• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8

    2022-06-29 08:56:10KangqiaoCheng程康橋BinjieZhou周斌杰CuixiangWang王翠香ShuoZou鄒爍YupengPan潘宇鵬XiaoboHe何曉波JianZhang張健FangjunLu盧方君LeWang王樂YouguoShi石友國andYongkangLuo羅永康
    Chinese Physics B 2022年6期
    關(guān)鍵詞:張健康橋石友

    Kangqiao Cheng(程康橋) Binjie Zhou(周斌杰) Cuixiang Wang(王翠香) Shuo Zou(鄒爍) Yupeng Pan(潘宇鵬)Xiaobo He(何曉波) Jian Zhang(張健) Fangjun Lu(盧方君) Le Wang(王樂)Youguo Shi(石友國) and Yongkang Luo(羅永康)

    1Wuhan National High Magnetic Field Center and School of Physics,Huazhong University of Science and Technology,Wuhan 430074,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    4Shenzhen Institute for Quantum Science and Engineering,and Department of Physics,

    Southern University of Science and Technology,Shenzhen 518055,China

    Keywords: heavy-fermion compounds,Kondo effect,RKKY interaction,quantum critical point

    1. Introduction

    Manipulation and control of the ground states near a quantum critical point (QCP) have attracted tremendous interests in recent decades.[1–11]QCP, the point that separates the quantum-ordered and -disordered states on the phase diagram of a material, is generally achieved by terminating a phase transition continuously at absolute zero, through the application of a certain non-thermal external control parameter, e.g., magnetic field (B), chemical doping (x), physical pressure (p), etc [Fig. 1(a)]. In the vicinity of QCPs, many emergent quantum phenomena may appear, such as heavyelectron, strange metal [or non-Fermi liquid (NFL)], unconventional superconductivity, quantum spin liquid and so on.Heavy-fermion Kondo lattice compounds span a large material basis for exploring QCPs and investigating their unique nature.[1,3–6,8,10,12–14]In this context, the ground state of the system is typically determined by a competition between Kondo effect and Ruderman–Kittel–Kasuya–Yosida (RKKY)interaction:[15]while the RKKY exchange (JRKKY) prefers a long-range magnetic ordering,[16–18]the Kondo effect (TK)tends to screen and quench magnetic moments and thus stabilizes a non-magnetic ground state.[19]A QCP is expected whenJRKKYequals toTK.

    Natural questions concern whether a QCP can be realized in a one-dimensional (1D) or quasi-1D system, and what the nature of such QCPs is if they exist. They remain elusive,because (i) it is generally believed that long-range magnetic order is hard to condensate in 1D systems,[20,21]the concept of QCP therefore seems“meaningless”;(ii)Fermi liquid also breaks down in the 1D limit,[22,23]so it is unclear what the ground state will be on the quantum disordered side;(iii)even in a relatively relax condition where long-range magnetic order might appear, i.e., quasi-1D system, the Kondo coupling between local moments and conduction electrons is weakened due to the incomplete screening network,and furthermore,the inter-chain communication among single-ion Kondo singlets is also severely reduced,[24]therefore, whether sufficiently strong Kondo effect can develop to compete against the RKKY interaction is still an open question;and(iv)so far most of the known heavy-fermion Kondo lattices are three-dimensional or quasi-two-dimensional,while examples of 1D or quasi-1D are rare.[10,25,26]Extensive material basis and proper tuning on the existing candidates are both required to address these issues.

    Recently, Wanget al.reported the synthesis and physical properties of a new quasi-1D candidate Kondo lattice CeCo2Ga8,[27]which crystallizes in the YbCo2Al8-type orthorhombic structure.[28]Most interestingly,the cerium atoms in this compounds form individual chains along thecaxis,and each chain is surrounded by five polyhedral CoGa9cages in theabplane, cf Fig. 1(b). Since the inter-chain Ce–Ce distances(6.5 °A and 7.5 °A)are much longer than the intra-chain distance (4.05 °A), the compound is deemed as a candidate of quasi-1D Kondo lattice. Indeed, further resistivity measurements revealed that coherent Kondo scattering is only observed for electric current parallel toc(ρc),while bothρa(bǔ)andρbremain incoherent down to 2 K, indicating the realization of Kondo chain in CeCo2Ga8,[24]see also in the inset to Fig.2.Specific heat,magnetic susceptibility and μSR measurements confirmed the absence of long-range magnetic ordering down to 70 mK.[27,29]Moreover,NFL behavior appears at low temperature as evidenced by the linear resistivity [ρc(T)~T]and logarithmic specific heat[C/T~–lnT].[27]At sub-Kelvin,C/Ttends to level off,suggesting that Fermi liquid potentially gets restored with a large renormalized effective mass at ultralow temperature, and this is further supported by resistivity and specific heat measurements under pressure or magnetic field. Taken together, these features suggest that CeCo2Ga8likely sits nearby but slightly on the quantum-disordered side of a QCP, seeing the blue dash line in the schematic phase diagram in Fig.1(a). This provides a possible platform to investigate the nature of QCP in the quasi-1D limit.

    In this work, we employed the uniaxial stress (σ) as a control parameter to this quasi-1D Kondo lattice using a set of piezoelectric actuators,[30]and electric transport and thermodynamic properties were studied as a function of strain(ε).Compared to conventional hydrostatic pressure effect that is essentially isotropic,the stress tuning possesses several advantages. First, because the stress effect is uniaxial, presumably it is more straightforward to change the intra-chain distance in such quasi-1D compounds and thus to tune the physical properties more efficiently. Second,one can apply either compressive or tensile stress by a controllable voltage, which enablesin-situtuning either to approach or to depart the QCP.

    2. Experimental details

    Single crystalline CeCo2Ga8was grown by a Ga selfflux method as described previously.[27]The as-grown samples mostly are needle-like with typical length~3 mm alongc-axis,and about 1.5×1.5 mm2in cross-section.Four samples(S1–S4)were prepared in this work. S1 and S2 were carefully polished to make the long side alongc- anda-axes, for measurements of electrical resistivityρcandρa(bǔ),respectively. The forces were applied uniaxially along the electric current by Razorbill Instruments Cryogenic stress cell (FC100), and the magnitude of stress was measured using a pre-calibrated capacitive dilatometer. Heat capacity of CeCo2Ga8under stress was measure by an AC calorimetric method,[31,32]on samples S3 and S4,and the stress was applied alongaandbaxes,respectively. Chromel-Au99.93%Fe0.07%thermocouple was used to measure the heat-temperature response.[33,34]

    3. Results and discussion

    We start from resistivity measurements with compressive stress applied incaxis, which is the same direction as Ce–Ce chain. In this configuration,a compressive stress shortens the intra chain Ce–Ce distance,but slightly increases the inter chain distances. This can be seen from the Hooke’s law for a crystal

    whereσis the stress tensor,Cis the elastic moduli tensor,andεis the strain tensor. We obtained the elastic moduli by resonant ultrasound spectroscopy(RUS)measurements,[35]

    where the irrelevant shear moduli are not shown here. More details about the RUS results on CeCo2Ga8will be published separately.[36]With these parameters, we are able to convert the stress into strain as labeled in the legends of Fig.2. Note that the sign“-”in strain means compression.

    As the intra-chain distance shortens, naively, one expects that the communications among single-ion Kondo singlets strengthen and thus the coherent Kondo effect enhances.However, on the other hand, since the RKKY interactionJRKKY∝cos(2kFr)/r3(whereris the distance between local moments, andkFis the Fermi wave vector),[16–18]it is hard to predict who will increase faster with strain. If the Kondo effect wins,the system should move further into the quantumdisordered region; otherwise, it should approach closer to QCP.Figure 2 displays the temperature dependence ofρcunder various strains. At ambient,ρc(T)initially decreases upon cooling, and then turns up below~100 K where the incoherent Kondo effect sets in (see the inset to Fig. 2). A broad peak forms at about 24 K, characteristic of the onset of coherent Kondo scattering and the development of renormalized heavy electron bands.[27]The coherent Kondo temperature is defined as the position whereρcmaximizes. It should be mentioned that theTccohin this work is relatively higher than that previously reported,[24,27]probably due to sample quality dependence. One then clearly finds thatTccohincreases monotonically with compressive strainεc, with an increasing rate~20 K/%. This manifests that the Kondo effect dominates in this process, and thus CeCo2Ga8moves farther away from QCP.In other words,the correct way to tune it to QCP should be to stretch it alongc. However, we noticed that this crystal is rather brittle to tension,even a little tensile force causes theρcmeasurements to fail.

    An alternate attempt is to compress the crystal within theabplane, and presumably this is to elongate the intra-chain distance. In this configuration,the intra-chain coupling is expected to be weakened at the expense of some enhancement in inter-chain coupling. We assume the latter is less crucial. This idea is firstly testified by theρa(bǔ)measurements with stress applied inaaxis(For technical reason, it is difficult to measureρcin this configuration). The ratio ofεcandεais determined by the Poison’s ratioν13≡-S13/S11≈0.21, whereS11andS13are the elements of elastic compliance tensorS,

    Figure 3(a) displaysρa(bǔ)as a function ofTmeasured at differentεa. Unlikeρc(T), the resistivity forI ‖ ais semiconducting-like without any trace of Kondo coherence(see the inset to Fig.2). We noticed that all theρa(bǔ)(T)curves essentially overlap only except for below~6 K whereσaweakly suppressesρa(bǔ). This implies that compressing alongatends to promote coherent Kondo scatting ina,which is not surprising.However,we should also point out that the uniaxial stress effect alongais much weaker than that alongc, manifesting that elastic-electronic coupling and thus the tunability are very anisotropic,and this provides additional evidence for the quasi-1D nature of CeCo2Ga8.

    Since resistivity is a tensor quantity,ρa(bǔ)does not reflect much information about the intra-chain electronic correlation effect, we therefore turn to the bulk property measurements,viz.AC heat capacity (Cac), and the results are shown in Fig. 3(b). This provides a semi-quantitative measure for the strain dependent electronic correlation. Here we compare the data forεa=0 and-0.12%, and the latter corresponds to a small expansion strain alongc,εc=0.026%. Between 10 K and 20 K,Cac/Tis linear inT2due to the phonon contribution.[37]A notable feature is that the slope ofCac/Tvs.T2increases and hence the Debye temperature decreases in the presence ofσa. We obtain the phonon contribution by fittingCacto a DebyeT3law between 10 K and 20 K, and extrapolate this to the lowerTrange. After subtracting this phonon contribution,the electronic contribution to the specific heat,Cel/T,is displayed in the inset to Fig.3(b). Apart from a plausible upturn below 3 K which is due to a calibration issue of the chromel-Au99.93%Fe0.07%thermocouple used,[33,34]the most prominent feature is thatCel/Tdiverges more rapidly at low temperature underεc=0.026%. This signifies that the effective mass of quasiparticles is further increased upon tensileεc,and is in agreement with the behavior when approaching a QCP (e.g., see review [38]). It should be noted that at present we can not fully exclude the possibility that the rapid increase inCel/Tat low temperature originates from an underlying magnetic ordering whose transition temperature is below our base temperature~1.7 K.Such a situation might appear if the system has been over-tuned to the quantum-ordered phase[cf Fig.1(a)]. However,this scenario is not very likely considering the rather smallεcwe have reached in this experiment,and no magnetic transition was observed down to 70 mK at ambient.[27,29]Sub-Kelvin measurements are needed to clarify this problem. Similar trend is also observed when the uniaxial stress is applied alongbaxis,see Fig.4.

    According to the global phase diagram theory,[12,39]the quantum critical points in heavy-fermion materials are generally classified in two types: a conventional spin-densitywave (SDW) type QCP[40,41]and an unconventional Kondodestruction type QCP.[42–44]Across the Kondo-destruction type QCP,accompanied with the disappearance of long-range magnetic ordering, the 4f electrons undergo a localized–delocalized transition, therefore, the Fermi surface topology changes sharply.[5,6,45,46]Other important features of the Kondo-destruction type QCP include anω/Tscaling of dynamic spin susceptibility, a modified Curie–Weiss form of static spin susceptibility, and strange metal (NFL) behavior with divergent quasiparticle effective mass.[42,47–49]Since Kondo destruction generically requires a large frustration parameter and spin fluctuations, it thus favors lower dimensionality.[12]Whether these phenomena will also appear in this quasi-1D system needs further confirmation. In particular, different kinds of magnetic fluctuations (ferromagnetic(FM) or antiferromagnetic (AFM)) with different dimensionalities (2D or 3D) lead to different sorts of NFL behaviors,characterized by the different forms of temperature dependent measurables like resistivity, spin susceptibility, specific heat,spin-lattice relaxation rate and so on. For instance,in Moriya and Takimoto’s theory,[50]2D and 3D AFM fluctuations yield specific heatCm/Tobeying-logTandγ0–aT1/2, respectively, while 2D FM fluctuations result inCm/T~T-1/3.[51]Slightly away from QCP, in the Fermi-liquid regime,Cm/Tconforms to log(1/r),-r1/2andr1/2for 2D-AFM,3D-AFM and 2D-FM types of QCPs,respectively,wherer ≡δ-δcparameterizes the“distance”to QCP(refer to Ref.[52]for more details). How the strange metal behaves near a QCP in the quasi-1D limit remains unclear. The stress-tuned CeCo2Ga8thus provides a new access to these peculiar quantum critical phenomena. In our AC heat capacity experiment (which is semi-quantitative), we confirmed thatCel/Tincreases nearly logarithmically between 3 K and 10 K, and this trend retains when approaching QCP(see the insets to Figs.2 and 3). Because of some uncertainty in the measurements below~3 K as mentioned above,it is premature to draw a full conclusion before more precise measurements down to lower temperatures can be done. Furthermore, it is also unknown whether ferromagnetic or antiferromagnetic long-range order will be established if the system is over-tuned across the QCP. More systematic physical-property measurements at milli-Kelvin range in the presence of even more powerful stress cell are required in the future. Some relevant works have been on the way.

    4. Summary

    On the example of quasi-1D heavy-fermion Kondo lattice CeCo2Ga8, we systematically studied the uniaxial stress effect by anisotropic transport and thermodynamic properties measurements. The results manifest that a tensile intra-chain strain(εc >0)pushes CeCo2Ga8closer to a quantum critical point, while a compression intra-chain strain (εc <0) likely causes departure. Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress,and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.

    Acknowledgments

    Y.Shi acknowledges Beijing Natural Science Foundation,China(Grant No.Z180008)and K.C.Wong Education Foundation(Grant No. GJTD-2018-01).

    猜你喜歡
    張健康橋石友
    本期石友通訊錄
    寶藏(2021年7期)2021-08-28 08:18:14
    本期石友通訊錄
    寶藏(2021年6期)2021-07-20 06:12:30
    本期石友通訊錄
    寶藏(2021年11期)2021-01-01 06:17:42
    石友天地
    寶藏(2020年10期)2020-11-19 01:47:58
    張健書法作品
    廣告大觀(2020年3期)2020-10-20 12:34:00
    “雨巷詩人”與“康橋詩人”
    張健的傳銷邪教
    鄭州康橋悅?cè)貓@新中式院墅
    “勾股定理”之我見
    會(huì)說話的樹
    欧美日韩视频高清一区二区三区二| 亚洲av福利一区| 亚洲欧美日韩无卡精品| 中文字幕av在线有码专区| 夜夜爽夜夜爽视频| 中文在线观看免费www的网站| 国产久久久一区二区三区| 国产精品伦人一区二区| 日日干狠狠操夜夜爽| 日韩欧美三级三区| 成人午夜高清在线视频| 亚洲国产精品成人久久小说| 亚洲国产色片| 欧美xxxx性猛交bbbb| 欧美zozozo另类| 国产高清有码在线观看视频| a级毛片免费高清观看在线播放| 亚洲乱码一区二区免费版| 午夜免费男女啪啪视频观看| 亚洲精品一区蜜桃| 国产v大片淫在线免费观看| 免费看av在线观看网站| 中文乱码字字幕精品一区二区三区 | 一区二区三区乱码不卡18| 久久久成人免费电影| 五月伊人婷婷丁香| 边亲边吃奶的免费视频| 久久久亚洲精品成人影院| 精品久久久久久久久亚洲| 日本wwww免费看| 一级毛片黄色毛片免费观看视频| 亚洲丝袜综合中文字幕| 成年女人在线观看亚洲视频 | 69人妻影院| 一级毛片电影观看| 搡老妇女老女人老熟妇| 亚洲国产最新在线播放| 卡戴珊不雅视频在线播放| www.色视频.com| 精品人妻视频免费看| 深夜a级毛片| 精品一区二区免费观看| 国产亚洲最大av| 最后的刺客免费高清国语| 亚洲人成网站在线播| 亚洲,欧美,日韩| 精品国产露脸久久av麻豆 | 国产成人a区在线观看| 女人被狂操c到高潮| 国产美女午夜福利| 成年人午夜在线观看视频 | 韩国av在线不卡| 亚洲欧美清纯卡通| 午夜精品国产一区二区电影 | 亚洲精品国产av成人精品| 日韩av在线大香蕉| 美女大奶头视频| 日韩电影二区| 成人综合一区亚洲| 特级一级黄色大片| 久久久久久久久久人人人人人人| 日本黄大片高清| h日本视频在线播放| 大陆偷拍与自拍| 欧美xxⅹ黑人| 国内少妇人妻偷人精品xxx网站| 久久99精品国语久久久| 久久久午夜欧美精品| 久久99蜜桃精品久久| 久久久午夜欧美精品| 少妇丰满av| 国产精品久久久久久精品电影| 深夜a级毛片| 纵有疾风起免费观看全集完整版 | 国内揄拍国产精品人妻在线| 国产亚洲91精品色在线| 床上黄色一级片| 亚洲av免费在线观看| 高清日韩中文字幕在线| 国内揄拍国产精品人妻在线| 夫妻午夜视频| av一本久久久久| 麻豆国产97在线/欧美| 深爱激情五月婷婷| 91精品伊人久久大香线蕉| 好男人视频免费观看在线| 久久精品国产亚洲av天美| 国产伦精品一区二区三区四那| 国产成人午夜福利电影在线观看| 人妻一区二区av| 国产色爽女视频免费观看| 亚洲三级黄色毛片| 欧美高清成人免费视频www| a级一级毛片免费在线观看| 成人欧美大片| 看黄色毛片网站| 一级毛片aaaaaa免费看小| 亚洲在久久综合| 在线a可以看的网站| 免费看光身美女| 人妻制服诱惑在线中文字幕| av福利片在线观看| 亚洲国产高清在线一区二区三| 成人毛片a级毛片在线播放| 国产永久视频网站| 国产亚洲5aaaaa淫片| 2021天堂中文幕一二区在线观| 日日撸夜夜添| www.色视频.com| 亚州av有码| 最近视频中文字幕2019在线8| 乱人视频在线观看| 午夜福利在线观看吧| 美女内射精品一级片tv| 美女内射精品一级片tv| 能在线免费观看的黄片| 久久精品国产亚洲av天美| 特大巨黑吊av在线直播| 午夜爱爱视频在线播放| 欧美日韩视频高清一区二区三区二| 校园人妻丝袜中文字幕| 最近中文字幕高清免费大全6| 亚洲国产欧美在线一区| 久久久久久久午夜电影| 久久综合国产亚洲精品| 69av精品久久久久久| 亚洲美女搞黄在线观看| 高清午夜精品一区二区三区| 国产精品一区二区三区四区久久| 啦啦啦中文免费视频观看日本| 在线免费十八禁| 中文乱码字字幕精品一区二区三区 | 成人特级av手机在线观看| 51国产日韩欧美| 老师上课跳d突然被开到最大视频| h日本视频在线播放| 国产一区二区在线观看日韩| 嫩草影院精品99| 亚洲人与动物交配视频| 免费观看精品视频网站| 亚洲激情五月婷婷啪啪| 高清av免费在线| 嫩草影院入口| 熟妇人妻不卡中文字幕| 日本熟妇午夜| 97人妻精品一区二区三区麻豆| av在线天堂中文字幕| 亚洲婷婷狠狠爱综合网| 男女视频在线观看网站免费| 国产成年人精品一区二区| 亚洲欧美成人综合另类久久久| 亚洲熟妇中文字幕五十中出| 国产精品久久视频播放| 国产视频内射| 免费观看精品视频网站| 国产老妇女一区| 国产极品天堂在线| 色吧在线观看| 中国国产av一级| 午夜福利视频精品| 国产精品久久久久久精品电影小说 | 九色成人免费人妻av| 麻豆乱淫一区二区| 欧美日韩综合久久久久久| 国产黄a三级三级三级人| 干丝袜人妻中文字幕| 国产精品1区2区在线观看.| 免费电影在线观看免费观看| 欧美成人a在线观看| 国产一级毛片在线| 天堂av国产一区二区熟女人妻| 黄色日韩在线| 亚洲av日韩在线播放| av播播在线观看一区| 午夜激情久久久久久久| 欧美zozozo另类| 麻豆av噜噜一区二区三区| videos熟女内射| 十八禁网站网址无遮挡 | 国产成人精品一,二区| 日韩,欧美,国产一区二区三区| 成年女人看的毛片在线观看| 97超视频在线观看视频| 六月丁香七月| 国产精品熟女久久久久浪| 国产淫片久久久久久久久| 久久99热6这里只有精品| 亚洲av电影不卡..在线观看| 国产免费又黄又爽又色| 免费无遮挡裸体视频| 国产免费福利视频在线观看| 精品一区二区免费观看| 久久99热6这里只有精品| 国产男女超爽视频在线观看| 国产亚洲91精品色在线| 午夜精品在线福利| 亚洲精品456在线播放app| 美女高潮的动态| 乱码一卡2卡4卡精品| 女人久久www免费人成看片| 91午夜精品亚洲一区二区三区| 亚洲精品视频女| 亚洲自拍偷在线| 国产精品一及| 亚洲精品中文字幕在线视频 | 欧美bdsm另类| 美女xxoo啪啪120秒动态图| 亚洲精品影视一区二区三区av| 2021少妇久久久久久久久久久| 嘟嘟电影网在线观看| 欧美+日韩+精品| 欧美xxⅹ黑人| 亚洲美女视频黄频| 国产高清国产精品国产三级 | 欧美另类一区| 三级毛片av免费| 久久久久久久久中文| 日韩国内少妇激情av| 国产女主播在线喷水免费视频网站 | 欧美bdsm另类| 床上黄色一级片| 婷婷色综合www| 国产精品久久久久久久久免| 亚洲经典国产精华液单| 26uuu在线亚洲综合色| 91久久精品国产一区二区成人| 日本欧美国产在线视频| 国产精品一区www在线观看| 久热久热在线精品观看| 人人妻人人看人人澡| 国产伦理片在线播放av一区| 免费观看av网站的网址| 久久这里只有精品中国| videossex国产| 免费人成在线观看视频色| 久久久久久九九精品二区国产| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩无卡精品| 一级毛片电影观看| 午夜爱爱视频在线播放| 国产大屁股一区二区在线视频| 国产又色又爽无遮挡免| 特级一级黄色大片| 午夜福利网站1000一区二区三区| 嫩草影院精品99| 国产v大片淫在线免费观看| 欧美日本视频| 亚洲欧美精品自产自拍| 亚洲精品久久久久久婷婷小说| 一级a做视频免费观看| 精品久久久久久久末码| 如何舔出高潮| 免费人成在线观看视频色| 久久久久久久久久人人人人人人| 亚洲国产欧美在线一区| 成人性生交大片免费视频hd| 男女那种视频在线观看| 少妇的逼水好多| 白带黄色成豆腐渣| 亚洲真实伦在线观看| 男女边吃奶边做爰视频| 69av精品久久久久久| 亚洲国产成人一精品久久久| 91狼人影院| 黄片无遮挡物在线观看| 97热精品久久久久久| 真实男女啪啪啪动态图| 夜夜看夜夜爽夜夜摸| 国内揄拍国产精品人妻在线| 免费大片18禁| 亚洲国产色片| 亚洲av成人精品一区久久| 91久久精品电影网| 少妇被粗大猛烈的视频| 国产女主播在线喷水免费视频网站 | 我的老师免费观看完整版| 亚洲av成人av| 国产亚洲精品久久久com| 日韩成人伦理影院| 亚洲自拍偷在线| 在线观看免费高清a一片| 又黄又爽又刺激的免费视频.| 精品酒店卫生间| 国产免费一级a男人的天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 97超碰精品成人国产| ponron亚洲| 我要看日韩黄色一级片| 国产亚洲一区二区精品| 国产老妇女一区| 色哟哟·www| 久久久久久久大尺度免费视频| 中文资源天堂在线| 伊人久久精品亚洲午夜| 麻豆久久精品国产亚洲av| 国产成人福利小说| 男女视频在线观看网站免费| 亚洲欧美中文字幕日韩二区| 99热这里只有是精品50| h日本视频在线播放| 亚洲av成人av| 又黄又爽又刺激的免费视频.| 国内揄拍国产精品人妻在线| 精品99又大又爽又粗少妇毛片| 91午夜精品亚洲一区二区三区| 国产黄片视频在线免费观看| 亚洲不卡免费看| 国产黄片美女视频| 久久精品久久久久久噜噜老黄| 亚洲av一区综合| 建设人人有责人人尽责人人享有的 | 在线免费十八禁| 亚洲av中文字字幕乱码综合| 日韩av免费高清视频| 十八禁国产超污无遮挡网站| 免费不卡的大黄色大毛片视频在线观看 | 中国美白少妇内射xxxbb| 亚洲欧美精品专区久久| 又粗又硬又长又爽又黄的视频| 男人和女人高潮做爰伦理| 亚洲在线自拍视频| 寂寞人妻少妇视频99o| 久久久国产一区二区| 最近的中文字幕免费完整| 日韩欧美一区视频在线观看 | 欧美一区二区亚洲| 91狼人影院| 91久久精品国产一区二区三区| 亚洲国产成人一精品久久久| 午夜福利在线观看免费完整高清在| 汤姆久久久久久久影院中文字幕 | 国国产精品蜜臀av免费| 婷婷色综合www| 亚洲精品一区蜜桃| 在线播放无遮挡| 午夜福利在线在线| 色播亚洲综合网| 观看免费一级毛片| 久久久久久久久久黄片| 亚洲精品成人av观看孕妇| 精品少妇黑人巨大在线播放| 91午夜精品亚洲一区二区三区| 久久人人爽人人爽人人片va| 成人性生交大片免费视频hd| 色5月婷婷丁香| 日韩人妻高清精品专区| 亚洲最大成人av| 日本黄色片子视频| 不卡视频在线观看欧美| 99热网站在线观看| 特大巨黑吊av在线直播| 2021天堂中文幕一二区在线观| 高清欧美精品videossex| 美女被艹到高潮喷水动态| 亚洲真实伦在线观看| 69人妻影院| 午夜福利成人在线免费观看| 黄色配什么色好看| 国产 亚洲一区二区三区 | 深爱激情五月婷婷| 亚洲成人一二三区av| 亚洲成色77777| 精品一区二区免费观看| 建设人人有责人人尽责人人享有的 | 麻豆成人午夜福利视频| 免费看光身美女| 国产男人的电影天堂91| 欧美成人a在线观看| 久久草成人影院| 久久鲁丝午夜福利片| 最近最新中文字幕免费大全7| 卡戴珊不雅视频在线播放| 啦啦啦啦在线视频资源| 免费大片黄手机在线观看| 精品一区二区免费观看| 最近手机中文字幕大全| 日本-黄色视频高清免费观看| 性色avwww在线观看| 成年版毛片免费区| 观看美女的网站| 日韩电影二区| 日韩av在线免费看完整版不卡| 久久久精品欧美日韩精品| 久久草成人影院| 亚洲欧美一区二区三区黑人 | 亚洲在线自拍视频| 国产不卡一卡二| 国产片特级美女逼逼视频| 亚洲无线观看免费| 美女主播在线视频| 亚洲aⅴ乱码一区二区在线播放| 内地一区二区视频在线| 日韩av不卡免费在线播放| 嫩草影院入口| 国产激情偷乱视频一区二区| av免费观看日本| 一本久久精品| 在线观看人妻少妇| av在线蜜桃| a级毛片免费高清观看在线播放| 成人性生交大片免费视频hd| 久久精品国产亚洲av涩爱| 最近最新中文字幕免费大全7| 中文字幕亚洲精品专区| 美女国产视频在线观看| 大又大粗又爽又黄少妇毛片口| 色吧在线观看| 免费黄网站久久成人精品| 只有这里有精品99| 日日干狠狠操夜夜爽| 中文字幕免费在线视频6| 国产免费一级a男人的天堂| 少妇裸体淫交视频免费看高清| 丝袜喷水一区| 亚洲欧美精品专区久久| 国产精品久久视频播放| 久久这里有精品视频免费| 亚洲精品成人久久久久久| 最近2019中文字幕mv第一页| 精品熟女少妇av免费看| 午夜福利在线观看吧| 99久久九九国产精品国产免费| 淫秽高清视频在线观看| 乱码一卡2卡4卡精品| 麻豆久久精品国产亚洲av| 在线观看美女被高潮喷水网站| 直男gayav资源| av免费观看日本| 午夜激情欧美在线| 大陆偷拍与自拍| 91久久精品国产一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 中文欧美无线码| 777米奇影视久久| 国产精品久久久久久久久免| 婷婷六月久久综合丁香| 日本一本二区三区精品| 国产视频首页在线观看| www.av在线官网国产| av国产久精品久网站免费入址| 免费av不卡在线播放| 久久99热这里只频精品6学生| 国产伦精品一区二区三区四那| 亚洲av国产av综合av卡| 大片免费播放器 马上看| 亚洲丝袜综合中文字幕| 日韩中字成人| 韩国av在线不卡| 久久久久久久久久成人| 男女边吃奶边做爰视频| 99久久人妻综合| 美女主播在线视频| 亚洲国产精品成人久久小说| 看免费成人av毛片| 少妇裸体淫交视频免费看高清| 国产毛片a区久久久久| 性色avwww在线观看| 亚洲av二区三区四区| 校园人妻丝袜中文字幕| 成人欧美大片| 黄片无遮挡物在线观看| 精品久久久久久久末码| 18+在线观看网站| 日韩三级伦理在线观看| 亚洲美女搞黄在线观看| 日韩精品青青久久久久久| 一二三四中文在线观看免费高清| 一区二区三区四区激情视频| 日日啪夜夜爽| av在线观看视频网站免费| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩东京热| 免费看美女性在线毛片视频| 亚洲丝袜综合中文字幕| 精品久久久久久电影网| 麻豆精品久久久久久蜜桃| 麻豆久久精品国产亚洲av| 亚洲婷婷狠狠爱综合网| 国产成人freesex在线| 嫩草影院精品99| 精品少妇黑人巨大在线播放| 观看美女的网站| 久久久久免费精品人妻一区二区| a级毛片免费高清观看在线播放| 国产高清三级在线| 成人国产麻豆网| 天堂俺去俺来也www色官网 | 国产永久视频网站| 欧美成人一区二区免费高清观看| 久久久欧美国产精品| 亚洲综合色惰| 91精品国产九色| 91在线精品国自产拍蜜月| 免费看光身美女| 欧美成人一区二区免费高清观看| 中文字幕av成人在线电影| 人妻少妇偷人精品九色| 久久久久久九九精品二区国产| 麻豆成人午夜福利视频| 欧美xxⅹ黑人| 激情五月婷婷亚洲| 国产大屁股一区二区在线视频| 亚洲精品成人久久久久久| 麻豆av噜噜一区二区三区| 亚洲av中文av极速乱| 国产成人aa在线观看| 国产精品综合久久久久久久免费| 老司机影院成人| 夜夜看夜夜爽夜夜摸| 久久6这里有精品| 伊人久久精品亚洲午夜| 嫩草影院精品99| 波多野结衣巨乳人妻| 高清av免费在线| 欧美变态另类bdsm刘玥| 欧美成人a在线观看| 天天躁夜夜躁狠狠久久av| 中文字幕免费在线视频6| 久久久国产一区二区| 免费看光身美女| 亚洲av免费高清在线观看| 国产一区二区三区av在线| 免费观看的影片在线观看| 亚洲真实伦在线观看| 伊人久久国产一区二区| 国产高清国产精品国产三级 | 亚洲av电影在线观看一区二区三区 | 少妇裸体淫交视频免费看高清| 波多野结衣巨乳人妻| 爱豆传媒免费全集在线观看| 中文在线观看免费www的网站| 亚洲美女视频黄频| 午夜精品国产一区二区电影 | 搞女人的毛片| 尾随美女入室| 丰满人妻一区二区三区视频av| 国产亚洲av片在线观看秒播厂 | 日韩一区二区三区影片| 免费播放大片免费观看视频在线观看| 久久精品熟女亚洲av麻豆精品 | 国产又色又爽无遮挡免| 国产精品一区二区在线观看99 | 国内精品一区二区在线观看| 日日摸夜夜添夜夜爱| 国产男女超爽视频在线观看| 插阴视频在线观看视频| 三级经典国产精品| 日日摸夜夜添夜夜爱| 三级经典国产精品| 大片免费播放器 马上看| 色网站视频免费| 偷拍熟女少妇极品色| 欧美日本视频| 乱人视频在线观看| 亚洲国产日韩欧美精品在线观看| 国产精品爽爽va在线观看网站| 欧美日本视频| 久久综合国产亚洲精品| 欧美区成人在线视频| 久久精品久久久久久久性| 丰满人妻一区二区三区视频av| 国产精品99久久久久久久久| 男人和女人高潮做爰伦理| 国产一区二区在线观看日韩| 国产欧美日韩精品一区二区| 国产黄片视频在线免费观看| 男的添女的下面高潮视频| 别揉我奶头 嗯啊视频| 嫩草影院精品99| 免费观看av网站的网址| 女的被弄到高潮叫床怎么办| 精品久久久久久电影网| 大又大粗又爽又黄少妇毛片口| 国产高清国产精品国产三级 | 又粗又硬又长又爽又黄的视频| 免费黄频网站在线观看国产| 五月玫瑰六月丁香| 欧美97在线视频| 一级a做视频免费观看| 国产大屁股一区二区在线视频| 精品久久久久久电影网| 国产91av在线免费观看| 草草在线视频免费看| 国产一区有黄有色的免费视频 | 六月丁香七月| 国产一级毛片七仙女欲春2| 成人亚洲精品av一区二区| a级毛片免费高清观看在线播放| 精品国产露脸久久av麻豆 | 国产黄色免费在线视频| 直男gayav资源| 床上黄色一级片| 人妻一区二区av| 国产乱人偷精品视频| 女人久久www免费人成看片| 97热精品久久久久久| 国产伦理片在线播放av一区| 啦啦啦中文免费视频观看日本| 免费看光身美女| 18禁裸乳无遮挡免费网站照片| 全区人妻精品视频| 熟女人妻精品中文字幕| 国产真实伦视频高清在线观看| 精品人妻一区二区三区麻豆| 一个人免费在线观看电影| 大话2 男鬼变身卡| 亚洲图色成人| 一个人免费在线观看电影| 日韩人妻高清精品专区| 欧美日韩亚洲高清精品| 日韩欧美三级三区| 人人妻人人看人人澡| 啦啦啦中文免费视频观看日本| 成人亚洲欧美一区二区av| 国产精品熟女久久久久浪|