• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak

    2022-06-29 08:55:40DaweiYe葉大為FangDing丁芳KedongLi李克棟ZhenhuaHu胡振華LingZhang張凌XiahuaChen陳夏華QingZhang張青PinganZhao趙平安TaoHe賀濤LingyiMeng孟令義KaixuanYe葉凱萱FubinZhong鐘富彬YanminDuan段艷敏RuiDing丁銳LiangWang王亮GuoshengXu徐國盛GuangnanLuo羅廣南andEAST
    Chinese Physics B 2022年6期

    Dawei Ye(葉大為) Fang Ding(丁芳) Kedong Li(李克棟) Zhenhua Hu(胡振華) Ling Zhang(張凌)Xiahua Chen(陳夏華) Qing Zhang(張青) Pingan Zhao(趙平安) Tao He(賀濤) Lingyi Meng(孟令義)Kaixuan Ye(葉凱萱) Fubin Zhong(鐘富彬) Yanmin Duan(段艷敏) Rui Ding(丁銳)Liang Wang(王亮) Guosheng Xu(徐國盛) Guangnan Luo(羅廣南) and EAST team

    1Institute of Plasma Physics,HFIPS,Chinese Academy of Sciences(CAS),Hefei 230031,China

    2University of Science and Technology of China,Hefei 230026,China

    Keywords: neon seeding,tungsten sputtering,ELM suppression,EAST tokamak

    1. Introduction

    Tungsten(W)is foreseen as the most promising plasmafacing material (PFM) for the divertor in the ITER in terms of its high melting temperature,low sputtering yields and low deuterium retention rate.[1]With the increase of heating power in future fusion devices, extremely high power fluxes onto the divertor can cause significant erosion of the divertor material. Due to the absence of the intrinsic impurity radiation in full metal wall devices, extrinsic impurity seeding is considered as an indispensable way to reduce the energy deposited on the target. Simulations have shown that both neon (Ne)and nitrogen(N2)seeding can be used to dissipate significant amounts of power and to reduce the heat load on the divertor to an acceptable level(5 MW/m2–10 MW/m2)in ITER.[2]Although N2shows beneficial results in confinement enhancement and radiation increase in the edge plasma,the formation of partially tritiated ammonia affects the machine duty cycle in ITER deuterium–tritium plasma.[3]Therefore,Ne seems to be a better radiator in future fusion devices. However, as the W sputtering yield depends strongly on the incident particle species and their energies,Ne has a higher W sputtering yield than that of deuterium(D)or tritium(T)at the same incidence energy.[1]The existing simulation results reveal that the insufficient seeded Ne impurity could reduce the heat flux to the target, but the erosion of the W target can be obviously enhanced.[4]When the detached condition is achieved with sufficient Ne seeding, the W target erosion is obviously suppressed. In this work, the behaviors of W sputtering with Ne seeding in the divertor are experimentally observed and analyzed on EAST. The experiments reveal that the evolution of both the W sputtering rate and yield at the divertor target can be the competing results between two seeding effects,increasing divertor Ne impurity content and decreasing electron temperature,which is consistent with the simulation results.[4]In addition, ELM suppression has been observed in this Ne seeding experiment. Due to the W sputtering by seeded Ne impurities, both the W and Ne impurities in the core plasma significantly increase after Ne seeding in the upper divertor.The influence of Ne and W impurities on ELM behavior is discussed.

    The rest of this paper is organized as follows: The experimental setup and method are introduced in Section 2. The effects of Ne seeding on divertor W sputtering are given in Section 3. The influence of impurity on the ELM is discussed in Section 4. Summary is presented in Section 5.

    2. Experimental setup and method

    EAST is an experimental superconducting tokamak device with a D-shaped poloidal cross-section and flexible divertor configurations, aiming at long-pulse high-performance H-mode operations.[5]The top W divertor with actively cooled ITER-like monoblock structure was installed in 2014[6]while the bottom W divertor was installed in 2021.[7]This work was carried out with the upper W divertor and lower previous graphite divertor as shown in Fig. 1(a). Meanwhile, the first wall in the main chamber is covered by molybdenum and graphite tiles.[7]EAST is equipped with a set of gas puff inlets distributed at the outer target, inner target, and dome of both top and bottom divertors. Only the inlet at the upper inner (UI) target was used for impurity seeding in this work as shown in Fig.1(b). The impurity seeding rate can be adjusted by changing the pulse voltage,duty,and frequency applied on the piezoelectric valve.

    Fig. 1. (a) View into the EAST vacuum chamber and (b) geometry of viewing chords for the diagnostics used in this paper. Div-W (magenta):multichannel visible spectroscopy viewing the upper outer (UO) tungsten divertor; EUV (orange): extreme ultraviolet spectrometer; AXUV arrays(black): absolute extreme ultraviolet photodiode arrays with two bold lines indicating the 33th and 59th channels passing through the core and upper divertor region,respectively;UO-LP(blue): divertor Langmuir probes at the UO target,UO-LP01 to UO-LP13 at port D and UO-LP14 to UO-LP26 at port O;UI-GP(green): gas puff inlet at the upper inner(UI)target. A typical separatrix of main plasma is also shown with the blue line.

    The multichannel visible spectroscopy system (Div-W)located in the equatorial port H[8]is used to monitor impurity line emissions especially the W I line at 400.88 nm in the upper divertor region. A schematic diagram of the lines of sight of the Div-W system is shown in Fig.1(b). The spatial resolution along the divertor targets is 13 mm and the temporal resolution is 5 ms in this work. Figure 2 shows a typical spectrum in the wavelength range of 396.2 nm to 427.nm with Ne seeding in the UI divertor. The line intensity of W I at 400.88 nm is used to quantify the W atom influxΓWby applying the inverse photon efficiency.[9]The W atom influx can be written as a function of the line intensity:[10]

    Fig. 2. A typical spectrum in wavelength ranges of 396.2 nm–427.6 nm obtained by the Div-W system in the USN H-mode plasma with Ne seeding.

    In addition to the W I line at 400.88 nm,some lowZimpurity lines as well as neutral deuterium atom lines are also observed by the Div-W system as shown in Fig. 2, including O II (398.27 nm, 406.92 nm, 407.53 nm, 418.54 nm), N II (399.5 nm), N III (409.733 nm), Ne II (421.97 nm), Li I(413.21 nm),C II(426.7 nm),Dδ(410.06 nm),Dε(396.9 nm)etc.These emission lines are in good agreement with the NIST atomic spectra database. The high strength of the C II line in this spectral range can be attributed to the erosion of graphite plasma-facing components (PFCs) in the lower divertor and the guard limiter of antennae. Due to the lithium coating,the Li I line can be detected and used to evaluate wall coating conditions.[12]Line emissions from low-ionized oxygen and nitrogen ions may be due to the residual air absorbed in the PFCs and structural materials. The characteristic spectral line Ne II can be used as an indicator of Ne ion flux to the divertor target.[11]

    Figure 1(b)illustrates the relevant diagnostics used in this work. In addition to the Div-W system, the absolute extreme ultraviolet(AXUV)photodiode arrays provide measurements of the radiated power in EAST plasma with fast temporal response (4 μs) and flat spectral sensitivity in the range from ultraviolet to x-ray.[13]Among 64 channels of the AXUV system,the 33th channel passes through the plasma core and the 59th channel views the upper divertor through the X-point region. The electron temperature(Tet)and ion saturation current(jsat) at the divertor target are measured by Langmuir probes embedded in the divertor target plate with a poloidal resolution of 12 mm–18 mm.[14]The line emissions of highly ionized impurities in the plasma core including W and Ne can be detected by the fast-time-response extreme ultraviolet (EUV)spectrometer in the wavelength range of 1 nm–50 nm.[15]An unresolved transition array (W-UTA) of tungsten ions in the core plasma,consisting of ionization stages in W27+–W45+,is clearly observed with strong intensity in the wavelength range of 4.5 nm–7.0 nm.[16]Thus the W-UTA signal provides an approximate estimation of the content of tungsten in the core plasma. The Ne X line intensity at 1.213 nm measured by the EUV system is used to monitor the Ne impurity content in the core plasma.

    3. Effect of Ne seeding on divertor W sputtering

    Ne impurity is normally seeded into the EAST W divertor to enhance the plasma radiation in order to achieve plasma detachment.[17]Figure 3 shows the time evolutions of the major plasma parameters in the USN H-mode discharge#90777 with Ne mixed gas seeding(volume ratio,Ne:D2=1:1).This discharge was operated in the favorable toroidal magnetic field direction withBt=2.5 T,plasma currentIp=400 kA,power injection of lower hybrid wavePLHW=2.5 MW (Fig. 3(a)),power injection of neutral beam injectionPNBI= 3.0 MW(Fig. 3(a)) and plasma stored energyWMHD= 150 kJ. Figure 3(a)shows that the voltage pulse of Ne seeding in the upper divertor starts at 4 s and lasts for about 500 ms. Most of the plasma parameters start to respond after a delay of about 400 ms. The time delay should be due to gas flowing in the pipe between the gas valve outside the machine and the gas inlet in the divertor. Afterwards the central lineaveraged electron densitynelincreases from 3.0×1019m-3to 3.5×1019m-3(Fig.3(b))and the peak ion saturation current density (jsat) at the upper outer divertor target increases slightly from 1.5 A/cm2to 2 A/cm2(Fig. 3(e)). The Ne II line emission in the divertor gradually increases until twice the value before seeding(Fig.3(c)).

    Fig.3. Time evolutions of the experimental parameters in discharge#90777 with Ne seeding. (a)Power source of NBI(black)and LHW(red)heating,and the voltage signal of the piezo valve for Ne seeding (blue); (b) the line-averaged electron density at the mid-plane nel (black) and plasma stored energy WMHD (blue); (c) Ne II line (black) emission measured by Div-W and Ne X line (blue) emission measured by EUV; (d) W I line emission measured by Div-W (black) and W-UTA measured by EUV (blue); (e) ion saturation current jsat (black) and peak electron temperature Tet (blue) at the UO target measured by divertor Langmuir probes; (f)AXUV 59th channel(black)measuring radiation across the upper divertor and AXUV 33th channel(blue)measuring radiation across the plasma core. The unit a.u. is short for arb. units.

    Figure 3(f) shows the upper divertor radiation measured by the 59th channel of AXUV across the upper divertor has a similar trend as the Ne II line emission, indicating that Ne seeding could enhance the plasma radiation in the divertor.This could explain the decrease ofTetat the UO target from~50 eV to 20 eV due to the radiation cooling effect as shown in Fig.3(e). Despite the reduction of incident ion energy(proportional toTet),the W I line emission presents a rising trend until 5.3 s and then starts to drop(Fig.3(d)).

    Figure 4 shows the distributions of W I line emission andTetalong the upper outer(UO)target.Thexaxis represents the distance along the UO target to the corner between the outer target and the dome as indicated in Fig. 1(b). The profile of W I line emission along the target is similar to that ofTet,indicating the strong dependence of the W sputtering rate on the incident ion energy in the spatial distribution. However, it is also seen that the W I line emissions around the peak keep increasing with time before reaching a maximum around 5.3 s,which is opposite to the temporal evolution of the correspondingTet.

    Fig. 4. Profiles at 4 different times of (a) W I line emission at 400.9 nm and (b) electron temperature Tet along the UO divertor target in discharge#90777 with Ne seeding.

    To further understand the W sputtering behavior with Ne seeding,both the W atom flux(ΓW)and effective W sputtering yield (YW,phy=ΓW/jsat) are quantified based on the method as described in Section 2. Figures 5(b)and 5(c)plot the peakΓWandYW,phyagainst the peakTetand the Ne II line emission,respectively. Moreover,the dependences ofTetandjsaton the Ne II line emission are also illustrated in Fig. 5(a). It can be seen in Fig.5(a)that theTetdrops from 50 eV to 18 eV and thejsatrises slightly from 1.5 A/cm2to 2 A/cm2with the increase of the Ne II line emission. Especially when the relative Ne II line intensity exceeds 45,a rapid rise appears forjsatand thenTetdecreases to below 20 eV,which may indicate that the divertor plasma goes into a high recycling regime. These reveal that Ne seeding could change divertor plasma status and effectively reduceTetat the divertor target,thus causing a decrease of ion impact energy on W surface. However, the sputtered W atom flux does not present an immediate drop with the decrease ofTetas shown in Fig.5(b).

    Fig.5. Effects of Ne seeding on the W sputtering at the UO divertor target.(a) Peak Tet and jsat at the UO target as a function of Ne II line emission intensity; (b) peak W atom flux ΓW and effective tungsten sputtering yield YW,phys(=ΓW/jsat)as a function of Tet;(c)peak ΓW and YW,phys as a function of Ne II line emission intensity.

    On the contrary, the W atom fluxΓWinitially increases with the decrease ofTetuntil 25 eV. Then after a rollover,ΓWstarts to decrease withTet. The same trend is also observed for effective W sputtering yieldYW,phy, implying the dominant role ofYW,phyin the evolution ofΓW. Calculations by TRIM[18]in the binary-collision approximation predict that both the impact energy and the mass of incident particle have strong influences on the sputtering yield. The Monte Carlo simulation by Ouet al.also shows similar dependence of the W physical sputtering yield on the bombardment energy and different impurity ions.[19]Thus, it is considered that the Ne seeding decreases the divertor plasma temperature to reduce the impact energy of the incident particles on the one hand,but increases the Ne impurity concentration in the divertor plasma on the other hand. The dependence of W sputtering onTet,as shown in Fig.5(b), should result from the competition between the above two effects. The W sputtering increases gradually upon Ne seeding and theTetdecreases from 50 eV to 25 eV,where the Ne induced sputtering effect dominates. The W sputtering flux is observed to reach a maximum at 25 eV,nearly 50%increase relative to that before Ne seeding.The Ne seeding starts to have a net beneficial effect on the suppression of W sputtering whenTetdrops below 25 eV,where the cooling effect of Ne seeding dominates. A rollover for both sputtering atom flux(ΓW)and yield(YW,phy)similar to that in Fig.5(b)is also observed in Fig.5(c)when the relative Ne II line intensity exceeds 45 and the divertor plasma goes into a high recycling regime. These imply that the lower W sputtering rate due to the lowerTetin the high recycling regime could make compensation for the enhanced W sputtering by Ne impurity and the decreasing W redeposition rate,thus benefiting the control of core tungsten concentration as shown in Fig.3(d)that is to be discussed in the next section. This experimental observation is consistent with the simulation results in Refs.[20,21]. Due to the increase of particle flux onto the target with Ne seeding as shown in Fig. 5(a), the W sputtering rateΓWhas a faster rise before the rollover, but a slower drop after the rollover than the W sputtering yieldYW,phy. Therefore, small amount of Ne seeding enhances the W sputtering. Only when enough Ne particles are injected into the divertor plasma to reduce the plasma temperature sufficiently,can the W sputtering be effectively suppressed.

    4. Influence of impurity on the ELM

    Divertor impurities can partly transport into the core plasma due to the ion temperature gradient force,i.e.divertor impurity leakage.[22]It can be seen in Fig.3 that both the seeded Ne impurity and the sputtered W impurity in the UO divertor have strong influences on the main plasma. Figure 3(c)shows that the Ne X line emission at 1.213 nm starts to rise at 4.5 s after an~100 ms delay relative to the Ne II line emission in the divertor,indicating the penetration of Ne impurities seeded from the divertor into the core plasma.However,no obvious rise appears in the core XUV radiation signal(AXUV33 in Fig.3(f))at this time,although the divertor radiation channel AXUV59 presents a corresponding rise with the Ne II line emission. This indicates that the radiation contribution from Ne impurities in the core is moderate. Comparing the W-UTA spectral signal from the core W impurities and the AXUV33 signal as demonstrated in Figs.3(d)and 3(f),a good synchronization can be observed,indicating that the core plasma radiation is dominated by the W impurity. The rise of the W-UTA signal starting at 4.8 s should be related to inward transport of the W atoms sputtered in the divertor as discussed in Section 3. The W-UTA signal presents a good correlation with the W I signal in Fig. 3(d) since 4.8 s. The slow decrease of W-UTA intensity before 4.8 s is a recovery process after another W impurity event. In general,the plasma stored energy(WMHD)presents an opposite evolution with core tungsten radiation loss as shown in Fig.3. Moreover,the increasing density in the core should result from the injection of Ne mixture and partly contribute to the rise of plasma stored energy before 5 s,as shown in Fig.3(b). The subsequent decrease in plasma stored energy should be related to the increasing core W impurity radiation loss.It is also noticed that ELMs are evidently suppressed since 4.8 s,coincident with the rise of the W-UTA signal.

    Fig. 6. Experimental results of ELM suppression during Ne seeding in#90777. (a) Dα signal in the upper divertor region; (b) ELM frequency;(c) and (d) the density fluctuation power spectra in the pedestal foot and pedestal top,respectively.

    Fig. 7. (a) Density profiles reconstructed by the microwave reflectometry system at different times in the discharge #90777; (b) density gradient dne/dr corresponding to the curves in panel(a).

    Figure 6 illustrates the temporal evolutions of the ELM frequency and the density fluctuation power spectra in the pedestal top and pedestal foot obtained by the microwave reflectometry.[23]The ELM frequency in Fig. 6(b) is calculated based on the divertorDαsignal in Fig. 6(a). The averaged ELM frequency (fELM) maintains at~100 Hz before 4.8 s. Most ELMs are suppressed since 4.8 s when the core W-UTA signal starts to rise.Simultaneously,figure 6(c)shows that the density fluctuation at the pedestal foot increases significantly with the rise of core plasma radiation,in which the fluctuations with higher frequency up to 400 kHz are excited after 4.8 s. This shows that the ELM suppression could be correlated to the enhanced transport induced by turbulence in the pedestal. The impurity transport across the pedestal may play an important role,which is similar to the observations in the HL-2A tokamak.[24]Figure 7 displays two density profiles measured by the microwave reflectometry before and during the ELM supersession.[25]The density gradient in the pedestal is softened during ELM suppression compared with that before,which could be attributed to the enhanced pedestal transport. These results indicate that ELMs can be suppressed due to the changed pedestal transport by impurities.

    5. Summary

    The influence of Ne seeding on the tungsten sputtering from the divertor target is investigated in the EAST experiment. The sputtered W atom influx at the divertor target has been quantified by using the spectroscopic observation on W I line emission at 400.88 nm. It is found that the W sputtering rate keeps an increasing trend with Ne seeding until the electron temperature at the target drops to below 25 eV where the W sputtering reaches the maximum.The competition between the drop of plasma temperature due to the radiation cooling effect of Ne impurities and the enhancement of W sputtering yield induced by the increased Ne impurity concentration in the divertor is the main reason. Enough plasma cooling is needed to obtain a beneficial W sputtering suppression for Ne impurity seeding.Moreover,the core plasma radiation is dominated by the W impurity content in the core and strongly correlated to the W source. The ELM suppression and enhanced turbulence transport in the pedestal are observed when the impurity radiation in main plasma exceeds a threshold, demonstrating the strong influences of divertor impurities on pedestal plasma behavior.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFE0301300,2017YFA0402500,and 2018YFE0303103),the National Natural Science Foundation of China (Grant Nos. 12192283 and 12022511), the Users with Excellence Project of Hefei Science Center, CAS (Grant No. 2018HSC-UE008),the CASHIPS Director’s Fund (Grant No. BJPY2019B01),the JSPS-CAS Bilateral Joint Research Project (Grant No. GJHZ201984), and the Key Research Program of Frontier Sciences of CAS(Grant No.ZDBS-LY-SLH010).

    两个人的视频大全免费| 久久久a久久爽久久v久久| 亚洲精品第二区| 欧美丝袜亚洲另类| 午夜免费观看性视频| 高清午夜精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品一及| 91aial.com中文字幕在线观看| 好男人在线观看高清免费视频| 两个人视频免费观看高清| 最近视频中文字幕2019在线8| 国精品久久久久久国模美| 国产视频首页在线观看| 欧美性猛交╳xxx乱大交人| 舔av片在线| 免费观看无遮挡的男女| 日韩av在线大香蕉| 午夜老司机福利剧场| 美女cb高潮喷水在线观看| 国产中年淑女户外野战色| 亚洲精品乱码久久久v下载方式| 国产色婷婷99| av福利片在线观看| 成人毛片60女人毛片免费| 看非洲黑人一级黄片| 777米奇影视久久| 观看美女的网站| 亚洲欧美日韩卡通动漫| 国产探花极品一区二区| 极品教师在线视频| 熟妇人妻不卡中文字幕| 久久精品久久久久久久性| 美女高潮的动态| 建设人人有责人人尽责人人享有的 | 成人亚洲精品一区在线观看 | 伊人久久国产一区二区| 亚洲天堂国产精品一区在线| 国产乱人偷精品视频| 久久精品熟女亚洲av麻豆精品 | 男人舔奶头视频| 久久国产乱子免费精品| 免费av毛片视频| 少妇的逼好多水| 亚洲国产欧美人成| 一级毛片久久久久久久久女| 亚洲国产最新在线播放| 国产黄色视频一区二区在线观看| 亚洲av电影不卡..在线观看| 国产色爽女视频免费观看| 久久久久免费精品人妻一区二区| av天堂中文字幕网| 亚洲精品自拍成人| 天堂√8在线中文| 午夜老司机福利剧场| 又爽又黄a免费视频| 国产黄片美女视频| 久久久久久伊人网av| 午夜福利在线观看吧| 熟妇人妻不卡中文字幕| 大话2 男鬼变身卡| 亚洲精品国产成人久久av| 一级黄片播放器| 少妇的逼水好多| 男女边摸边吃奶| 久久久精品94久久精品| 建设人人有责人人尽责人人享有的 | 欧美日韩视频高清一区二区三区二| 国产中年淑女户外野战色| 极品少妇高潮喷水抽搐| 97超视频在线观看视频| 搡女人真爽免费视频火全软件| 91aial.com中文字幕在线观看| 日本wwww免费看| 国产精品av视频在线免费观看| 看非洲黑人一级黄片| 日本wwww免费看| 国产黄色小视频在线观看| 女人被狂操c到高潮| 十八禁网站网址无遮挡 | 久久99热6这里只有精品| 国产又色又爽无遮挡免| 美女大奶头视频| 一区二区三区四区激情视频| 中文字幕亚洲精品专区| 免费观看在线日韩| 国产亚洲最大av| 少妇熟女欧美另类| 国产白丝娇喘喷水9色精品| 亚洲av成人精品一二三区| 欧美xxxx黑人xx丫x性爽| 极品少妇高潮喷水抽搐| 亚洲精品亚洲一区二区| 偷拍熟女少妇极品色| 男人狂女人下面高潮的视频| 白带黄色成豆腐渣| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品电影小说 | 亚洲aⅴ乱码一区二区在线播放| 中文字幕免费在线视频6| 成人亚洲精品一区在线观看 | 国产一级毛片七仙女欲春2| 日韩av免费高清视频| 久久精品夜色国产| 网址你懂的国产日韩在线| 色综合亚洲欧美另类图片| 美女cb高潮喷水在线观看| 日韩电影二区| 亚洲精品成人久久久久久| 男女视频在线观看网站免费| 99热这里只有精品一区| 日韩视频在线欧美| 麻豆成人午夜福利视频| 久久久精品94久久精品| 一个人免费在线观看电影| 最近手机中文字幕大全| 日本黄色片子视频| 一级爰片在线观看| 内射极品少妇av片p| 肉色欧美久久久久久久蜜桃 | 国产极品天堂在线| 色吧在线观看| 日日干狠狠操夜夜爽| 日韩 亚洲 欧美在线| 伊人久久国产一区二区| 国产精品一区二区三区四区免费观看| 在线天堂最新版资源| 亚洲精品中文字幕在线视频 | 国产视频首页在线观看| 在线观看美女被高潮喷水网站| 亚洲精品久久午夜乱码| 超碰av人人做人人爽久久| 一级毛片电影观看| 三级经典国产精品| 大话2 男鬼变身卡| 日本与韩国留学比较| 日日撸夜夜添| 国产黄片视频在线免费观看| 国产精品久久久久久精品电影小说 | 日本黄大片高清| 国产视频首页在线观看| 91精品国产九色| 久久鲁丝午夜福利片| 精品一区二区免费观看| 熟女人妻精品中文字幕| 搞女人的毛片| 免费电影在线观看免费观看| 人妻少妇偷人精品九色| 三级经典国产精品| 2018国产大陆天天弄谢| 久久久久久久大尺度免费视频| 国产老妇女一区| 国国产精品蜜臀av免费| 国产精品伦人一区二区| 国产精品久久久久久久电影| 久久综合国产亚洲精品| 日本一本二区三区精品| 欧美日韩精品成人综合77777| 国产在视频线精品| 搞女人的毛片| 日本猛色少妇xxxxx猛交久久| 国产精品一二三区在线看| 亚洲经典国产精华液单| 亚洲av电影在线观看一区二区三区 | 观看免费一级毛片| 亚洲精品乱码久久久久久按摩| 日本爱情动作片www.在线观看| 亚洲精品一区蜜桃| 国产三级在线视频| 五月天丁香电影| 亚洲,欧美,日韩| 日日撸夜夜添| 美女高潮的动态| 九九在线视频观看精品| 一个人免费在线观看电影| 中文在线观看免费www的网站| 免费大片黄手机在线观看| 看免费成人av毛片| 成人二区视频| 别揉我奶头 嗯啊视频| 国产又色又爽无遮挡免| 大陆偷拍与自拍| 国产精品一区二区性色av| 亚洲自拍偷在线| 亚洲av福利一区| 两个人视频免费观看高清| 干丝袜人妻中文字幕| 天堂av国产一区二区熟女人妻| 免费观看av网站的网址| 精品一区二区免费观看| 男女视频在线观看网站免费| 亚洲av不卡在线观看| 亚洲,欧美,日韩| 汤姆久久久久久久影院中文字幕 | 精品久久久久久久末码| 久久草成人影院| 伦精品一区二区三区| 男人和女人高潮做爰伦理| 精品一区二区三卡| 婷婷六月久久综合丁香| 久久久久精品性色| 欧美最新免费一区二区三区| 久久精品综合一区二区三区| 日本一本二区三区精品| 国产不卡一卡二| 人妻少妇偷人精品九色| 国产有黄有色有爽视频| 一区二区三区四区激情视频| 18+在线观看网站| 男人舔女人下体高潮全视频| a级毛色黄片| 国产熟女欧美一区二区| 一级二级三级毛片免费看| 中文在线观看免费www的网站| av在线观看视频网站免费| 欧美xxxx黑人xx丫x性爽| 18+在线观看网站| 精品一区二区免费观看| 欧美3d第一页| 国内少妇人妻偷人精品xxx网站| 欧美激情在线99| 国产淫语在线视频| 免费av毛片视频| 天堂俺去俺来也www色官网 | 国产成人a∨麻豆精品| 欧美潮喷喷水| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产v大片淫在线免费观看| 边亲边吃奶的免费视频| 大片免费播放器 马上看| 国产成人午夜福利电影在线观看| av又黄又爽大尺度在线免费看| 又爽又黄无遮挡网站| 寂寞人妻少妇视频99o| 嫩草影院新地址| 黄色欧美视频在线观看| 精品人妻偷拍中文字幕| 亚洲美女视频黄频| 97超碰精品成人国产| 国产av码专区亚洲av| 一级毛片 在线播放| 一本一本综合久久| 亚洲三级黄色毛片| 国产一级毛片七仙女欲春2| 一边亲一边摸免费视频| 国产视频内射| 亚洲最大成人中文| 日韩不卡一区二区三区视频在线| 亚洲aⅴ乱码一区二区在线播放| 精品亚洲乱码少妇综合久久| 亚洲电影在线观看av| av又黄又爽大尺度在线免费看| 精品欧美国产一区二区三| 欧美潮喷喷水| 免费看a级黄色片| 日日干狠狠操夜夜爽| 日韩电影二区| 黑人高潮一二区| 欧美成人精品欧美一级黄| 91久久精品电影网| 一区二区三区乱码不卡18| 特级一级黄色大片| 激情五月婷婷亚洲| 精品亚洲乱码少妇综合久久| 欧美精品一区二区大全| 高清av免费在线| 水蜜桃什么品种好| 免费看不卡的av| 亚洲欧美精品专区久久| 久久6这里有精品| 丝瓜视频免费看黄片| 高清午夜精品一区二区三区| 国产av不卡久久| 久久久久久久大尺度免费视频| 国产高潮美女av| 毛片一级片免费看久久久久| 波多野结衣巨乳人妻| 亚洲美女视频黄频| 麻豆成人午夜福利视频| 久久久久久久久久成人| 夫妻午夜视频| 国产日韩欧美在线精品| 亚洲精品乱久久久久久| 老女人水多毛片| 久久久久精品久久久久真实原创| 国产精品蜜桃在线观看| 国产一区二区三区av在线| 亚洲欧美一区二区三区国产| 1000部很黄的大片| 亚洲最大成人手机在线| 你懂的网址亚洲精品在线观看| 最近中文字幕高清免费大全6| 精品久久久久久久人妻蜜臀av| 97超视频在线观看视频| 色尼玛亚洲综合影院| 精华霜和精华液先用哪个| 最近的中文字幕免费完整| 日本免费在线观看一区| 成人无遮挡网站| 人妻制服诱惑在线中文字幕| 少妇裸体淫交视频免费看高清| 成年女人在线观看亚洲视频 | 亚洲av一区综合| 国产欧美日韩精品一区二区| 又粗又硬又长又爽又黄的视频| 乱码一卡2卡4卡精品| 3wmmmm亚洲av在线观看| 国产一级毛片在线| 欧美日韩在线观看h| 三级毛片av免费| 亚洲欧美一区二区三区黑人 | 亚洲精品,欧美精品| 国产淫片久久久久久久久| 精品国产一区二区三区久久久樱花 | av福利片在线观看| 久久午夜福利片| 黄色一级大片看看| 一区二区三区四区激情视频| 看免费成人av毛片| 免费观看性生交大片5| 在线播放无遮挡| 97在线视频观看| 夜夜爽夜夜爽视频| 日韩av免费高清视频| 一级爰片在线观看| 又粗又硬又长又爽又黄的视频| 丝袜喷水一区| 国产精品一及| 日本一本二区三区精品| 亚洲av福利一区| 国产精品麻豆人妻色哟哟久久 | 国产在线男女| av一本久久久久| 99久久精品一区二区三区| 又粗又硬又长又爽又黄的视频| 十八禁国产超污无遮挡网站| 亚洲国产欧美在线一区| 精品久久久噜噜| 国产 亚洲一区二区三区 | 亚洲av电影不卡..在线观看| 又大又黄又爽视频免费| 成年av动漫网址| 哪个播放器可以免费观看大片| 国产精品国产三级国产专区5o| 91午夜精品亚洲一区二区三区| 精品一区二区三区视频在线| 欧美精品一区二区大全| 97精品久久久久久久久久精品| 人妻夜夜爽99麻豆av| 亚洲av免费高清在线观看| 日本免费在线观看一区| 五月天丁香电影| 精品一区二区三区人妻视频| 国产精品一区www在线观看| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 97超碰精品成人国产| 亚洲精品乱久久久久久| 大又大粗又爽又黄少妇毛片口| av又黄又爽大尺度在线免费看| 国产色爽女视频免费观看| 99久久中文字幕三级久久日本| 精品人妻一区二区三区麻豆| 国产欧美另类精品又又久久亚洲欧美| 国产探花在线观看一区二区| 男女国产视频网站| 91狼人影院| 欧美日韩视频高清一区二区三区二| 国产成人一区二区在线| 一夜夜www| 熟妇人妻久久中文字幕3abv| 久久精品久久精品一区二区三区| 网址你懂的国产日韩在线| 毛片一级片免费看久久久久| 精品国产一区二区三区久久久樱花 | av在线蜜桃| 久久久久网色| 人妻夜夜爽99麻豆av| 国产淫片久久久久久久久| 纵有疾风起免费观看全集完整版 | 插逼视频在线观看| 男人和女人高潮做爰伦理| 国产成人精品久久久久久| 国产精品嫩草影院av在线观看| 我的老师免费观看完整版| 麻豆成人午夜福利视频| 国产成人精品久久久久久| 成年人午夜在线观看视频 | 精品久久久精品久久久| 天堂中文最新版在线下载 | 亚洲成人一二三区av| 97人妻精品一区二区三区麻豆| 久热久热在线精品观看| 亚洲怡红院男人天堂| 国产在视频线在精品| 高清日韩中文字幕在线| 精品久久久噜噜| 国产亚洲午夜精品一区二区久久 | 麻豆久久精品国产亚洲av| av国产久精品久网站免费入址| 亚洲精品一二三| 高清日韩中文字幕在线| 国产麻豆成人av免费视频| 亚洲成色77777| 啦啦啦中文免费视频观看日本| 精品酒店卫生间| videossex国产| 免费观看av网站的网址| 久久久久精品性色| 日本与韩国留学比较| 欧美 日韩 精品 国产| 日韩伦理黄色片| 丝瓜视频免费看黄片| 国产精品一及| 成人欧美大片| 免费大片18禁| 亚洲经典国产精华液单| 国产精品熟女久久久久浪| 国内少妇人妻偷人精品xxx网站| 非洲黑人性xxxx精品又粗又长| 亚洲精品,欧美精品| 国产精品蜜桃在线观看| 高清日韩中文字幕在线| 秋霞伦理黄片| 国产黄色小视频在线观看| 女人久久www免费人成看片| 亚洲精品影视一区二区三区av| 久久久久久久久久人人人人人人| 国产亚洲精品久久久com| 中文天堂在线官网| 超碰97精品在线观看| 成人国产麻豆网| 又爽又黄a免费视频| 亚洲国产欧美在线一区| 在线播放无遮挡| 两个人视频免费观看高清| av天堂中文字幕网| 国产精品久久久久久精品电影小说 | 日韩视频在线欧美| 我的女老师完整版在线观看| 熟女人妻精品中文字幕| 69人妻影院| 一级毛片aaaaaa免费看小| 久久精品夜夜夜夜夜久久蜜豆| 国产中年淑女户外野战色| 免费观看av网站的网址| 啦啦啦中文免费视频观看日本| 久久久久久久久中文| 亚洲av免费在线观看| av黄色大香蕉| 黄片wwwwww| 久久精品久久久久久久性| 亚洲av国产av综合av卡| 成年人午夜在线观看视频 | 国产成人免费观看mmmm| 建设人人有责人人尽责人人享有的 | 97超视频在线观看视频| av黄色大香蕉| 国产成人免费观看mmmm| 亚洲av中文字字幕乱码综合| 日韩成人av中文字幕在线观看| 国产精品1区2区在线观看.| 午夜精品在线福利| 久久99精品国语久久久| 国产在线一区二区三区精| 中文精品一卡2卡3卡4更新| 91精品一卡2卡3卡4卡| 欧美激情在线99| 日本免费在线观看一区| 久久精品国产亚洲网站| 草草在线视频免费看| 精品久久久噜噜| 国产精品精品国产色婷婷| 99久久九九国产精品国产免费| 99久久精品国产国产毛片| 亚洲精品自拍成人| 亚洲久久久久久中文字幕| 亚洲精品色激情综合| 亚洲精华国产精华液的使用体验| 国产精品久久久久久av不卡| 国产免费一级a男人的天堂| 色视频www国产| 精品久久久久久电影网| av专区在线播放| 69人妻影院| 免费观看在线日韩| 成年免费大片在线观看| 亚洲av.av天堂| 久久这里有精品视频免费| 久久99热这里只频精品6学生| 欧美区成人在线视频| 亚洲欧美一区二区三区国产| 男人舔女人下体高潮全视频| 中文字幕久久专区| 最近中文字幕高清免费大全6| 国产有黄有色有爽视频| 麻豆精品久久久久久蜜桃| 九九久久精品国产亚洲av麻豆| 久久精品熟女亚洲av麻豆精品 | 看黄色毛片网站| 久久6这里有精品| 精品一区二区三区人妻视频| 免费看日本二区| 久久久久久久久久黄片| av在线亚洲专区| 丰满少妇做爰视频| 日产精品乱码卡一卡2卡三| 中文字幕免费在线视频6| 一级片'在线观看视频| 亚洲,欧美,日韩| 男插女下体视频免费在线播放| freevideosex欧美| 高清在线视频一区二区三区| 一级毛片电影观看| 国产精品一区二区在线观看99 | 国产一级毛片七仙女欲春2| 色视频www国产| 色吧在线观看| 尾随美女入室| 插阴视频在线观看视频| 国产精品福利在线免费观看| 丝袜喷水一区| 观看美女的网站| 亚洲欧美精品自产自拍| 婷婷色av中文字幕| 中文精品一卡2卡3卡4更新| 免费看光身美女| 亚洲av免费高清在线观看| 亚洲欧美日韩无卡精品| 天堂网av新在线| 最近中文字幕高清免费大全6| 亚洲欧美一区二区三区黑人 | 国产成年人精品一区二区| 国产伦一二天堂av在线观看| 国内精品宾馆在线| 精华霜和精华液先用哪个| 少妇猛男粗大的猛烈进出视频 | 男女边吃奶边做爰视频| 国产黄片美女视频| 亚洲精品第二区| 国产成人91sexporn| 在线播放无遮挡| 一本久久精品| 黄片无遮挡物在线观看| 国产一区有黄有色的免费视频 | 少妇的逼水好多| 午夜福利在线观看吧| 国产极品天堂在线| 十八禁国产超污无遮挡网站| 校园人妻丝袜中文字幕| 纵有疾风起免费观看全集完整版 | 国产黄频视频在线观看| 老女人水多毛片| 观看美女的网站| 三级国产精品欧美在线观看| 欧美极品一区二区三区四区| 久久久久久国产a免费观看| 成人亚洲精品一区在线观看 | 欧美日韩视频高清一区二区三区二| 免费观看在线日韩| 欧美日韩亚洲高清精品| 久久精品综合一区二区三区| 在线a可以看的网站| 色视频www国产| 精品午夜福利在线看| 伊人久久精品亚洲午夜| 水蜜桃什么品种好| 99热网站在线观看| av在线亚洲专区| 日韩亚洲欧美综合| 在线观看一区二区三区| 午夜免费男女啪啪视频观看| 亚洲欧美清纯卡通| 免费观看a级毛片全部| 午夜免费观看性视频| 欧美成人一区二区免费高清观看| 日本与韩国留学比较| 日韩视频在线欧美| 嫩草影院入口| 国产黄频视频在线观看| 中文字幕久久专区| 大片免费播放器 马上看| 国产黄频视频在线观看| 精品国内亚洲2022精品成人| 欧美成人a在线观看| 自拍偷自拍亚洲精品老妇| 久久久久久久亚洲中文字幕| 欧美激情在线99| 婷婷色麻豆天堂久久| 国产亚洲av片在线观看秒播厂 | 国产精品人妻久久久久久| 亚洲欧美清纯卡通| 欧美bdsm另类| 国产成人午夜福利电影在线观看| 免费观看的影片在线观看| av在线观看视频网站免费| 亚洲成人一二三区av| 亚洲国产av新网站| 国精品久久久久久国模美| 80岁老熟妇乱子伦牲交| 成人漫画全彩无遮挡| 天天一区二区日本电影三级| av卡一久久| 国产一级毛片七仙女欲春2| 在线免费观看不下载黄p国产| 精品人妻视频免费看| 99久久人妻综合| 日韩av免费高清视频| 伦精品一区二区三区| 18禁在线无遮挡免费观看视频| 成人毛片60女人毛片免费| 欧美丝袜亚洲另类| 久久精品夜夜夜夜夜久久蜜豆| 日韩视频在线欧美| 国产综合精华液|