• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The influence of collision energy on magnetically tuned 6Li–6Li Feshbach resonance

    2022-06-29 08:54:16RongZhang張蓉YongChangHan韓永昌ShuLinCong叢書林andMaksimShundalau
    Chinese Physics B 2022年6期
    關(guān)鍵詞:永昌叢書

    Rong Zhang(張蓉) Yong-Chang Han(韓永昌) Shu-Lin Cong(叢書林) and Maksim B Shundalau

    1Department of Physics,Dalian University of Technology,Dalian 116024,China

    2DUT-BSU Joint Institute,Dalian University of Technology,Dalian 116024,China

    3Physics Department,Belarusian State University,Minsk,Belarus

    Keywords: Feshbach resonance,collision energy, 6Li–6Li system

    1. Introduction

    Cold and ultracold atomic quantum gases play important roles and have broad application prospects in modern physics. Researches related to cold atomic systems include Bose–Einstein condensate,[1–4]superfluid,[5–7]atomic clocks,[8–10]topology,[11]etc.Compared to cold and ultracold atoms, molecules have some unique and superior properties. For the additional internal degrees of freedom of molecules, the interactions of molecules with external fields are more complicated. For instance, the interaction between molecules and extern electric fields can be induced by electric dipole moment.[12]Due to these properties,cold and ultracold molecules have many profound applications in different aspects,[13]including molecular dynamics control,[14,15]high resolution spectroscopy and quantum control,[16,17]tests of fundamental physical laws,[18]quantum simulations and quantum simulators,[19]chemical reactions.[20,21]Cold and ultracold molecules also play important roles in a great variety of fundamental researches, such as chemistry physics, precision measurements,few-body and many-body physics.[22–25]Thus,the investigations of the cold and ultracold molecules attract many researchers’attention.

    In order to produce cold and ultracold molecules, researchers have developed different kinds of experimental approaches which can be generally divided into two categories.One is the direct cooling method, including external field decelerations by electric, magnetic and optical fields,[26,27]buffer-gas cooling,[28]and collisional cooling,[29]etc.It is hard to produce ultracold molecules through the direct cooling method.[30]The other is the indirect cooling method. This method assembles two constituent ultracold atoms to form an ultracold molecule.[31]It can only be used in the situation that constituent atoms can be trapped and cooled to ultralow collision energies by using laser cooling.

    Feshbach resonance (FR), as an important phenomenon in the scattering processes of ultracold atoms and molecules,is widely applied to the molecular indirect cooling.[32]A Feshbach resonance occurs when the closed channel and the open channel degenerate energetically.[33]This results in a resonance enhancement in the cross section. Through ramping magnetic fields across Feshbach resonances, colliding atoms can be coupled to form molecules in specific weakly bound states.[34]The molecules formed in this way is Feshbach molecules. Deeply bound molecules can be obtained by state transfer techniques, such as microwave radiation and magnetic field ramping.[35]It is worth noticing that the present FR is a special case of rovibrational resonance in magnetic field. There are FRs in photo interaction,[36–38]electron scattering,[39]heavy particle scattering,[40]nuclear physics,[38]photonics,[41]nanoscale structures,[42]etc.

    One way to achieve Feshbach resonance is to adjust the energy difference between the open and the closed channels by tuning the magnetically field.[33]This corresponds to the magnetically tuned Feshbach resonance.The experimental approaches to detect magnetic Feshbach resonance including detection using inelastic collisional trap loss, elastic collisions and optical radiation.[43–45]The other way to achieve resonant coupling is optical Feshbach resonance.[46]Magneticlly tuned Feshbach resonance usually takes place in collisions of alkalimetal atomic systems, while the optical Feshbach resonance occurs in alkali-earth-metal atomic systems.[47,48]In magnetically tuned Feshbach resonance, interaction between atoms which is described by the scattering length,can be controlled by magnetic field. In optical Feshbach resonance, the resonance width can also be controlled. Based on Feshbach resonance,one can control the interaction strength between atoms and study the scattering characteristics.

    6Li is the lightest isotope among all alkali metals.Numerous works have been carried out on the Feshbach resonance related to6Li. Yeet al.attained a degenerate Fermi gas of6Li in contact with a Bose–Einstein condensate of84Sr.[49]Bartensteinet al.observed three wide s-wave Feshbach resonances at 834.1, 690.4, and 811.2 Gs in6Li–6Li system by utilizing radio-frequency spectroscopy.[50]The resonance widths of the three resonance positions are-300,-122.3,and-222.3 Gs,respectively. Streckeret al.verified a narrow resonance at 543.8 Gs in6Li–6Li collision complex and utilized it to convert the ultracold6Li atoms gas into ultracold molecules.[51]They chose this narrow resonance position for two reasons.First, it is convenient to sweep over a narrow magnetic field in experiment. Second, compared with broad resonances,the production of hot atomic pairs can be decreased in narrow resonances.[52,53]Schuncket al.reported three p-wave resonances of 159.14, 185.09, and 214.94 Gs of6Li–6Li complex via a joint experimental and theoretical study.[54]The scattering channels of these three resonances areaa,ab, andbb,respectively.[33]Another two s-wave resonances were also determined. One is 543.28 Gs, the other is within 822 Gs–834 Gs.

    Due to the properties of6Li Feshbach resonances,6Li has been applied in many researches. Weakly bound6Li2molecules were produced through three-body recombination near the 550 Gs Feshbach resonance with the number of the sample up to 3×105.[55]6Li atoms were evaporatively cooled below 600 nK near a Feshbach resonance and a BEC of up to 9×105molecules was observed.[56]Lompeet al.investigated the inelastic decay of the6Li atom–dimer collisions and observed that the resonant enhancement is correlated with the crossing between Efimov trimer states and the atom-dimer continuum.[57]Feshbach resonance was also used to make the mixture of the clouds of6Li and7Li atoms to reach the superfluid regime.[58]

    Among the above mentioned Feshbach resonance positions of6Li–6Li, we are interested in the s-wave resonance near 543 Gs and the p-wave resonance near 185 Gs. Recently,Liet al.investigated the three-atom recombination process around the narrow s-wave magnetic Feshbach resonance at 543.3 Gs,and it was found that the three-atom recombination follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions.[59]For the p-wave resonance near 185 Gs, there exists a doublet structure of 4 mGs, which is ascribed to the dipole–dipole interaction.[60]As reported in other cold atom systems,e.g.,85Rb–87Rb,the scattering characters are strongly dependent on the collision energy.[61]Thus,we are motivated to take these two specific resonances near 185 Gs (p wave) and 543 Gs (s wave) as examples, to study the influence of the collision energy on the6Li–6Li system.

    In order to study two-body scattering interaction, we need to solve a set of radial coupled-channel equations.There are several ways to solve such equations, including the multichannel quantum-defect theory(MQDT),the asymptotic bound state model (ABM), and the coupled-channel method (CC).[32,62]Among these theoretical treatments, the CC method has taken into account all the relevant channels and the interactions among them in the entire internuclear separation range. Thus, in this work, we use CC method to calculate the cross sections of the resonance positions at different collision energies from 1 μK·kBto 100 μK·kB. The influence of collision energy on the resonance positions,resonance widths, the amplitudes of the total cross sections, as well as the splitting width of the p-wave resonance are investigated.

    The paper is organized as follows.In Section 2,we briefly introduce the theory.In Section 3,we discuss the effect of collision energy on the s- and p-wave Feshbach resonances for the6Li–6Li collision. In Section 4, the conclusions are summarized.

    2. Theoretical method

    The Hamiltonian of two colliding6Li atoms in the presence of external magnetic fieldBis given by

    whereBis the magnetic field which is alongzaxis of the space-fixed coordinate frame.γeandγLiare the electronic and nuclear gyromagnetic ratios of the6Li atom respectively. ?sand ?iare the electronic and nuclear spin angular momenta,respectively,and the subscripts 1 and 2 denote the indexes of the two atoms.

    whereVS(R)is the adiabatic interaction potential of the collision complex in the total spin state.S=s1+s2(I=i1+i2)is the total electronic(nuclear)spin of the6Li2molecule andMS(MI) is its projection onzaxis (the direction of the magnetic field). In the6Li2system,s1=s2=1/2 andS=0, 1,corresponding to the singlet and triplet electronic states, respectively.

    The matrix elements of operator ?V(R)expressed in fully uncoupled basis is shown as

    The first term ofλ(R) results in the magnetic dipole–dipole interaction and the second term is the second order spin–orbit contribution, which is much smaller than the first term and well ignored in the present study. For a given partial wavel,the magnetic dipole–dipole interaction can split the resonance position according to different|ml|.

    The matrix element of spin–spin interaction can be expanded in the fully uncoupled basis

    The coupled-channel equations can be obtained by substituting Eq.(1)into the time-independent Schr¨odinger equation.The coupled-channel equations can be solved through using the log-derivative method.[32]The scattering channel (α,l),withαdenoting the atomic basis|f1mf1,f2mf2〉, is related to the channel basis which can be obtained by diagonalizing the hyperfine and Zeeman Hamiltonian. The open channel threshold energy is set to be 0. Thus the total energy of the collision complex equals to collision energy ˉh2k2/2μ. The log-derivative matrixY(R) is propagated from the minimum(Rmin)to the maximum(Rmax)ofR. TheKmatrix is obtained fromY(Rmax)

    The scattering cross section calculated in this paper is elastic scattering cross section. The elastic scattering cross section of a specific scattering channel energyEαis expressed as

    3. Results and discussion

    6Li–6Li is a homonuclear Fermion system,so we need to consider the exchange antisymmetry. The electronic and nuclear spins of6Li are 1/2 and 1, respectively. High partial waves are neglected because of their extremely tiny contributions compared to s and p waves. And there is no coupling between s- and p-wave resonances because the external field used is only magnetic field. We consider the dipole–dipole interaction because it has an effect on p-wave resonance splitting. The Zeeman state energies of the6Li–6Li complex for the s and p waves are presented in Figs.1(a)and 1(b),respectively.

    Fig. 1. Zeeman state energies of (a) s wave and (b) p wave for the 6Li–6Li complex.

    The adiabatic singlet and triplet interaction potentials are obtained from Ref.[64]and are shown in Fig.2. We first calculated the scattering length and resonance positions of6Li2at the collision energy of 1 μK·kB. For s wave, the FR position we calculated is 543.152 Gs and the resonance width is 0.085 Gs. For p wave,the resonance positions are 185.109 Gs(|ml|=0)and 185.113 Gs(|ml|=1),respectively. These theoretical calculations are in good agreement with the previous experimental observations,as shown in Table 1.

    Table 1. The FR positions B0 of CC calculations and experiments.

    Fig.2. The singlet and triplet adiabatic interaction potentials for the 6Li–6Li collision complex. The units,Rvdw and Evdw,correspond to 4.7840896 Bohr and 1594.194158 cm-1,respectively.

    Fig.3. The singlet potential including the centrifugal potentials of(a)s and p waves, (b) s and d waves. Inset: Partial enlarged details of the potential barrier.

    The effective singlet potential including the centrifugal potentials ?l2/2μR2of the s and p waves are shown in Fig.3(a).The inset shows the potential barrier of p wave. For comparison, the effective singlet potentials for s and d waves are shown in Fig.3(b)with the inset plot shows the potential barrier of d wave. The potential barriers of p and d waves are 7970.799 μK·kBand 41226.177 μK·kB,respectively. On one hand, the potential barrier of the d wave is much higher than that of the p wave. Thus,the influence of d wave on the FR is less significant than that of p wave. On the other hand,the potential barrier height of d wave is much larger than the upper limit of the collision energy we concerned,i.e., 100 μK·kB.Thus,d wave has almost no contribution to the total scattering section.Figure 4 is the sum of the scattering sections of different partial waves at 100 μK·kB. The solid black curve is the sum of the scattering sections of s and p waves. The dashed red curve is the sum of the scattering sections of s, p, and d waves. We observe that these two curves are almost on top of each other. This further indicates that the effect of d wave on the total scattering section can be ignored. Consequently, we focus on the scattering characters of s and p waves.

    Fig. 4. The sum of cross sections of different partial waves at 100 μK·kB.The solid black curve is the sum of the cross sections of s and p waves. The dashed red curve is the sum of the cross sections of s,p,and d waves.

    The cross sections near 543 Gs of s wave and 185 Gs of p wave (ml=0, +1,-1) at three different collision energiesE=1,50,and 100 μK·kBare plotted in Fig.5. Firstly,with the increase of the collision energy, the peak locations of the above four FRs shift towards the higher magnetic field. It is because at the higher collision energy,higher magnetic field is required to increase the energy difference between the scattering and closed channels. Additionally,the shifting amplitudes for the FRs of s wave and p wave are different. For the collision energy increasing fromE=1 μK·kBto 100 μK·kB,the former varies from 543.152 Gs to 543.895 Gs with an increase of~0.75 Gs;while the latter,taking the FR of p wave(ml=0)for example, shifts from 185.109 Gs to 185.953 Gs, which is a relatively larger shift of~0.85 Gs. This indicates that with the variation of collision energy, the change of energy difference between the scattering and closed channels related to the s-wave FR of 543 Gs is more sensitive to the variation of the magnetic field than that of p-wave FR of 185 Gs.

    Secondly, with the increase of the collision energy, the peak magnitude varies.For FR of s wave near 543 Gs,the peak magnitude decreases dramatically. As seen in Fig. 5(a), the maximum cross section atE=100 μK·kBis smaller than that atE=1 μK·kBby over 2 orders.On the contrary,for FRs of p wave(ml=0,+1,-1),the peak magnitude atT=100 μK·kBis much higher than that atT=1 μK·kB. Moreover,the variation tend of the peak magnitude with the three collision energies is different among the three FRs of p wave(ml=0, +1,-1).On one hand,the maximal cross section for FR of p wave(ml=0) first decreases and then increases whenEincreases from 1 μK·kBto 100 μK·kB, as shown in Fig. 5(b). On the other hand,the peak magnitude for FRs of p wave(ml=+1,-1),first increases and then decreases,as shown in Figs.5(c)and 5(d). This indicates that the variation of collision energy may also affect the coupling strength between the open and closed channels.

    We further investigated the variation of the scattering cross sections for the four FRs by varying the collision energy fromE=1 μK·kBto 100 μK·kBwith the interval of 1 μK·kB, and for each given collision energy, the magnetic fieldBis scanned with the interval of 0.001 Gs. As shown in Fig. 6(a), the resonance width of s-wave FR near 543 Gs,which we follow the same definition as Ref.[33],is 0.085 Gs.It does not change with the collision energy. Consistent with the above findings in Fig.5,with the increase of the collision energy,the cross section of the s-wave FR gradually vanishes at relatively higher magnetic field,indicating that the coupling strength between the open channel and the closed channel of this s-wave resonance declines. For the FRs of p wave, although there is no proper definition of the resonance width of p wave,it can be seen from the cross sections in Figs.6(b)–6(d),that the peak magnitude and width for each resonance both increase with the collision energy. Thus, we can conclude that the increasing collision energy enhances the coupling between the open and closed channels for the FRs of the p wave. Such different behaviors between the s-and p-wave FRs are because that there is a centrifugal potential barrier for the p-wave collision, while there is no barrier for the s-wave collision. The p-wave FR is more sensitive to the increase of the collision energy than the s-wave FR,since to achieve the p-wave FR,the open-channel wavefunction requires more collision energy to overcome(or tunneling through)the barrier before it resonates with the close channels.

    Although the location, the magnitude and the width of the peak of the cross section varies with the collision energy,the doublet structure for the p-wave FR remains the same. In Fig.7,we present the cross sections of p-wave FR at 1 μK·kBand 100 μK·kB,respectively. There is always a 4-mGs splitting between the|ml| = 0 and 1 resonance positions. The splitting is caused by the dipole–dipole interaction, which is denoted in Eq. (7). When magnetic field increases, the shift amplitude of the resonance peak of|ml|=0 equals to that of|ml|=1. And this causes the constant splitting width of pwave resonance.

    Fig. 5. The cross sections near 543 Gs of s wave and 185 Gs of p wave (ml =0, +1, -1) at three different collision energies E =1, 50 and 100 μK·kB.Panels (a)–(d) present the modulation of collision energy on s- and p-waves (ml =0, +1, -1) Feshbach resonances, respectively. Inset: Partial enlarged details of the cross sections.

    Fig.6. The cross sections near 543 G(s wave)and 185 Gs(p wave,ml =0,+1,-1)with the variations of magnetic field and collision energy.

    Fig. 7. The cross sections of p-wave FR near 185 Gs (|ml|=0, 1) at (a)1 μK·kB and(b)100 μK·kB.

    Fig. 8. The thermally averaged elastic rate coefficient 〈νσ〉 varies with the magnetic field B in the vicinity of 543 Gs(a)and 185 Gs(b),respectively,for T =10,15,20,25 μK. The dash curve is the envelope of the corresponding〈νσ〉curve.

    In experiment, the empirical resonance positions are not measured at a fixed collision energy but rather at a certain temperature, and hence the measured resonance positions represent some sort of average over the different resonant positions at different collision energies. Based on the above cross section in the collision energy range[1,100]μK·kB,we can obtain the integral of Eq.(14),i.e.,the thermally averaged elastic rate coefficient〈νσ〉, for a relatively smaller temperature range from 10 μK to 25 μK. The variation behavior of〈νσ〉withBin the vicinities of 543 Gs and 185 Gs are shown in Figs.8(a)and 8(b),respectively,for four specific temperatures of 10,15,20,and 25 μK.There are complicated substructures for each curve in Fig. 8, and we also note that although the tiny 4 mGs doublet structure is distinguishable in the cross section, it does not present in the thermally averaged elastic rate coefficient〈νσ〉. This is because the interval for the sampled collision energy(δE=1 μK·kB)is relatively large compared to either the narrower width of the cross section or the tiny doublet structure. Thus, to obtain an accurate integral of Eq.(14),i.e.,to keep the high resolution or finesse for such a small doublet structure in the thermally averaged elastic rate coefficient, one has to use even denser grids not only for the magnetic field but also for the collision energy,which is quite computationally consuming. Since the doublet structure has already been represented and discussed in the cross section,we now qualitatively discuss the variation of the rate coefficient with temperature. It can be expected that with increase of the grid densities of the magnetic field and the collision energy, those substructures and peaks in the〈νσ〉curve may merge and show a primary distribution.[61]Thus, to focus on the whole variation trend of the rate coefficient,we plot an additional envelope for each〈νσ〉curve by artificially connecting the major peaks with the dashed curve. Generally, with increase of the temperature, the amplitude of the envelope of〈νσ〉gradually decreases,however its peak position does not vary obviously. This is because that with the increase of the temperature, the contribution from the high collision energy component increases.

    4. Conclusion

    We have investigated theoretically the effect of collision energy on magnetically tuned Feshbach resonance (FR) for the ultracold6Li–6Li system. Based on the coupled-channel(CC) method, we obtain the s- and p-wave cross sections for the collision energy ranging from 1 μK·kBto 100 μK·kB.The FR positions at 1 μK·kBare 543.152 Gs for s wave and 185.109 Gs,185.113 Gs for p wave(|ml|=0,1),respectively.The resonance width of s wave is 0.085 Gs and it does not change with collision energy. There exists a 4 mGs dipolar splitting between the|ml|=0 and 1 resonances of p wave.

    With the increase of collision energy, the resonance positions near 543 Gs(s wave)and 185 Gs(p wave)are shifted to higher magnetic fields. The feature of s-wave FR gradually vanishes, while the feature of p-wave FR become obvious as the collision energy increases. The dipolar splitting of p wave does not change with the variation of collision energy,indicating that the shift amplitude of the|ml|=0 resonance equals to that of|ml|=1.

    Acknowledgments

    The project was supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306503), the National Natural Science Foundation of China (Grant Nos. 21873016 and 12174044),the International Cooperation Fund Project of DBJI (Grant No. ICR2105), and the Fundamental Research Funds for the Central Universities(Grant No.DUT21LK08).

    猜你喜歡
    永昌叢書
    永昌小曲發(fā)展現(xiàn)狀調(diào)研報告
    “人梯書庫”叢書
    少年漫畫(藝術(shù)創(chuàng)想)(2020年6期)2020-08-10 04:32:58
    少年漫畫(藝術(shù)創(chuàng)想)(2020年4期)2020-07-28 15:43:36
    少年漫畫(藝術(shù)創(chuàng)想)(2020年1期)2020-07-24 12:16:13
    讀友·少年文學(xué)(清雅版)(2020年1期)2020-03-23 06:18:14
    書畫作品鑒賞
    書畫作品賞析
    國畫作品賞析
    《社會組織培訓(xùn)教材叢書》簡介
    大社會(2016年5期)2016-05-04 03:42:03

    Chinese Physics B2022年6期

    Chinese Physics B的其它文章
    Switchable terahertz polarization converter based on VO2 metamaterial
    Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schr¨odinger equation
    Neutron activation cross section data library
    Multi-phase field simulation of competitive grain growth for directional solidification
    A novel similarity measure for mining missing links in long-path networks
    Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
    大香蕉久久成人网| 亚洲 欧美一区二区三区| 大陆偷拍与自拍| 午夜福利,免费看| 天堂√8在线中文| 天堂俺去俺来也www色官网| 精品欧美一区二区三区在线| 99国产精品一区二区蜜桃av| 另类亚洲欧美激情| 一级a爱片免费观看的视频| 女人高潮潮喷娇喘18禁视频| 日韩欧美国产一区二区入口| 欧美不卡视频在线免费观看 | 免费不卡黄色视频| 国产精品美女特级片免费视频播放器 | 激情视频va一区二区三区| 夜夜看夜夜爽夜夜摸 | 午夜福利,免费看| 久热这里只有精品99| 国产蜜桃级精品一区二区三区| 亚洲精品久久成人aⅴ小说| 久久天堂一区二区三区四区| 午夜福利欧美成人| 丝袜在线中文字幕| 黄色 视频免费看| 婷婷精品国产亚洲av在线| 999久久久精品免费观看国产| 久久婷婷成人综合色麻豆| 最好的美女福利视频网| 日韩精品青青久久久久久| 丰满饥渴人妻一区二区三| 亚洲一区中文字幕在线| 黄色毛片三级朝国网站| 亚洲成国产人片在线观看| 女警被强在线播放| 午夜精品在线福利| 日韩欧美免费精品| 另类亚洲欧美激情| 国产男靠女视频免费网站| 欧美日本亚洲视频在线播放| 国产深夜福利视频在线观看| 午夜免费成人在线视频| 国产真人三级小视频在线观看| 国产精品电影一区二区三区| 女人被狂操c到高潮| 99久久精品国产亚洲精品| 亚洲精品中文字幕一二三四区| 免费av毛片视频| 国产野战对白在线观看| 999久久久国产精品视频| 国产高清videossex| 亚洲五月婷婷丁香| 久久精品影院6| 亚洲精品美女久久av网站| 国产精品日韩av在线免费观看 | 亚洲熟妇熟女久久| 黄频高清免费视频| 亚洲欧美一区二区三区黑人| 女生性感内裤真人,穿戴方法视频| 黄色女人牲交| 新久久久久国产一级毛片| 亚洲一区二区三区色噜噜 | 涩涩av久久男人的天堂| 老司机靠b影院| 亚洲欧美精品综合一区二区三区| 黑人操中国人逼视频| 欧美久久黑人一区二区| 熟女少妇亚洲综合色aaa.| 免费在线观看亚洲国产| 久久久久九九精品影院| 人成视频在线观看免费观看| 黄色视频,在线免费观看| 亚洲av成人av| 国产免费av片在线观看野外av| 村上凉子中文字幕在线| 久久久久久人人人人人| 欧美成人午夜精品| 亚洲色图av天堂| 搡老熟女国产l中国老女人| 99精品在免费线老司机午夜| 成人影院久久| 夫妻午夜视频| 精品欧美一区二区三区在线| 午夜老司机福利片| 国产熟女午夜一区二区三区| 在线观看免费日韩欧美大片| 麻豆av在线久日| 免费搜索国产男女视频| 极品教师在线免费播放| 99在线人妻在线中文字幕| 欧美黄色片欧美黄色片| 日韩欧美一区视频在线观看| 美女大奶头视频| 最好的美女福利视频网| 亚洲av成人不卡在线观看播放网| 老汉色∧v一级毛片| 丰满饥渴人妻一区二区三| 麻豆成人av在线观看| 欧美日韩av久久| 两性午夜刺激爽爽歪歪视频在线观看 | 如日韩欧美国产精品一区二区三区| 十分钟在线观看高清视频www| 精品午夜福利视频在线观看一区| av片东京热男人的天堂| 99久久精品国产亚洲精品| 桃色一区二区三区在线观看| 性少妇av在线| 精品无人区乱码1区二区| 在线观看免费午夜福利视频| 国产精品成人在线| 高清毛片免费观看视频网站 | 桃色一区二区三区在线观看| 很黄的视频免费| 久久久精品国产亚洲av高清涩受| 欧美日韩一级在线毛片| 一级作爱视频免费观看| 在线观看免费日韩欧美大片| 高清毛片免费观看视频网站 | www.精华液| 国产激情久久老熟女| 国产亚洲欧美精品永久| 国产97色在线日韩免费| 老司机午夜十八禁免费视频| 精品国产一区二区久久| 99久久国产精品久久久| 女警被强在线播放| 无人区码免费观看不卡| 午夜老司机福利片| 日本一区二区免费在线视频| 操出白浆在线播放| 免费在线观看黄色视频的| 男女做爰动态图高潮gif福利片 | 国产精品电影一区二区三区| 国产1区2区3区精品| 国产99久久九九免费精品| 夜夜躁狠狠躁天天躁| 久久人妻av系列| 国产日韩一区二区三区精品不卡| www.熟女人妻精品国产| 国内久久婷婷六月综合欲色啪| 国产精品久久电影中文字幕| 午夜久久久在线观看| 亚洲男人的天堂狠狠| 国产精品 欧美亚洲| 欧洲精品卡2卡3卡4卡5卡区| 久久伊人香网站| 国产精品永久免费网站| 多毛熟女@视频| 色尼玛亚洲综合影院| 色尼玛亚洲综合影院| 成人影院久久| 最近最新中文字幕大全电影3 | 老汉色∧v一级毛片| 少妇 在线观看| 中文亚洲av片在线观看爽| 黑人巨大精品欧美一区二区mp4| 777久久人妻少妇嫩草av网站| 岛国在线观看网站| 欧美不卡视频在线免费观看 | 成年版毛片免费区| 一边摸一边抽搐一进一出视频| 水蜜桃什么品种好| 久久香蕉精品热| 动漫黄色视频在线观看| 免费在线观看影片大全网站| 好男人电影高清在线观看| 人人妻,人人澡人人爽秒播| 亚洲国产精品999在线| 美女大奶头视频| 日韩精品免费视频一区二区三区| 国产av一区二区精品久久| 国产一卡二卡三卡精品| 欧美激情 高清一区二区三区| 深夜精品福利| 欧美日本中文国产一区发布| 国产一区二区激情短视频| 99精国产麻豆久久婷婷| 99国产精品一区二区蜜桃av| 这个男人来自地球电影免费观看| 一边摸一边抽搐一进一小说| 国产精品偷伦视频观看了| 99在线视频只有这里精品首页| 精品无人区乱码1区二区| 亚洲成国产人片在线观看| 精品日产1卡2卡| 国产av一区在线观看免费| 成人18禁高潮啪啪吃奶动态图| 免费观看精品视频网站| 国产亚洲精品综合一区在线观看 | 韩国av一区二区三区四区| 一本大道久久a久久精品| 国产成+人综合+亚洲专区| 日韩国内少妇激情av| 精品国产超薄肉色丝袜足j| 国产真人三级小视频在线观看| 欧美激情 高清一区二区三区| 欧美激情 高清一区二区三区| 欧美激情极品国产一区二区三区| 黄色视频,在线免费观看| 亚洲av第一区精品v没综合| 亚洲黑人精品在线| 国产精品成人在线| 亚洲成a人片在线一区二区| 精品日产1卡2卡| 成人影院久久| 男男h啪啪无遮挡| 午夜福利影视在线免费观看| 一级a爱视频在线免费观看| 动漫黄色视频在线观看| 日韩成人在线观看一区二区三区| 国产精品久久久人人做人人爽| 成人免费观看视频高清| 亚洲av熟女| 亚洲色图 男人天堂 中文字幕| 最新在线观看一区二区三区| 日韩欧美在线二视频| 国产精品野战在线观看 | 极品教师在线免费播放| 18美女黄网站色大片免费观看| 久9热在线精品视频| 老司机午夜福利在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 在线观看免费高清a一片| 亚洲午夜精品一区,二区,三区| 久久久久久免费高清国产稀缺| 亚洲精品在线观看二区| 欧美午夜高清在线| 国产一区二区激情短视频| 母亲3免费完整高清在线观看| 老熟妇乱子伦视频在线观看| 欧美一区二区精品小视频在线| 久久国产精品男人的天堂亚洲| 中文字幕人妻丝袜一区二区| 久久人妻熟女aⅴ| 欧美日韩福利视频一区二区| 熟女少妇亚洲综合色aaa.| x7x7x7水蜜桃| 国产精品久久电影中文字幕| aaaaa片日本免费| 99久久综合精品五月天人人| 午夜免费鲁丝| 国产精品乱码一区二三区的特点 | 日韩国内少妇激情av| 国产精品国产高清国产av| 午夜激情av网站| 久久国产乱子伦精品免费另类| 精品乱码久久久久久99久播| 久久精品国产亚洲av高清一级| aaaaa片日本免费| 亚洲欧美日韩高清在线视频| 水蜜桃什么品种好| 国产精品久久久av美女十八| 日本黄色日本黄色录像| 国产精品av久久久久免费| 黄片大片在线免费观看| 色播在线永久视频| 一边摸一边抽搐一进一出视频| 久久久久久免费高清国产稀缺| 在线视频色国产色| 亚洲久久久国产精品| 狠狠狠狠99中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 成熟少妇高潮喷水视频| 日日摸夜夜添夜夜添小说| 欧美日韩av久久| 三上悠亚av全集在线观看| 久久精品aⅴ一区二区三区四区| 国产午夜精品久久久久久| 99国产精品一区二区蜜桃av| 久久久久久亚洲精品国产蜜桃av| 91大片在线观看| 日韩免费高清中文字幕av| 女同久久另类99精品国产91| 国产欧美日韩一区二区三区在线| 99国产极品粉嫩在线观看| 国产又爽黄色视频| 亚洲精品一二三| 成人免费观看视频高清| 午夜老司机福利片| 咕卡用的链子| 少妇粗大呻吟视频| 国产高清激情床上av| 黄色视频不卡| 国产av又大| 精品日产1卡2卡| 99精品在免费线老司机午夜| 老熟妇乱子伦视频在线观看| 成人av一区二区三区在线看| 欧美av亚洲av综合av国产av| 88av欧美| 久久99一区二区三区| 欧美人与性动交α欧美精品济南到| 十分钟在线观看高清视频www| 久久热在线av| 超碰成人久久| 老熟妇仑乱视频hdxx| 久热这里只有精品99| 淫秽高清视频在线观看| 1024视频免费在线观看| aaaaa片日本免费| 欧美久久黑人一区二区| 欧美性长视频在线观看| 色哟哟哟哟哟哟| 国产主播在线观看一区二区| 这个男人来自地球电影免费观看| 91老司机精品| 99国产精品一区二区三区| 91字幕亚洲| 久久精品国产清高在天天线| 黄频高清免费视频| 日韩有码中文字幕| 亚洲精品国产色婷婷电影| 热re99久久国产66热| 丰满饥渴人妻一区二区三| 巨乳人妻的诱惑在线观看| 国产精品二区激情视频| 最近最新中文字幕大全免费视频| 久久久国产成人免费| 多毛熟女@视频| av电影中文网址| 亚洲成人久久性| 在线永久观看黄色视频| 欧美日韩乱码在线| 操出白浆在线播放| 国产精品一区二区在线不卡| 亚洲av五月六月丁香网| 婷婷精品国产亚洲av在线| 91麻豆精品激情在线观看国产 | 日韩免费高清中文字幕av| 亚洲国产看品久久| 国产午夜精品久久久久久| 香蕉丝袜av| 国产精品秋霞免费鲁丝片| 中出人妻视频一区二区| 欧美中文综合在线视频| 亚洲av成人一区二区三| av中文乱码字幕在线| 国产av精品麻豆| 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| 老司机靠b影院| 免费av毛片视频| 亚洲五月天丁香| 在线播放国产精品三级| 国产精品野战在线观看 | 亚洲精品美女久久久久99蜜臀| 久久亚洲真实| 欧美一级毛片孕妇| 亚洲午夜理论影院| 亚洲全国av大片| 亚洲中文av在线| 桃色一区二区三区在线观看| 亚洲av成人一区二区三| 国产高清激情床上av| 成人黄色视频免费在线看| 一本综合久久免费| 久久天堂一区二区三区四区| 两人在一起打扑克的视频| 老司机亚洲免费影院| 亚洲,欧美精品.| 久9热在线精品视频| 国产精品98久久久久久宅男小说| 午夜福利欧美成人| 在线观看免费日韩欧美大片| 91精品国产国语对白视频| 国产一区在线观看成人免费| 一区二区三区精品91| 99国产精品99久久久久| 国产精品影院久久| 亚洲精华国产精华精| 亚洲在线自拍视频| 大型黄色视频在线免费观看| 免费观看人在逋| 欧美最黄视频在线播放免费 | 国内毛片毛片毛片毛片毛片| 免费观看精品视频网站| 久久精品aⅴ一区二区三区四区| 18禁黄网站禁片午夜丰满| 9热在线视频观看99| 久久亚洲精品不卡| 国产精品免费一区二区三区在线| 三级毛片av免费| www日本在线高清视频| 亚洲av日韩精品久久久久久密| 9色porny在线观看| 村上凉子中文字幕在线| 一进一出抽搐动态| 丰满饥渴人妻一区二区三| 狠狠狠狠99中文字幕| 国产成人免费无遮挡视频| 婷婷六月久久综合丁香| 两人在一起打扑克的视频| 成人特级黄色片久久久久久久| 国产成人精品无人区| 成人永久免费在线观看视频| 深夜精品福利| 色尼玛亚洲综合影院| 搡老岳熟女国产| 三级毛片av免费| 老汉色∧v一级毛片| 亚洲aⅴ乱码一区二区在线播放 | 97人妻天天添夜夜摸| 久久久久久久午夜电影 | 日韩欧美一区视频在线观看| 99久久国产精品久久久| 国产免费男女视频| 视频区欧美日本亚洲| 国产精品一区二区免费欧美| 精品一品国产午夜福利视频| 女人精品久久久久毛片| 伊人久久大香线蕉亚洲五| tocl精华| 欧美精品亚洲一区二区| 久久中文字幕人妻熟女| 脱女人内裤的视频| 宅男免费午夜| 精品久久蜜臀av无| 少妇粗大呻吟视频| av超薄肉色丝袜交足视频| 亚洲av片天天在线观看| 午夜福利,免费看| 色尼玛亚洲综合影院| 欧美日本亚洲视频在线播放| 69精品国产乱码久久久| av免费在线观看网站| 久久中文字幕一级| 夜夜躁狠狠躁天天躁| 亚洲国产精品sss在线观看 | 国产aⅴ精品一区二区三区波| 9热在线视频观看99| 国产亚洲精品久久久久5区| 99国产精品99久久久久| 日韩欧美三级三区| 校园春色视频在线观看| 亚洲国产精品999在线| 亚洲欧美激情综合另类| 自线自在国产av| 久久午夜亚洲精品久久| 欧美日韩av久久| 日本免费a在线| 在线观看免费高清a一片| 精品乱码久久久久久99久播| 久久精品91蜜桃| 黄色视频不卡| 婷婷丁香在线五月| 又黄又爽又免费观看的视频| 成人亚洲精品一区在线观看| 亚洲在线自拍视频| 另类亚洲欧美激情| 老司机福利观看| 国产三级在线视频| 黄色片一级片一级黄色片| 夜夜看夜夜爽夜夜摸 | 午夜久久久在线观看| 国产成人系列免费观看| 亚洲成人国产一区在线观看| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| 久久精品亚洲av国产电影网| 激情在线观看视频在线高清| av在线天堂中文字幕 | 精品人妻1区二区| 欧美日韩一级在线毛片| 亚洲精品在线美女| 最近最新免费中文字幕在线| 好看av亚洲va欧美ⅴa在| 久久久久久久午夜电影 | 国产黄a三级三级三级人| 久久人妻av系列| 免费av毛片视频| 久久久国产一区二区| 国产av在哪里看| 国产成人av教育| 老熟妇仑乱视频hdxx| 真人一进一出gif抽搐免费| 亚洲人成网站在线播放欧美日韩| 母亲3免费完整高清在线观看| 一二三四社区在线视频社区8| 在线播放国产精品三级| 一级a爱片免费观看的视频| 亚洲免费av在线视频| 97碰自拍视频| 国产欧美日韩综合在线一区二区| 久久久久久免费高清国产稀缺| 18禁裸乳无遮挡免费网站照片 | 最近最新中文字幕大全免费视频| 国产伦一二天堂av在线观看| 亚洲人成77777在线视频| 91精品国产国语对白视频| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩高清在线视频| 午夜福利,免费看| 最新美女视频免费是黄的| 免费av毛片视频| 久久久久精品国产欧美久久久| 日本 av在线| 美女扒开内裤让男人捅视频| 欧美在线黄色| 99久久综合精品五月天人人| 国产在线观看jvid| 精品久久久久久电影网| 好男人电影高清在线观看| 黄色片一级片一级黄色片| 亚洲全国av大片| 日本一区二区免费在线视频| 精品电影一区二区在线| 操出白浆在线播放| 精品电影一区二区在线| bbb黄色大片| 自线自在国产av| 国产麻豆69| 亚洲少妇的诱惑av| 国产亚洲欧美98| 精品久久久久久,| 在线av久久热| 欧美av亚洲av综合av国产av| 少妇的丰满在线观看| 日韩成人在线观看一区二区三区| 国产97色在线日韩免费| 波多野结衣av一区二区av| 可以免费在线观看a视频的电影网站| 天天躁狠狠躁夜夜躁狠狠躁| 可以免费在线观看a视频的电影网站| 亚洲国产精品999在线| 欧美一级毛片孕妇| av在线播放免费不卡| 欧洲精品卡2卡3卡4卡5卡区| 国产蜜桃级精品一区二区三区| 国产精品 欧美亚洲| avwww免费| 黑人猛操日本美女一级片| 精品国产美女av久久久久小说| 国产高清国产精品国产三级| 黄片小视频在线播放| 欧美久久黑人一区二区| 亚洲精品美女久久久久99蜜臀| 窝窝影院91人妻| videosex国产| 午夜91福利影院| 久久中文字幕一级| 国产精品乱码一区二三区的特点 | 1024视频免费在线观看| 中文亚洲av片在线观看爽| 久久九九热精品免费| 少妇粗大呻吟视频| 国产欧美日韩综合在线一区二区| 日韩精品青青久久久久久| 夜夜夜夜夜久久久久| 搡老岳熟女国产| 法律面前人人平等表现在哪些方面| 国产免费av片在线观看野外av| 丰满迷人的少妇在线观看| 午夜福利,免费看| 欧美最黄视频在线播放免费 | 亚洲成国产人片在线观看| 美女午夜性视频免费| 精品久久久久久成人av| 亚洲视频免费观看视频| 亚洲在线自拍视频| 亚洲精品国产精品久久久不卡| 99久久99久久久精品蜜桃| 黄频高清免费视频| 老司机在亚洲福利影院| 18禁裸乳无遮挡免费网站照片 | 国产成人影院久久av| 老汉色∧v一级毛片| 午夜老司机福利片| 波多野结衣av一区二区av| 国产精品久久电影中文字幕| 一区二区日韩欧美中文字幕| 最近最新中文字幕大全电影3 | 国产精品一区二区免费欧美| 国产黄a三级三级三级人| 看黄色毛片网站| 午夜亚洲福利在线播放| 水蜜桃什么品种好| 超色免费av| 纯流量卡能插随身wifi吗| 桃色一区二区三区在线观看| 一a级毛片在线观看| 久久午夜综合久久蜜桃| 国产黄a三级三级三级人| 搡老熟女国产l中国老女人| 日本a在线网址| 侵犯人妻中文字幕一二三四区| 日韩大码丰满熟妇| 亚洲精品中文字幕在线视频| bbb黄色大片| 免费少妇av软件| 国产精品永久免费网站| 91精品三级在线观看| 99久久99久久久精品蜜桃| 满18在线观看网站| 国产亚洲av高清不卡| 午夜精品在线福利| 久久欧美精品欧美久久欧美| 中出人妻视频一区二区| 午夜a级毛片| 精品国产乱子伦一区二区三区| 久久精品人人爽人人爽视色| 久久精品亚洲熟妇少妇任你| a级毛片在线看网站| 丝袜在线中文字幕| 夜夜夜夜夜久久久久| 男人舔女人下体高潮全视频| 日本三级黄在线观看| 午夜福利,免费看| 亚洲精品久久午夜乱码| 久久久精品欧美日韩精品| 欧美国产精品va在线观看不卡| 国产黄色免费在线视频| 午夜精品国产一区二区电影| 99久久综合精品五月天人人| 黄片小视频在线播放| 精品国产国语对白av|