-law indexes of the electron spectrum driven by two lasers with MR(shown as the green dotted lines)arep1=1.4,1.8,and 1.9 in case A,B,and C,respectively shown in Figs.4(a)–4(c). Compared with single laser driving case without MR, we find that MR amends the shape of the electron spectrum and makes the spectrum indexp1less than 2 because more low-energy electrons are accelerated to higher energy in the MR process driven by two lasers. Moreover, with a decrease of the laser separation distance, the power-law spectrum is flattened. This is because the electron energy spectrum accelerated by lasers is flatter in the reconnection region when laser the separation distance increases. Meanwhile, the magnetic parameterσof the background plasma before the MR is driven by lasers increases when the laser separation distance decreases(as shown in Table 1). Our simulation results agree with those of previous relativistic astrophysics research[32]in that the magnetic parameter affects electron acceleration in relativistic MR.

    Table 1. Important parameters of the plasma environment.

    Fig.4. The electron energy spectra for case A(a),B(b),and C(c)at the moment the maximum reconnection electric field is reached(t =50T0,55T0,and 55T0, respectively). The vertical axis is the electron count, and the horizontal axis is the relativistic factor of electron. The solid line is for the two-laser case,and the dashed line is for the single laser. The electron distribution is fitted with the power-law spectrum N(γ)=γ-p. The dotted line is the power-law spectrum line with different powers.The green dotted line is fitted with the low-energy region,and the pink dotted line is fitted with the middle-energy region.

    4. Collisionless shock acceleration and magnetic reconnection acceleration

    Figures 3(a)–3(c) not only present the electron pick-up ring but also two electron jets along thepydirection. In particular,in Figs.3(b)and 3(e),the pick-up ring is not obvious,while the electron jets along thepydirection are enhanced.On the whole, the electron jets along thepydirection are obviously present in case C.

    Next,the formation mechanism of the electron jets along thepydirection will be analyzed. Figure 5(a) shows the typical structures of CS, the electron density and electromagnetic fields around the shock front when the shock is fully formed[36]t=50T0in case C (aty=12 μm,z=20 μm).It is found that there are two regions of electron density accu-

    Fig.5. Internal structure of a pair of CS at t =50T0 in case C.(a)Line out of the electron density (ne; solid black line) and electromagnetic fields (Bz indicated by the blue dash-dotted line;Ey,red dashed line;Ex,purple dotted line), at y=12 μm and z=20 μm, region I from x=14 μm to 14.5 μm and region II from x=14.5 μm to 15 μm. The electron energy spectra for different acceleration mechanisms by CS(the blue dashed line)and MR(the red solid line)are in case A at t=50T0(b),case B at t=55T0(c)and case C at t=55T0 (d).

    Fig. 6. Evolution of electron kinetic energy over time. The work done by each electric field component(Wx,Wy,Wz)is plotted for case A,B,and C in panels(a),(b),and(c).

    Figure 6 shows that the electric fieldsExandEzall play important roles in electron acceleration for case A,case B,and case C.In Fig.6(a),for case A,the electron kinetic energyEkmainly comes fromWxandWz. The reconnection contribution is more than others. Figure 6(c)shows that some particles gained energy byWx, and reconnection has less influence in case C. Therefore, figure 6 implies the results of Figs. 5(b)–5(d), where more electrons are accelerated by collisionless shock when two magnetic tubes compress each other.

    5. The 3D effects

    In order to analyze some quantities,the 2D figures in the reconnection plane are presented, which are averaged along thezdirection. This method may lead to the absence of some three-dimensional information. In Figs.7(a)–7(c),the 3D isosurface distribution of the electron momentumpyis presented for case A att=50T0,and case B and case C att=55T0,respectively.High-energy electrons are distributed at the front of the laser transmission channel.In contrast,in case A,electrons are concentrated in the reconnected region with a very narrowxscope,while in case B and case C,more energetic electrons along theydirection are located over the whole interaction region of the plasma generated by the two lasers, which means that more energetic electrons are located over a wider range ofx. These features also imply that the acceleration mechanism is different.

    According to the location of the outflow in the 3D scenario of Figs.7(a)–7(c),the electron energy spectra are given in Figs. 7(d)–7(f) where the selected region is 13 μm<x <17 μm,5 μm<y <19 μm,and 25 μm<z <40 μm where the outflows are located. We find that one part of the energy spectrum for the two lasers with MR is the same as the case of the single laser without MR;the other part of the electron energy spectrum is modified by MR,which can be fit as a power-law distribution and its index is close to 1.Re-calculating the magnetization parameterσ, they are 70.2, 38.8, and 37.7 in case A,case B,and case C,respectively. This plasma environment is ultra-relativistic,which results in a very flat electron energy spectrum.

    Fig. 7. (a)–(c) Three-dimensional isosurface distributions of the electron momentum py for case A, B, and C are at t =50T0 (a), 55T0 (b), and 55T0 (c),respectively. Here,purple shows along positive py and blue shows along negative py. (d)–(f)The corresponding two-laser case spectra(black lines)and the single-laser case spectra(blue lines)in the contrast diagram are also drawn for the electrons in the reconnection area(x=13 μm–17 μm,y=5 μm–19 μm,z=25 μm–40 μm). The red lines indicate the power law of the spectrum 1 <γe <γ0.

    6. Discussion and conclusions

    Table 1 presents some parameters of the plasma environment driven by two ultra-intense femtosecond lasers and in a gamma ray burst environment. Theσis also much greater than unityσ ≥1, and the energy density of the reconnection magnetic field is larger than the rest mass energy density of the electrons. Therefore,the MR driven by ultra-intense lasers is ultra-relativistic.

    The plasma betaβ=2μ0nekBT/B2(βis the ratio of the thermal pressure to the magnetic pressure) is much smaller than 1. We find that the electron Alfv′en speed is close to the speed of lightνAe~c. These parameters match the environment of high-energy astronomical phenomena. Even though our simulation parameters do not exactly match high-energy astronomical ones,such as particle density,magnetic field energy, spatial and temporal scale, to some extent, our simulations reflect the mechanism and process of electron acceleration, corresponding to many high-energy emission of the astronomical observations.[40–42]

    In this paper, from the momentum diagram, the “pickup ring” shrinks as the laser separation distance increases.Fewer reconnection electric fields accelerate fewer electrons to higher energies. At the same time, two momentum jets alongpyare presented, and they are more obvious with an increase of the separation distance. This may be related with the different acceleration mechanisms in the case with a different separation distance. With the increase of the laser separation distance,the binding of electrons in the magnetic field becomes weaker,the duration of CS becomes longer,and the acceleration space becomes larger. So,more electrons can be accelerated by CS. Therefore, in thepydirection of the electron momentum phase space,jets appear and become larger as the laser separation distance increases. Then,through the energy spectrum analysis of different regions,we find that,with separation distance increasing, the electron energy spectrum of energetic electrons from collisionless shock approaches that from MR.As the separation distance decreases,the magnetization parameterσincreases,and the electron energy spectrum becomes flatter and less than 1. From the 3D momentum configuration, the outflow is presented between two lasers. According to the position of the outflow,the electron energy spectrum and the magnetization parameter are re-examined. The magnetization parameter is higher, and the index of the energetic electron spectrum is close to 1.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos. U1930108,12175018,12135001, 12075030, and 11903006) and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No. XDA25030700). Yongli Ping acknowledges the support of the Open Research Program from Key Laboratory of Geospace Environment CAS.

    猜你喜歡
    張茜孫偉永利
    孫偉美術(shù)作品
    科技興邦 創(chuàng)新強(qiáng)國(guó)
    一種水陸兩棲飛機(jī)普通框結(jié)構(gòu)設(shè)計(jì)
    深圳市永利種業(yè)有限公司
    辣椒雜志(2021年4期)2021-04-14 08:28:14
    Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading*
    畢永利教授簡(jiǎn)介
    法眼看平等教學(xué)設(shè)計(jì)
    Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock?
    藝術(shù)百家
    氣球
    cao死你这个sao货| 亚洲av电影不卡..在线观看| 真实男女啪啪啪动态图| 看免费av毛片| 日韩人妻高清精品专区| 久久久久久久久中文| 国产伦人伦偷精品视频| 国产高清视频在线播放一区| 国产又黄又爽又无遮挡在线| 国产日本99.免费观看| 青草久久国产| 欧美激情在线99| 久久久久久九九精品二区国产| 国产精品美女特级片免费视频播放器 | 精品一区二区三区av网在线观看| 色吧在线观看| 日韩三级视频一区二区三区| 中文字幕人妻丝袜一区二区| 18禁国产床啪视频网站| 天天一区二区日本电影三级| 亚洲国产精品合色在线| 久久久久久九九精品二区国产| 午夜视频精品福利| 亚洲成人久久性| 久久久国产欧美日韩av| 亚洲精品美女久久av网站| 色播亚洲综合网| 又大又爽又粗| 听说在线观看完整版免费高清| 久久精品影院6| 香蕉丝袜av| 一本久久中文字幕| 成人鲁丝片一二三区免费| 特大巨黑吊av在线直播| 亚洲九九香蕉| 国产一区二区三区在线臀色熟女| 亚洲av电影在线进入| 夜夜爽天天搞| 97超级碰碰碰精品色视频在线观看| 亚洲欧美激情综合另类| 免费看十八禁软件| 中文字幕人成人乱码亚洲影| 国产成人影院久久av| 18禁黄网站禁片免费观看直播| 99视频精品全部免费 在线 | 黄色女人牲交| 亚洲中文字幕日韩| 1000部很黄的大片| 一区二区三区激情视频| 精品国产亚洲在线| 99久久99久久久精品蜜桃| 九色国产91popny在线| 亚洲欧洲精品一区二区精品久久久| 亚洲精品456在线播放app | 成人特级黄色片久久久久久久| 久久久精品大字幕| 欧美色视频一区免费| 久久性视频一级片| 18美女黄网站色大片免费观看| 久久中文字幕人妻熟女| 亚洲无线在线观看| 19禁男女啪啪无遮挡网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产日韩欧美精品在线观看 | 午夜a级毛片| 91老司机精品| 中文字幕最新亚洲高清| 国产精品久久视频播放| 欧美性猛交╳xxx乱大交人| 久久香蕉国产精品| 啦啦啦免费观看视频1| 日本五十路高清| 午夜免费成人在线视频| 国产伦精品一区二区三区四那| 精品久久久久久久久久久久久| 桃色一区二区三区在线观看| 日本黄色片子视频| 人妻久久中文字幕网| www.熟女人妻精品国产| 国产在线精品亚洲第一网站| 日本在线视频免费播放| 天堂影院成人在线观看| 最近最新中文字幕大全电影3| 午夜日韩欧美国产| 91在线观看av| 国产亚洲av高清不卡| 亚洲电影在线观看av| 国产一区二区三区视频了| 日韩免费av在线播放| 亚洲欧美日韩无卡精品| 国产精品,欧美在线| 俄罗斯特黄特色一大片| 免费观看人在逋| 国产精品久久视频播放| 亚洲欧美一区二区三区黑人| 日本a在线网址| 国产精品香港三级国产av潘金莲| 手机成人av网站| 在线观看舔阴道视频| 午夜成年电影在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 精品99又大又爽又粗少妇毛片 | 国产精品久久视频播放| 久久久久国内视频| 国产亚洲欧美98| 窝窝影院91人妻| 亚洲五月天丁香| 久久九九热精品免费| 中出人妻视频一区二区| 级片在线观看| 香蕉久久夜色| 亚洲国产欧美网| 欧美日韩亚洲国产一区二区在线观看| 日本三级黄在线观看| 美女扒开内裤让男人捅视频| 欧洲精品卡2卡3卡4卡5卡区| 美女扒开内裤让男人捅视频| 国产成人啪精品午夜网站| 亚洲欧洲精品一区二区精品久久久| 最近在线观看免费完整版| 日韩欧美精品v在线| 九九在线视频观看精品| 国内精品一区二区在线观看| 亚洲无线观看免费| 久久久久久久久中文| 最新美女视频免费是黄的| 国内精品久久久久精免费| 一本精品99久久精品77| 看免费av毛片| 在线观看舔阴道视频| 日本一本二区三区精品| 亚洲精品456在线播放app | cao死你这个sao货| 久久九九热精品免费| 可以在线观看的亚洲视频| 一卡2卡三卡四卡精品乱码亚洲| 黑人欧美特级aaaaaa片| 成人永久免费在线观看视频| 午夜视频精品福利| 亚洲国产看品久久| 宅男免费午夜| 欧美一区二区国产精品久久精品| 日本a在线网址| 欧美日韩福利视频一区二区| 成人性生交大片免费视频hd| 亚洲国产色片| 青草久久国产| 国产淫片久久久久久久久 | 国产精品一区二区免费欧美| 亚洲欧美日韩高清在线视频| 中文资源天堂在线| 国产黄片美女视频| 亚洲成人免费电影在线观看| 午夜福利在线观看免费完整高清在 | 国产淫片久久久久久久久 | 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美精品综合久久99| 欧美一级a爱片免费观看看| 国产探花在线观看一区二区| 91在线观看av| 久久久久免费精品人妻一区二区| 国产精品国产高清国产av| www日本在线高清视频| 小说图片视频综合网站| 999精品在线视频| 美女大奶头视频| 国产91精品成人一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲,欧美精品.| 免费看美女性在线毛片视频| 天天躁日日操中文字幕| 最近在线观看免费完整版| 狂野欧美激情性xxxx| 黑人欧美特级aaaaaa片| 国产午夜精品论理片| 日本黄色视频三级网站网址| 成人特级黄色片久久久久久久| 国内精品一区二区在线观看| 熟女电影av网| 日本与韩国留学比较| 久久久成人免费电影| 美女黄网站色视频| 国产精品久久视频播放| 免费在线观看成人毛片| 国产高清videossex| 国产精品一区二区免费欧美| 少妇的逼水好多| av福利片在线观看| 无遮挡黄片免费观看| 亚洲av日韩精品久久久久久密| 亚洲av熟女| 久久精品国产99精品国产亚洲性色| 免费一级毛片在线播放高清视频| 麻豆成人av在线观看| avwww免费| 99久久无色码亚洲精品果冻| 久久久久国产一级毛片高清牌| 特级一级黄色大片| www.自偷自拍.com| 日本 av在线| 亚洲av第一区精品v没综合| 婷婷六月久久综合丁香| 国内少妇人妻偷人精品xxx网站 | 午夜免费成人在线视频| 亚洲精品美女久久久久99蜜臀| 欧美成人性av电影在线观看| 亚洲一区高清亚洲精品| 99国产精品99久久久久| 又紧又爽又黄一区二区| 99re在线观看精品视频| av在线天堂中文字幕| 熟女人妻精品中文字幕| 国产精品野战在线观看| 久久精品91蜜桃| 国产av不卡久久| 十八禁人妻一区二区| 啦啦啦韩国在线观看视频| 午夜免费成人在线视频| 久久久久久国产a免费观看| 精品无人区乱码1区二区| 国产成人精品久久二区二区免费| 老司机在亚洲福利影院| 亚洲国产精品999在线| 国产一区二区三区在线臀色熟女| 精品欧美国产一区二区三| 最新美女视频免费是黄的| 国产精品乱码一区二三区的特点| 久久香蕉精品热| 少妇丰满av| 欧美激情在线99| 女人被狂操c到高潮| 亚洲一区二区三区不卡视频| 亚洲 国产 在线| 老汉色av国产亚洲站长工具| 十八禁人妻一区二区| 亚洲精品乱码久久久v下载方式 | 成人精品一区二区免费| 欧美又色又爽又黄视频| 久久久精品欧美日韩精品| 成人鲁丝片一二三区免费| 国产亚洲精品综合一区在线观看| 搡老岳熟女国产| 99在线视频只有这里精品首页| 亚洲无线观看免费| 亚洲av日韩精品久久久久久密| 亚洲avbb在线观看| 男人舔奶头视频| 国模一区二区三区四区视频 | 亚洲av日韩精品久久久久久密| 免费在线观看成人毛片| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| 国产av麻豆久久久久久久| 男女做爰动态图高潮gif福利片| 成人无遮挡网站| 搡老熟女国产l中国老女人| 男女床上黄色一级片免费看| svipshipincom国产片| 日本与韩国留学比较| 午夜福利视频1000在线观看| 麻豆成人av在线观看| 亚洲av电影在线进入| 国产高清videossex| 亚洲欧美日韩无卡精品| av片东京热男人的天堂| 亚洲专区中文字幕在线| av女优亚洲男人天堂 | 嫁个100分男人电影在线观看| 欧美日本视频| 亚洲精品美女久久av网站| 丰满人妻熟妇乱又伦精品不卡| 国产爱豆传媒在线观看| 欧美成狂野欧美在线观看| 欧美日本视频| 国产欧美日韩精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 午夜福利在线观看免费完整高清在 | 欧美+亚洲+日韩+国产| 免费看十八禁软件| 757午夜福利合集在线观看| 成年女人永久免费观看视频| 黄色丝袜av网址大全| 丁香欧美五月| 久久久久性生活片| av在线蜜桃| 又大又爽又粗| 在线观看66精品国产| 精品免费久久久久久久清纯| 亚洲自偷自拍图片 自拍| 久久久久久国产a免费观看| xxx96com| 亚洲av免费在线观看| 精品99又大又爽又粗少妇毛片 | 亚洲欧美精品综合久久99| 欧美又色又爽又黄视频| 久久这里只有精品19| 色哟哟哟哟哟哟| 18美女黄网站色大片免费观看| 国产亚洲精品综合一区在线观看| 哪里可以看免费的av片| 看免费av毛片| 久久精品影院6| 国产又黄又爽又无遮挡在线| avwww免费| av女优亚洲男人天堂 | 日韩高清综合在线| 亚洲av五月六月丁香网| 18禁美女被吸乳视频| 一级毛片女人18水好多| 亚洲国产精品sss在线观看| 青草久久国产| 国产亚洲精品综合一区在线观看| 亚洲av五月六月丁香网| 亚洲国产精品999在线| 男插女下体视频免费在线播放| 精品国内亚洲2022精品成人| 伊人久久大香线蕉亚洲五| 国产欧美日韩精品亚洲av| 久9热在线精品视频| 久久久久免费精品人妻一区二区| 国内少妇人妻偷人精品xxx网站 | 国产探花在线观看一区二区| 日本与韩国留学比较| 最近最新免费中文字幕在线| 在线播放国产精品三级| 国产亚洲av高清不卡| 19禁男女啪啪无遮挡网站| 97超级碰碰碰精品色视频在线观看| 看片在线看免费视频| 搡老岳熟女国产| 俺也久久电影网| 看黄色毛片网站| 在线观看一区二区三区| 亚洲五月婷婷丁香| 日韩欧美在线乱码| 国产免费av片在线观看野外av| 在线观看免费午夜福利视频| 国产99白浆流出| 久久久久久大精品| 最近最新中文字幕大全电影3| 国内精品美女久久久久久| 午夜亚洲福利在线播放| 超碰成人久久| av视频在线观看入口| 久久久久久久久免费视频了| 亚洲欧美日韩无卡精品| 一本一本综合久久| 国产精品电影一区二区三区| 久久久国产欧美日韩av| 麻豆成人午夜福利视频| 一本综合久久免费| 国产欧美日韩一区二区三| 国产69精品久久久久777片 | 国产又色又爽无遮挡免费看| 亚洲精华国产精华精| 9191精品国产免费久久| 欧美av亚洲av综合av国产av| 国产精品女同一区二区软件 | 欧美成人一区二区免费高清观看 | 嫩草影视91久久| 丝袜人妻中文字幕| 欧美大码av| 又紧又爽又黄一区二区| 久久久精品欧美日韩精品| 夜夜躁狠狠躁天天躁| 国产精品久久久av美女十八| 欧美日韩一级在线毛片| 手机成人av网站| 亚洲精品美女久久av网站| 国产av一区在线观看免费| 午夜福利高清视频| 99国产精品一区二区蜜桃av| 亚洲在线观看片| ponron亚洲| 色吧在线观看| 国产欧美日韩一区二区精品| 天堂av国产一区二区熟女人妻| 黄色日韩在线| 美女午夜性视频免费| 桃红色精品国产亚洲av| 国产欧美日韩精品一区二区| av天堂在线播放| a级毛片a级免费在线| 久久久久性生活片| www日本在线高清视频| 一级a爱片免费观看的视频| 丝袜人妻中文字幕| 淫妇啪啪啪对白视频| 久久欧美精品欧美久久欧美| 哪里可以看免费的av片| 欧美黄色淫秽网站| 国产精品99久久99久久久不卡| 男人舔女人下体高潮全视频| 国模一区二区三区四区视频 | 特级一级黄色大片| 日韩欧美精品v在线| 香蕉国产在线看| 国产成人精品久久二区二区免费| 精品不卡国产一区二区三区| 天堂√8在线中文| 熟女人妻精品中文字幕| 搞女人的毛片| 久久天堂一区二区三区四区| 欧美乱妇无乱码| 麻豆一二三区av精品| 国产成人系列免费观看| 久久久久九九精品影院| 欧美乱码精品一区二区三区| 国产免费av片在线观看野外av| 一本一本综合久久| 国产激情偷乱视频一区二区| 国产三级在线视频| 成人无遮挡网站| 欧美日本视频| 免费电影在线观看免费观看| 99热6这里只有精品| 国产精品一区二区精品视频观看| 久久99热这里只有精品18| 国产成人aa在线观看| 亚洲午夜精品一区,二区,三区| 精品国产美女av久久久久小说| 亚洲色图 男人天堂 中文字幕| 91九色精品人成在线观看| 午夜免费成人在线视频| 日本a在线网址| 久久久久精品国产欧美久久久| 欧美日韩综合久久久久久 | 欧美丝袜亚洲另类 | 亚洲人成电影免费在线| 久久久久国产一级毛片高清牌| 亚洲一区二区三区不卡视频| 亚洲成人中文字幕在线播放| 欧美成人一区二区免费高清观看 | av天堂在线播放| 我要搜黄色片| 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av| 亚洲av电影在线进入| 日韩欧美国产在线观看| 搡老岳熟女国产| x7x7x7水蜜桃| 精品一区二区三区视频在线观看免费| 叶爱在线成人免费视频播放| 男女那种视频在线观看| 美女大奶头视频| 午夜激情欧美在线| 亚洲电影在线观看av| 免费搜索国产男女视频| 亚洲午夜理论影院| 国产三级黄色录像| 制服人妻中文乱码| 18禁黄网站禁片免费观看直播| 婷婷精品国产亚洲av| 色噜噜av男人的天堂激情| 日韩欧美国产在线观看| 欧美一区二区国产精品久久精品| 国产成人精品久久二区二区免费| 免费大片18禁| 国语自产精品视频在线第100页| 男女视频在线观看网站免费| 欧美日韩黄片免| a在线观看视频网站| 一级黄色大片毛片| 欧美zozozo另类| 国产熟女xx| 久久久久久久午夜电影| 国产高清三级在线| 国内揄拍国产精品人妻在线| 久9热在线精品视频| 亚洲最大成人中文| 丰满人妻一区二区三区视频av | 人妻夜夜爽99麻豆av| 丰满的人妻完整版| 国产麻豆成人av免费视频| 成人永久免费在线观看视频| 亚洲,欧美精品.| 高清在线国产一区| 亚洲国产看品久久| 国产成人av教育| 999精品在线视频| 狠狠狠狠99中文字幕| 国产激情久久老熟女| 亚洲一区高清亚洲精品| 精品不卡国产一区二区三区| 亚洲av日韩精品久久久久久密| 美女cb高潮喷水在线观看 | 两个人看的免费小视频| 成人永久免费在线观看视频| 国产精品香港三级国产av潘金莲| 久久久久久久精品吃奶| 中文字幕久久专区| 国产99白浆流出| 搡老妇女老女人老熟妇| 首页视频小说图片口味搜索| 手机成人av网站| 国产av不卡久久| 日本三级黄在线观看| 午夜影院日韩av| 午夜精品久久久久久毛片777| www日本在线高清视频| 19禁男女啪啪无遮挡网站| 两个人看的免费小视频| 丁香欧美五月| 国产精品av久久久久免费| 国产成人啪精品午夜网站| 身体一侧抽搐| 男人的好看免费观看在线视频| 天天一区二区日本电影三级| 成在线人永久免费视频| 久久热在线av| 国产精品久久久人人做人人爽| x7x7x7水蜜桃| 一区二区三区高清视频在线| 最近最新免费中文字幕在线| 久久精品亚洲精品国产色婷小说| 欧美午夜高清在线| 精品久久蜜臀av无| 久久久久久人人人人人| 免费搜索国产男女视频| 香蕉久久夜色| 成人特级av手机在线观看| 美女被艹到高潮喷水动态| 国产精品一区二区三区四区久久| 欧美丝袜亚洲另类 | 757午夜福利合集在线观看| 亚洲av日韩精品久久久久久密| 在线播放国产精品三级| 美女免费视频网站| e午夜精品久久久久久久| 亚洲专区中文字幕在线| 午夜精品在线福利| 三级男女做爰猛烈吃奶摸视频| 99re在线观看精品视频| 亚洲欧美日韩高清专用| 日本与韩国留学比较| 九九热线精品视视频播放| 99热这里只有精品一区 | 日韩免费av在线播放| 国模一区二区三区四区视频 | 色吧在线观看| 国产成人啪精品午夜网站| 精品电影一区二区在线| 91在线精品国自产拍蜜月 | 亚洲一区高清亚洲精品| 午夜视频精品福利| 国产精品 国内视频| 日本熟妇午夜| 91av网站免费观看| 人人妻人人看人人澡| 国产高清视频在线观看网站| 欧美国产日韩亚洲一区| 少妇人妻一区二区三区视频| 精品无人区乱码1区二区| 午夜视频精品福利| 好男人在线观看高清免费视频| 欧美日韩综合久久久久久 | 国产免费av片在线观看野外av| 国产日本99.免费观看| www.自偷自拍.com| 香蕉国产在线看| 中文亚洲av片在线观看爽| 亚洲黑人精品在线| 国产伦在线观看视频一区| 亚洲av电影在线进入| 成人永久免费在线观看视频| 久久中文字幕一级| 9191精品国产免费久久| 亚洲av日韩精品久久久久久密| 国产综合懂色| 色综合亚洲欧美另类图片| 欧美极品一区二区三区四区| 精品久久久久久,| 夜夜夜夜夜久久久久| 国产三级在线视频| 国产日本99.免费观看| 亚洲av成人不卡在线观看播放网| 高清毛片免费观看视频网站| 黄色成人免费大全| 亚洲五月天丁香| 老司机在亚洲福利影院| 久久久久久久精品吃奶| 757午夜福利合集在线观看| 日本免费a在线| 99国产精品一区二区三区| 午夜亚洲福利在线播放| 一个人看视频在线观看www免费 | 丰满人妻一区二区三区视频av | 欧美成人一区二区免费高清观看 | 九九热线精品视视频播放| 在线国产一区二区在线| 久久久精品欧美日韩精品| 欧美乱码精品一区二区三区| 久久中文字幕一级| 免费在线观看视频国产中文字幕亚洲| 国产三级黄色录像| 国产成人精品久久二区二区免费| 变态另类丝袜制服| 精品久久久久久久人妻蜜臀av| 亚洲熟妇熟女久久| 麻豆一二三区av精品| 舔av片在线| 在线国产一区二区在线| 黄色视频,在线免费观看| 超碰成人久久| 啪啪无遮挡十八禁网站| 亚洲专区国产一区二区| 这个男人来自地球电影免费观看| 黄色日韩在线| 亚洲五月婷婷丁香| 成人国产一区最新在线观看| 中文字幕精品亚洲无线码一区| 国产精品综合久久久久久久免费| 久久久色成人| 97碰自拍视频| 人妻久久中文字幕网|