• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Loss prediction of three-level amplified spontaneous emission sources in radiation environment

    2022-06-29 08:54:44ShenTan譚深YanLi李彥HaoShiZhang張浩石XiaoWeiWang王曉偉andJingJin金靖
    Chinese Physics B 2022年6期
    關(guān)鍵詞:李彥

    Shen Tan(譚深), Yan Li(李彥), Hao-Shi Zhang(張浩石), Xiao-Wei Wang(王曉偉), and Jing Jin(金靖)

    School of Instrument Science and Opto-electronics Engineering,BeiHang University,Beijing 100191,China

    Keywords: amplified spontaneous emission (ASE) sources, irradiation effects, model extrapolation, performance prediction

    1. Introduction

    Amplified spontaneous emission (ASE) sources exhibit excellent properties such as high output power, low thermal sensitivity and broadband spectrum,showing particular advantages on application of high precision fiber-optic gyroscopes(FOGs)and optical fiber sensing systems.[1,2]However,application of ASE sources in space will inevitably suffer from radiation environment.[3,4]These ionizing radiations cause degradation of gain and signal transmission in erbium doped fibers(EDFs), consequently degradation of ASE sources.[5,6]Generally,it is believed that the degradation mainly caused by the creation of color centers (CCs) that are responsible for a socalled radiation-induced attenuation(RIA).[7,8]And there coexist two combined effects:a)pump absorption by CCs which indirectly causes reduction of gain,and b)gain absorption by CCs. Besides, pump-induced bleaching in EDFs should also be in consideration.

    A large body of researches have contributed to predict performance of EDFs in harsh environment, either in ASE source or in Er-doped fiber amplifiers (EDFAs).[9]Nevertheless, as suggested earlier the simple passive measurement of RIAs for loss prediction is insufficient,for a big deviation between calculation and measured loss occurred when extrapolating to low dose rate.[10,11]On one hand, RIA difference among the gain band should be taken into consideration for the gain bandwidth of ASE sources is about 40 nm, which means the experiment will be more complicated. On the other hand, passive measurements of RIA are not always adequate for gain prediction of three-level pump system as a result of photon bleaching effects at 980 nm. Then some other approaches were adopted for loss prediction of EDFs. Authors in Refs. [12,13] used RIA at 1310 nm to extrapolate RIA at other wavelengths with a simplified Lorentz tail absorption formula. This method avoids the measurement deviation of RIA induced by photon bleaching of 980 nm. Unfortunately,extrapolation of RIA from 1310 nm to 980 nm may introduce a huge error as color-center absorption coefficient at 1310 nm is three times smaller compared with absorption at 980 nm.

    Therefore, we present an active measurement method to evaluate radiation induced power loss at 980 nm and gain band based on three-level ASE sources. It is well known that the RIA is a consequence of the generation and decay of CCs whose absorption bands generally located in the ultraviolet(UV) region. The kinetic response to irradiation dose for a given interrogating wavelength is usually the sum of different contributions from the underlying absorption bands kinetics.It can be described by saturating exponential model, which is powerful for its scalability, flexibility and effectiveness on modeling the dose and dose rate influence on attenuation.[14]A model based on spectrum dependency of RIA is introduced to obtain the spectrum response,reducing the extrapolation error from long wavelength. Then it is possible to predict the losses at pump and signal wavelengths. Besides, there is no report on modeling the radiation induced gain degradation of three-level ASE sources. This paper firstly models the radiation induced loss of gain for three-level ASE sources with the new measurement method.

    2. Theory

    Radiation creates numbers of CCs in the EDF,which increases the absorption of 980 nm pump and 1550 nm signal.The loss prediction model of three-level ASE sources under irradiation environment can be derived by substitutingα(ν,t)into the original three-level ASE sources output model[15]

    wherevkand Δvkare the characteristic parameters, representing the peak position and full width at half-maximum(FWHW) of thekth color center, respectively, andΓkis the number of thekth color center.

    Under irradiation,CCs concentration can be described by differential equation, which takes into account both generation and annealing. Similarly, thekth color center induced absorptionαkcan be described by the following differential equation:[17]

    After irradiation,αkrepresents the annealing process,which is proportional to the number of CCs recovery. Therefore,the number ofkth color center recovery can be expressed as

    wherenk0and Δnkare the quantity of thekth color center at initial time and timet, respectively. These values ofβkandτkcan be acquired by the fitting of the color center recovery process of the EDF.

    Hence,ASE source loss prediction model can be obtained by solving types of CCs in Eq.(3)and every color center generation and annealing parameters in Eq.(5).

    3. Experiment

    The EDF used in the experiment is doped with aluminum(Al)to avoid concentration quenching due to clustering of the erbium ions,and the main parameters is given in Table 1.

    The experiment setup used to measure the loss of gain is shown in Fig. 1. All the testing devices are positioned outside the60Co chamber except for EDF under test,betweenwhich are 16 m single mode (SM) fiber connected by fusion splice. Two groups of the same EDF with a length of 3 m are tested and named as EDF 1 and EDF 2,respectively. The EDF was concentrically spooled into a flat annular geometry with diameter of~20 cm and mounted to a sheet of cardboard,which was placed inside the60Co chamber. EDF 1 was with a dose rate of 30 Gy/min to total dose of 220 Gy. Due to EDF 2 far away from radiation source, it was with a dose rate of 0.8 Gy/min to total dose of 120 Gy.

    Table 1. The fabricated parameters of EDF.

    Fig.1. Experimental setup designed for online measurements of the RIA at gain band in EDFs.

    The 980 nm laser with a pump power of 50 mW is equally split into two paths by coupler to pump EDF 1 and EDF 2.Isolators (ISO) are used to prevent backward signal light for enhancing the stability of 980 nm laser. Wavelength division multiplexers (WDM) are used to separate the pump and signal. Two power meters connected to computer simultaneously record the power at gain band. EDF 1 is used for modeling.EDF 2 is used for predicting.

    4. Results and discussion

    4.1. Resolve of radiation induced absorption spectrum

    Post-irradiation spectrums of EDF are continuously recorded for seven hours and the measured spectrum is illustrated in Fig.2 and marked by red circles. RIA spectrum and recovery spectrum are decomposed into different components to confirm the species of CCs. Researches have investigated the kind of CCs in EDF, indicating that Al- and Si-related CCs are responsible for RIA in Er–Al doped fibers.[19]And the profile of CCs are assumed to be Gaussian shapes. The fitting result with Gaussian shape shows a good consistence with measurement absorption at high energy band but lager errors do exist in low energy bands such as NIR and IR.In this paper,a solution combining the Gaussian and Lorentzian line shapes are acquired to resolve RIA and recovery spectrum.

    And then the RIA spectrum is well reproduced by three kinds of CCs. The results and fitted parameters of CCs are shown in Fig.2 and Table 2,respectively.

    Fig.2.The Gaussian and Lorentz reproduction of RIA absorption bands of EDF at the dose rate of 30 Gy/min in the near-infrared region.

    As the peak position parametersvkand FWHW Δvkof CCs had been determined,the spectrum dependency parameterak(v)of CCs could be figured out by Eq.(4).The gain band(1520–1570 nm)is divided into 11 intervals and the values ofak(v)relative to 980 nm are given in Table 3.

    It seems the difference over the gain band is not remarkable, and this RIA difference is no more than 0.3 dB in the experiment.

    Table 2. Kinds of CCs resolved from RIA spectrum.

    Table 3. The absorption ration between gain band and pump wavelength of Si-related,Al–OHC and Al-(3)CCs.

    4.2. The model of recovery processes

    Measurements of recovery spectrums are recorded for seven hours after irradiation and given in Fig.3.

    Fig. 3. Continuous spectrum measurements between 900–1500 nm in seven hours.

    Then recovery spectrums at different time are resolved respectively,from which recovery process of three kinds CCs are obtained. Then,τkis figured out by fitting the recovery processes of thekth color center with Eq.(6).For comparison,the recovery of CCs is normalized. But the recovery process of Al-(3) color center is failed to model due to its large time constant(τis greater than 109min). And the fitting results of the Si-related and Al–OHC CCs are shown in Fig.4.

    Fig.4. Fitted recovery processes of CCs with the second-order kinetics model: (a)Si-related CCs(b)Al–OHC CCs.

    The fitted parameters related to recovery process of Sirelated and Al-OHC CCs are 30 min and 178 min,respectively.

    4.3. Calculation of RIA at 980 nm with CCs model

    RIA of different CCs is given in Eq.(5). While time constantτkis determined in section 4.2,gk f(˙D) for Si-related,Al–OHC and Al-(3)CCs are still uncertain. They can be computed by fitting RIA at any wavelength. However, the measured loss at 980 nm in our experiment are the total effects of RIA and pump absorption. So the actual RIA at 980 nm is determined by developed three-level ASE model(Eqs.(1)and(2))with measured loss at 980 nm. However,before calculating the RIA at 980 nm,the accuracy of three-level ASE source model is confirmed and it is shown in Fig.5.

    Fig.5. Calculated and measured gain at 980 nm with different pump power.

    4.4. The prediction of ASE degradation

    All these results above can be used in Eqs. (1) and (2),and once solved, these equations give the gain evolution as a function of irradiation dose and dose rate. The loss prediction model is established by using the gain loss at the dose rate of 30 Gy/min with the dose range from 0 to 155 Gy. By solving Eqs.(1)and(2)by using parameters in Tables 3 and 4,all the model parameters can be obtained.The gain loss with the dose range from 155 Gy to 220 Gy is used for self-validating.Then,we use this model extrapolating to high dose with the same dose rate of 30 Gy/min. And Fig. 6 gives the self-validating result.

    The color center generation only relates to the fiber material and radiation dose rate.The greater the dose rate,the faster the color center is produced. In the experiment,the same kind of EDF was used at different dose rate. Therefore, when extrapolating to low dose rate as low as 0.8 Gy/min, the only thing need to do is dividing these dose rate related parametersgk f(˙D) with a constant, which is about 40.1. Figure 7 displayed the extrapolation result and experiment data,and it fits well.

    Table 4. Parameters used for ASE model calculation.

    Fig.6. Fitting of gain loss and self-validation.

    Fig.7. Gain loss extrapolation to low dose rate.

    5. Conclusion

    This paper has modeled the three-level ASE sources degradation when exposed to radiation. Combing RIA spectrum response based on CCs and saturating exponential model,a good fitting result of measured gain degradation data is achieved by a simple measurement method. It means the method is accurate enough in ASE degradation prediction.What’s more, the new model shows great advantages, as the measurement processes are simple. In addition,the color center model is flexible and powerful when considering the photon bleaching effect. And extrapolating to other dose and dose rate is also satisfied. The result shows that the model makes it possible to evaluate the performance of ASE source under lower dose rate and different service life of satellite in space environment. This research will contribute to the applications of ASE source in radiation environments.

    Acknowledgement

    Project supported by the Aeronautical Science Foundation of China(Grant No.20170851007).

    猜你喜歡
    李彥
    Electronic states of domain walls in commensurate charge density wave ground state and mosaic phase in 1T-TaS2
    好事將近
    Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
    李彥
    令人尊敬的不務(wù)正業(yè)
    媽媽的大嗓門
    李彥
    我在看著你
    昆明爆炸案再調(diào)查:案犯前女友揭開情感瘡疤
    家庭(2009年12期)2009-07-09 08:24:08
    久久久久久久久久久久大奶| 久久久久久人妻| 内地一区二区视频在线| 成人午夜精彩视频在线观看| 国产成人一区二区在线| av有码第一页| 人妻夜夜爽99麻豆av| 亚洲精品自拍成人| 噜噜噜噜噜久久久久久91| 午夜免费鲁丝| 亚洲av不卡在线观看| 久久亚洲国产成人精品v| 在线观看免费视频网站a站| 高清午夜精品一区二区三区| 丰满人妻一区二区三区视频av| 热re99久久国产66热| 嘟嘟电影网在线观看| 国产精品国产av在线观看| 纵有疾风起免费观看全集完整版| 国产精品欧美亚洲77777| 老司机亚洲免费影院| 又爽又黄a免费视频| 黄色配什么色好看| 26uuu在线亚洲综合色| 亚洲自偷自拍三级| 亚洲精品日本国产第一区| 又黄又爽又刺激的免费视频.| 亚洲av二区三区四区| 观看av在线不卡| 观看美女的网站| 国产乱来视频区| 另类亚洲欧美激情| 国产黄频视频在线观看| 一级二级三级毛片免费看| 国产精品久久久久久av不卡| 黑人巨大精品欧美一区二区蜜桃 | 国语对白做爰xxxⅹ性视频网站| 精品久久久精品久久久| 亚洲人成网站在线播| 人妻制服诱惑在线中文字幕| 欧美日韩精品成人综合77777| 欧美日韩视频高清一区二区三区二| 麻豆成人午夜福利视频| 欧美高清成人免费视频www| 纵有疾风起免费观看全集完整版| 日本猛色少妇xxxxx猛交久久| 亚洲av男天堂| 亚洲欧美清纯卡通| 国产一区有黄有色的免费视频| 成人亚洲欧美一区二区av| 久久久久精品久久久久真实原创| 精品少妇久久久久久888优播| 亚洲人与动物交配视频| 尾随美女入室| 一区二区三区精品91| 激情五月婷婷亚洲| 国产精品伦人一区二区| 五月开心婷婷网| 久久久久精品久久久久真实原创| 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 日本免费在线观看一区| 中国三级夫妇交换| 熟女人妻精品中文字幕| 麻豆成人av视频| 久久99精品国语久久久| 久久99热这里只频精品6学生| 免费看av在线观看网站| 久久久久国产网址| 一级毛片 在线播放| 一级毛片我不卡| 乱码一卡2卡4卡精品| 精品国产露脸久久av麻豆| www.色视频.com| 99九九在线精品视频 | 久久久精品94久久精品| 建设人人有责人人尽责人人享有的| 赤兔流量卡办理| 永久免费av网站大全| 国产男女内射视频| 性色av一级| 免费看光身美女| 日本色播在线视频| 国语对白做爰xxxⅹ性视频网站| 国产亚洲av片在线观看秒播厂| 亚洲经典国产精华液单| 一本色道久久久久久精品综合| 大香蕉97超碰在线| av专区在线播放| 日韩av不卡免费在线播放| 免费av中文字幕在线| 少妇人妻精品综合一区二区| 亚洲国产日韩一区二区| 国产精品人妻久久久影院| 热99国产精品久久久久久7| 国产一区有黄有色的免费视频| 久久99一区二区三区| 一级片'在线观看视频| av女优亚洲男人天堂| a级一级毛片免费在线观看| 日韩人妻高清精品专区| 啦啦啦中文免费视频观看日本| 特大巨黑吊av在线直播| 高清午夜精品一区二区三区| 激情五月婷婷亚洲| 欧美3d第一页| 高清午夜精品一区二区三区| 噜噜噜噜噜久久久久久91| 超碰97精品在线观看| 免费大片黄手机在线观看| 免费播放大片免费观看视频在线观看| 在线观看国产h片| 国语对白做爰xxxⅹ性视频网站| 亚洲人与动物交配视频| 久久精品国产亚洲av天美| 中文字幕久久专区| av视频免费观看在线观看| 少妇被粗大的猛进出69影院 | 日本爱情动作片www.在线观看| 狂野欧美激情性bbbbbb| 最近2019中文字幕mv第一页| 日日摸夜夜添夜夜爱| 一本一本综合久久| 九九爱精品视频在线观看| 青春草视频在线免费观看| 国产伦理片在线播放av一区| 国产av精品麻豆| 久久99一区二区三区| 最黄视频免费看| 亚洲精品国产色婷婷电影| 我要看日韩黄色一级片| 成人无遮挡网站| 啦啦啦啦在线视频资源| 99久久人妻综合| 蜜桃在线观看..| 一级毛片黄色毛片免费观看视频| 亚洲精品,欧美精品| 国产一区二区在线观看av| 成人漫画全彩无遮挡| 性色avwww在线观看| 亚洲av不卡在线观看| 人体艺术视频欧美日本| 免费av中文字幕在线| 国产精品伦人一区二区| 熟女电影av网| 免费久久久久久久精品成人欧美视频 | 亚洲av在线观看美女高潮| 你懂的网址亚洲精品在线观看| 九色成人免费人妻av| 丰满饥渴人妻一区二区三| 久久精品国产亚洲av涩爱| 久久精品久久久久久噜噜老黄| 国模一区二区三区四区视频| 97超碰精品成人国产| 国产免费福利视频在线观看| 视频中文字幕在线观看| 亚洲av成人精品一区久久| 亚洲精品视频女| av在线播放精品| av黄色大香蕉| 这个男人来自地球电影免费观看 | 亚洲av不卡在线观看| 熟女电影av网| 久久ye,这里只有精品| 成人二区视频| 国内少妇人妻偷人精品xxx网站| 青青草视频在线视频观看| 高清毛片免费看| 欧美三级亚洲精品| 亚洲欧美日韩卡通动漫| 精品久久久噜噜| 免费人妻精品一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| 国产免费又黄又爽又色| 成人黄色视频免费在线看| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 国产午夜精品久久久久久一区二区三区| 狂野欧美激情性xxxx在线观看| 成人二区视频| 日本免费在线观看一区| 人人妻人人添人人爽欧美一区卜| 欧美一级a爱片免费观看看| 只有这里有精品99| 国产精品熟女久久久久浪| 成人午夜精彩视频在线观看| 少妇人妻 视频| 亚洲国产精品成人久久小说| av有码第一页| 久久午夜综合久久蜜桃| 在线观看一区二区三区激情| 国产亚洲5aaaaa淫片| 国产成人免费无遮挡视频| 久久久a久久爽久久v久久| 最新的欧美精品一区二区| 大片免费播放器 马上看| 在线观看免费视频网站a站| 最黄视频免费看| 五月天丁香电影| 伦精品一区二区三区| 精品久久久久久久久亚洲| 亚洲四区av| 久热这里只有精品99| 国产真实伦视频高清在线观看| 亚洲va在线va天堂va国产| 欧美一级a爱片免费观看看| 国产 一区精品| 久久国内精品自在自线图片| 中文资源天堂在线| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 午夜福利网站1000一区二区三区| 久久青草综合色| 国产成人精品一,二区| 国产极品天堂在线| 亚洲欧美中文字幕日韩二区| 免费大片黄手机在线观看| 九色成人免费人妻av| 中文字幕免费在线视频6| 天天操日日干夜夜撸| 国产黄片视频在线免费观看| 美女中出高潮动态图| 五月伊人婷婷丁香| 黄色视频在线播放观看不卡| 国产白丝娇喘喷水9色精品| √禁漫天堂资源中文www| 内地一区二区视频在线| 深夜a级毛片| 最近手机中文字幕大全| 国产黄片美女视频| 国产高清国产精品国产三级| 男人添女人高潮全过程视频| 亚洲综合色惰| 中文字幕制服av| 99国产精品免费福利视频| 777米奇影视久久| 久久久久久久大尺度免费视频| 大话2 男鬼变身卡| 男男h啪啪无遮挡| 久久久欧美国产精品| 99热网站在线观看| 色视频www国产| 亚洲国产精品一区二区三区在线| 六月丁香七月| 亚洲欧美日韩东京热| √禁漫天堂资源中文www| 亚洲av不卡在线观看| 国产av码专区亚洲av| 亚洲av福利一区| 女性被躁到高潮视频| 亚洲三级黄色毛片| 亚洲精品aⅴ在线观看| 男人添女人高潮全过程视频| 人人妻人人爽人人添夜夜欢视频 | 成人毛片60女人毛片免费| 国产精品成人在线| 国产熟女欧美一区二区| 日日撸夜夜添| av国产久精品久网站免费入址| a级毛色黄片| 午夜免费男女啪啪视频观看| 国产女主播在线喷水免费视频网站| 日韩三级伦理在线观看| 欧美日韩国产mv在线观看视频| 亚洲av在线观看美女高潮| 精品国产一区二区三区久久久樱花| 亚洲欧美成人综合另类久久久| av国产精品久久久久影院| 妹子高潮喷水视频| 国产伦理片在线播放av一区| 这个男人来自地球电影免费观看 | 欧美日韩精品成人综合77777| 最近2019中文字幕mv第一页| 我的老师免费观看完整版| 六月丁香七月| 看十八女毛片水多多多| av在线播放精品| 97超碰精品成人国产| 国产男人的电影天堂91| 国产日韩欧美亚洲二区| 最新中文字幕久久久久| 一级av片app| 伊人亚洲综合成人网| 99九九在线精品视频 | 亚洲av免费高清在线观看| 少妇高潮的动态图| 免费观看无遮挡的男女| www.av在线官网国产| 精品一区在线观看国产| 亚洲第一av免费看| 一区二区av电影网| 亚洲av不卡在线观看| av在线观看视频网站免费| 99久久精品国产国产毛片| 亚洲中文av在线| 偷拍熟女少妇极品色| a级一级毛片免费在线观看| 日韩三级伦理在线观看| 少妇精品久久久久久久| 美女国产视频在线观看| 女的被弄到高潮叫床怎么办| 亚洲欧美精品专区久久| 欧美丝袜亚洲另类| 亚洲美女黄色视频免费看| 麻豆成人午夜福利视频| 交换朋友夫妻互换小说| 色婷婷久久久亚洲欧美| 精品熟女少妇av免费看| 中文字幕精品免费在线观看视频 | 精品少妇黑人巨大在线播放| 视频中文字幕在线观看| 亚洲久久久国产精品| av一本久久久久| 日本欧美视频一区| 亚洲精品色激情综合| 91精品国产九色| 国内少妇人妻偷人精品xxx网站| 99久国产av精品国产电影| 亚洲成色77777| 久久久久久久精品精品| 国产精品99久久久久久久久| 在线观看国产h片| av视频免费观看在线观看| 精品国产一区二区三区久久久樱花| 久久 成人 亚洲| 亚洲性久久影院| 高清av免费在线| 观看免费一级毛片| 一级毛片 在线播放| 亚洲av在线观看美女高潮| 少妇丰满av| 丝袜在线中文字幕| av福利片在线| 免费黄网站久久成人精品| 国产午夜精品久久久久久一区二区三区| 亚洲精品第二区| 亚洲精品aⅴ在线观看| 在现免费观看毛片| 成人毛片a级毛片在线播放| 一本大道久久a久久精品| 色网站视频免费| 卡戴珊不雅视频在线播放| 日韩,欧美,国产一区二区三区| 一级二级三级毛片免费看| 日韩在线高清观看一区二区三区| 欧美另类一区| a级片在线免费高清观看视频| 97在线视频观看| 午夜免费观看性视频| 国产成人精品婷婷| 国产伦精品一区二区三区四那| 2018国产大陆天天弄谢| 久久国产精品男人的天堂亚洲 | 99久久精品热视频| 中文字幕免费在线视频6| 久久精品国产自在天天线| 如何舔出高潮| 成人国产麻豆网| 晚上一个人看的免费电影| 如日韩欧美国产精品一区二区三区 | 亚洲高清免费不卡视频| 国产高清不卡午夜福利| 婷婷色综合www| 国产精品久久久久久久电影| 日本欧美国产在线视频| 国产av码专区亚洲av| 亚洲va在线va天堂va国产| 全区人妻精品视频| 五月天丁香电影| 高清黄色对白视频在线免费看 | 免费人妻精品一区二区三区视频| 亚洲成人一二三区av| 少妇人妻一区二区三区视频| 国产91av在线免费观看| 日本wwww免费看| 高清毛片免费看| 草草在线视频免费看| 免费黄网站久久成人精品| 精品国产一区二区久久| 97在线人人人人妻| 自拍欧美九色日韩亚洲蝌蚪91 | 日本爱情动作片www.在线观看| 国产探花极品一区二区| 久久6这里有精品| 性高湖久久久久久久久免费观看| 欧美日韩国产mv在线观看视频| 最近中文字幕2019免费版| 春色校园在线视频观看| 高清黄色对白视频在线免费看 | 日韩中字成人| 国产乱人偷精品视频| 亚洲av.av天堂| av在线app专区| 国产成人免费观看mmmm| 九九爱精品视频在线观看| 国产一区二区在线观看av| 精品亚洲成a人片在线观看| 桃花免费在线播放| 国产深夜福利视频在线观看| 亚州av有码| 国产高清三级在线| 免费av中文字幕在线| kizo精华| 国精品久久久久久国模美| 国产白丝娇喘喷水9色精品| 大片免费播放器 马上看| 插逼视频在线观看| 久久久久网色| 只有这里有精品99| 久久久久久人妻| 亚洲伊人久久精品综合| 极品少妇高潮喷水抽搐| 哪个播放器可以免费观看大片| 五月天丁香电影| h日本视频在线播放| 国产精品久久久久久久电影| 国产成人精品婷婷| 久热久热在线精品观看| 大话2 男鬼变身卡| 成人黄色视频免费在线看| 免费不卡的大黄色大毛片视频在线观看| 久久人人爽人人片av| 成人免费观看视频高清| 精品久久久久久久久av| 久久精品国产亚洲av天美| 2022亚洲国产成人精品| 免费观看的影片在线观看| 少妇高潮的动态图| 偷拍熟女少妇极品色| 精品一品国产午夜福利视频| 七月丁香在线播放| 在线亚洲精品国产二区图片欧美 | 欧美xxⅹ黑人| 亚洲欧美日韩卡通动漫| 久久亚洲国产成人精品v| 2018国产大陆天天弄谢| 精品人妻一区二区三区麻豆| 日本与韩国留学比较| 久久国内精品自在自线图片| 大香蕉久久网| 青春草亚洲视频在线观看| 中国美白少妇内射xxxbb| 免费观看性生交大片5| 亚洲成色77777| 热99国产精品久久久久久7| 日韩av不卡免费在线播放| 欧美3d第一页| 亚洲综合色惰| 人妻 亚洲 视频| 一级毛片久久久久久久久女| 久久国产精品大桥未久av | 深夜a级毛片| 老熟女久久久| 国产精品免费大片| 十八禁网站网址无遮挡 | 亚洲精品aⅴ在线观看| 久久精品国产亚洲网站| 如何舔出高潮| 美女国产视频在线观看| 在线观看免费视频网站a站| 美女xxoo啪啪120秒动态图| 九草在线视频观看| 日本欧美国产在线视频| 亚洲精品,欧美精品| 亚洲美女搞黄在线观看| 一边亲一边摸免费视频| 人妻一区二区av| 国产精品久久久久久av不卡| 亚洲精品aⅴ在线观看| 日本黄色片子视频| 国产一区二区在线观看av| 欧美97在线视频| 亚洲国产精品一区三区| .国产精品久久| 国产淫片久久久久久久久| av播播在线观看一区| 久久精品国产鲁丝片午夜精品| 欧美精品国产亚洲| 欧美激情国产日韩精品一区| 王馨瑶露胸无遮挡在线观看| 在线观看av片永久免费下载| 亚洲av不卡在线观看| 免费不卡的大黄色大毛片视频在线观看| 80岁老熟妇乱子伦牲交| 日本爱情动作片www.在线观看| 国产熟女欧美一区二区| 久久精品国产亚洲网站| 精品久久久久久电影网| 男女无遮挡免费网站观看| 18禁在线播放成人免费| 老司机影院毛片| 丝袜脚勾引网站| 日本午夜av视频| 欧美精品高潮呻吟av久久| 亚洲欧洲精品一区二区精品久久久 | 两个人免费观看高清视频 | 99精国产麻豆久久婷婷| 国产 精品1| 欧美精品亚洲一区二区| 欧美日韩精品成人综合77777| 观看免费一级毛片| 美女xxoo啪啪120秒动态图| 国产高清不卡午夜福利| 亚洲精品第二区| 日韩不卡一区二区三区视频在线| 男女无遮挡免费网站观看| 久久久久久久精品精品| 日本黄大片高清| 婷婷色av中文字幕| 日韩三级伦理在线观看| 亚洲久久久国产精品| 春色校园在线视频观看| 中文欧美无线码| 国产亚洲av片在线观看秒播厂| 搡老乐熟女国产| av福利片在线观看| 久久人人爽人人片av| 国产一区二区在线观看av| av视频免费观看在线观看| 久久韩国三级中文字幕| 亚洲精品aⅴ在线观看| 特大巨黑吊av在线直播| 日韩av免费高清视频| 十八禁网站网址无遮挡 | 街头女战士在线观看网站| 亚洲av在线观看美女高潮| 欧美少妇被猛烈插入视频| 亚洲中文av在线| a 毛片基地| 99热国产这里只有精品6| 国产免费又黄又爽又色| av国产精品久久久久影院| 免费观看在线日韩| 美女视频免费永久观看网站| 啦啦啦在线观看免费高清www| 伊人久久精品亚洲午夜| 国内精品宾馆在线| 观看av在线不卡| 国产淫语在线视频| 少妇猛男粗大的猛烈进出视频| 精品人妻偷拍中文字幕| 熟妇人妻不卡中文字幕| 伦理电影免费视频| 欧美最新免费一区二区三区| 欧美xxxx性猛交bbbb| 亚洲怡红院男人天堂| 两个人免费观看高清视频 | 久久免费观看电影| 久久精品国产a三级三级三级| 伦理电影免费视频| 全区人妻精品视频| 免费看日本二区| 亚洲自偷自拍三级| 九草在线视频观看| 亚洲人与动物交配视频| 美女国产视频在线观看| 麻豆成人av视频| 美女cb高潮喷水在线观看| 国产精品无大码| 精品一区二区三卡| 男男h啪啪无遮挡| 最新的欧美精品一区二区| videos熟女内射| 免费大片18禁| 亚洲国产精品一区二区三区在线| 午夜精品国产一区二区电影| 色哟哟·www| h日本视频在线播放| 麻豆乱淫一区二区| 国产精品人妻久久久影院| 欧美人与善性xxx| 亚洲国产色片| 少妇人妻 视频| a级片在线免费高清观看视频| 一本大道久久a久久精品| 哪个播放器可以免费观看大片| 日韩精品免费视频一区二区三区 | 七月丁香在线播放| 久久精品国产亚洲av涩爱| a 毛片基地| 久久久久久伊人网av| 亚洲久久久国产精品| 下体分泌物呈黄色| 精品久久久久久电影网| 麻豆成人av视频| 曰老女人黄片| 日韩制服骚丝袜av| 久久久久久久久久成人| 老司机亚洲免费影院| 视频区图区小说| 国产成人午夜福利电影在线观看| 免费观看的影片在线观看| 一边亲一边摸免费视频| 国产成人精品福利久久| 99热全是精品| 精品午夜福利在线看| 女人久久www免费人成看片| 亚洲精品成人av观看孕妇| 亚洲国产精品专区欧美| 亚洲性久久影院| 曰老女人黄片| 国产成人免费观看mmmm| 成年人免费黄色播放视频 | 国产又色又爽无遮挡免| 亚洲精品国产av成人精品| 最黄视频免费看| 欧美高清成人免费视频www| 热99国产精品久久久久久7| 亚洲av成人精品一二三区| 伦精品一区二区三区| 欧美 亚洲 国产 日韩一| 日韩av在线免费看完整版不卡| 91精品国产九色| 一本色道久久久久久精品综合| 少妇的逼水好多|