殷啟帥,楊進(jìn),李振坤,啜廣山,沈國(guó)華,楊富貴,宋宇
無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層對(duì)海上管柱螺紋抗粘扣性能的影響
殷啟帥1,楊進(jìn)1,李振坤2,啜廣山3,沈國(guó)華3,楊富貴4,宋宇1
(1.中國(guó)石油大學(xué)(北京),北京 102249;2.中海油能源發(fā)展股份有限公司 工程技術(shù)分公司,天津 300452;3.中海油能源發(fā)展裝備技術(shù)有限公司,天津 300452;4.中世鈦業(yè)有限公司,遼寧 丹東 118002)
采用無(wú)污染的無(wú)氣噴涂表面處理工藝,制備MoS2/Cu/C復(fù)合涂層,提高海上管柱螺紋抗粘扣性能。在MoS2/C涂層中摻雜納米級(jí)Cu粉末,采用無(wú)氣噴涂+高溫固化+噴砂處理工藝,制備MoS2/Cu/C復(fù)合涂層。通過(guò)顯微組織、硬度測(cè)定和摩擦試驗(yàn),分別評(píng)價(jià)MoS2/Cu/C復(fù)合涂層的微觀組織、顯微硬度和摩擦系數(shù),并通過(guò)掃描電子顯微鏡對(duì)MoS2/Cu/C復(fù)合涂層進(jìn)行形貌分析。最后,在實(shí)物試樣上進(jìn)行上卸扣試驗(yàn),測(cè)試其抗粘扣性能。無(wú)氣噴涂+高溫固化過(guò)程中,半熔融粉末經(jīng)過(guò)多次疊加,沉積形成致密的結(jié)構(gòu),未見(jiàn)明顯孔隙。對(duì)MoS2/Cu/C復(fù)合涂層進(jìn)行噴砂預(yù)處理,可明顯提高涂層的均勻度,增加涂層的粘結(jié)強(qiáng)度。涂層與基體之間呈鋸齒形緊密機(jī)械結(jié)合,噴砂無(wú)氣噴涂前后,基體硬度未發(fā)生改變,未對(duì)金屬基體造成不利影響。MoS2/Cu/C復(fù)合涂層在螺紋表面結(jié)合形成光滑的保護(hù)膜,螺紋表面摩擦系數(shù)降低,上扣扭矩降低幅度為19%~23%。在MoS2/C涂層中摻雜納米級(jí)Cu粉末,形成MoS2/Cu/C復(fù)合涂層,可有效降低螺紋表面的摩擦系數(shù),同時(shí)不降低本體強(qiáng)度。采用無(wú)氣噴涂+高溫固化得到MoS2/Cu/C復(fù)合涂層,可有效提高石油管螺紋的抗粘扣性能,在海上鉆完井現(xiàn)場(chǎng)已取得成功應(yīng)用,該技術(shù)具有極大的借鑒意義和推廣價(jià)值。
MoS2/Cu/C;復(fù)合涂層;無(wú)氣噴涂;螺紋;抗粘扣;管柱;油套管;海上鉆完井
油套管是開(kāi)采油氣資源唯一、永久性的通道,是目前海上油氣鉆探過(guò)程的大宗關(guān)鍵物資[1-2]。據(jù)統(tǒng)計(jì),近年僅中海油對(duì)油套管的采購(gòu)量就高達(dá)16萬(wàn)噸。“螺紋”是油套管的重要連接機(jī)構(gòu),其在工作過(guò)程中,由于螺紋牙齒面的受力和變形不均而導(dǎo)致局部發(fā)生粘連和撕脫,稱為“粘扣”,甚至導(dǎo)致螺紋失效。目前,粘扣失效現(xiàn)象是影響管柱安全性和工作壽命的關(guān)鍵,尤其對(duì)于海上鉆完井過(guò)程,海上管柱螺紋粘扣直接決定上卸扣效率,影響海上鉆完井作業(yè)時(shí)效,是海上鉆完井“提質(zhì)增效”的重要制約環(huán)節(jié)。隨著目前鉆探要求的不斷提高,油套管螺紋齒面的受力和變形問(wèn)題變得更加復(fù)雜,粘扣失效的問(wèn)題也日趨突出。一旦螺紋粘連發(fā)生粘扣,即使油套管的其他部分仍然完好可用,整體套管柱的壽命就此提前終結(jié),造成油套管資源的極大浪費(fèi),由此導(dǎo)致的經(jīng)濟(jì)損失巨大。螺紋抗粘扣性能的影響因素眾多,包括鋼級(jí)、冶煉、熱處理、螺紋齒形特征、配合公差、螺紋表面粗糙度、傳統(tǒng)磷化層質(zhì)量、螺紋脂性質(zhì)、上卸扣速度和力矩大小等[3]。國(guó)產(chǎn)的油套管螺紋目前能夠?qū)崿F(xiàn)的最大上卸扣次數(shù)為3~4次,而國(guó)外進(jìn)口的油套管可高達(dá)5~6次[4-5],高性能抗粘扣螺紋屬于“卡脖子”問(wèn)題,亟待攻克和國(guó)產(chǎn)化替代。
目前國(guó)內(nèi)預(yù)防螺紋粘扣通常采用磷化、鍍銅等方式對(duì)螺紋表面進(jìn)行處理,來(lái)提高螺紋的抗粘扣性能。王丹凈等[6]研究指出,中溫鋅系磷化工藝可有效提高螺紋鋼的耐蝕性。許瑾璐[7]研究了磷化時(shí)間對(duì)磷化膜外觀、微觀形貌、厚度和耐腐蝕性的影響。段正勇等[8]設(shè)計(jì)了一種全封閉式循環(huán)磷化處理裝置。王少蘭等[9]通過(guò)分析對(duì)比指出,具有高熔點(diǎn)、低硬度的鍍銅方法是防止螺紋發(fā)生粘扣的有效途徑。何體財(cái)[10]研制了一種以納米銅為銅基的納米復(fù)合減磨涂料AFRICO??梢?jiàn)磷化、鍍銅等螺紋表面處理工藝得到了廣泛應(yīng)用,并取得了良好應(yīng)用效果。但磷化廢水中含有鎳離子、銅離子或鉛離子等重金屬污染物,成分復(fù)雜,處理難度較大,而常規(guī)鍍銅工藝需要硫酸銅等液體,將產(chǎn)生大量的工業(yè)廢液,可見(jiàn)磷化、鍍銅等傳統(tǒng)工藝對(duì)環(huán)境產(chǎn)生了嚴(yán)重污染。隨著環(huán)保要求的不斷提高,2021年國(guó)家環(huán)保局發(fā)布的《限期淘汰產(chǎn)生嚴(yán)重污染環(huán)境的工業(yè)固體廢物的落后生產(chǎn)工藝設(shè)備名錄》,嚴(yán)格規(guī)定磷化工藝必須于2023年12月31日前被禁止使用。因此,亟須探索一種無(wú)污染的表面處理工藝來(lái)提高石油管螺紋的抗粘扣性能[11]。
“無(wú)氣噴涂”是一種綠色環(huán)保的新興表面處理工藝,在歐美等發(fā)達(dá)國(guó)家逐步推廣應(yīng)用?!盁o(wú)氣噴涂”過(guò)程,高壓無(wú)氣噴涂機(jī)利用高壓柱塞泵將涂層增壓至20.68 MPa,獲得高壓涂層,再通過(guò)高壓軟管輸送到噴槍,高壓涂層由特制的噴嘴小孔噴出,在大氣中立刻膨脹,霧化成極細(xì)的扇形氣流噴向管柱,從而在管柱表面形成致密的涂層[12]。由于涂層霧化不需要壓縮空氣,故稱為“無(wú)氣噴涂”,其具有諸多優(yōu)勢(shì):大幅提高噴涂效率,且用料損失極少,節(jié)約成本;可獲得極佳的表面質(zhì)量,噴涂涂層平整、光潔、致密、無(wú)刷痕、無(wú)滾痕;有效延長(zhǎng)涂層使用壽命,高壓無(wú)氣噴涂能使涂層顆粒滲入空隙,增強(qiáng)涂層附著力,延長(zhǎng)使用壽命[13]。劉媛媛等[14]簡(jiǎn)述了高壓無(wú)氣噴涂在工程機(jī)械行業(yè)應(yīng)用的注意事項(xiàng)。孫禹等[15]構(gòu)建了高壓無(wú)氣噴涂原子灰的扇形噴嘴三維有限元模型。對(duì)于無(wú)氣噴涂用于降低管柱螺紋摩擦系數(shù),提高抗粘扣性能方面的研究尚不多見(jiàn)。
本文創(chuàng)新性地在MoS2/C涂層中摻雜納米級(jí)Cu粉末,充分利用MoS2/C涂層的潤(rùn)滑減阻性能和納米級(jí)Cu粉末的良好導(dǎo)熱性能,采用無(wú)氣噴涂+高溫固化得到MoS2/Cu/C復(fù)合涂層,在螺紋表面制備一層附著牢固、導(dǎo)熱良好而又減摩性極佳的異質(zhì)復(fù)合材料薄層,有效避免了基體間的直接接觸,極大地提高了油套管螺紋的抗粘扣性能。通過(guò)顯微組織觀察、顯微硬度測(cè)定、摩擦系數(shù)測(cè)試、實(shí)物上卸扣測(cè)試,評(píng)價(jià)MoS2/Cu/C復(fù)合涂層的顯微硬度和抗粘扣性能,并通過(guò)掃描電子顯微鏡對(duì)MoS2/Cu/C復(fù)合涂層進(jìn)行形貌分析。油套管實(shí)物在反復(fù)上卸扣測(cè)試過(guò)程中,MoS2/Cu/C復(fù)合涂層在外力作用下于鋼鐵表面形成的自修復(fù)薄層仍能完整保持,未出現(xiàn)破裂和剝落,可繼續(xù)起到潤(rùn)滑減磨的作用。
為研究不同表面處理工藝對(duì)螺紋表面性能的影響,采用不同表面處理工藝,以4145H合金鋼為基體材料加工3組測(cè)試試樣(A、B、C組)。A組試樣:采用傳統(tǒng)高溫錳系磷化工藝;B組試樣:不做前期表面噴砂處理,直接無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層,固化30 min;C組試樣:先噴砂預(yù)處理,再無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層,固化30 min。
按照表1配比制備粉體,其中Cu粉為納米級(jí),加水?dāng)嚢璩蓱覞嵋?,并靜置30 min,無(wú)沉淀。試驗(yàn)前對(duì)試件表面按金相樣制備方法進(jìn)行研磨,拋光后表面粗糙度小于1.6 μm。將試件放置在超聲波清洗器內(nèi),用丙酮清洗干凈后,放在烘干箱中烘干。
表1 MoS2/Cu/C復(fù)合涂層配比
Tab.1 Ratio of MoS2/Cu/C composite coating
1)采用EVO-15型掃描電子顯微鏡對(duì)3組試樣進(jìn)行微觀形貌分析,觀察涂層的孔隙、晶粒、均勻度和表面結(jié)構(gòu),并測(cè)量涂層厚度。
2)采用HT-1000型高溫摩擦磨損實(shí)驗(yàn)機(jī)進(jìn)行摩擦系數(shù)檢測(cè),分別測(cè)試3組試樣在不同施加力和涂抹螺紋脂下的摩擦力系數(shù)。
3)采用R574洛氏硬度實(shí)驗(yàn)機(jī),參照GB/T 6739—2006《色漆和清漆鉛筆法測(cè)定漆膜硬度》測(cè)試復(fù)合涂層的洛氏硬度。
4)參照API RP 5C5上卸扣操作流程,通過(guò)實(shí)物試樣上卸扣試驗(yàn)系統(tǒng)對(duì)表面處理之后的螺紋進(jìn)行上卸扣試驗(yàn),測(cè)試其扭矩,并觀察螺紋是否出現(xiàn)咬傷、撕裂、劃傷等粘扣現(xiàn)象[16]。
5)現(xiàn)場(chǎng)應(yīng)用測(cè)試新型套管的下入順暢性、螺紋抗粘扣性能,以及是否符合作業(yè)要求和業(yè)主認(rèn)可。
對(duì)不同表面處理工藝下的試樣表面進(jìn)行掃描電鏡觀察,3種試樣表面形貌結(jié)果如圖1所示。由圖1a可知,經(jīng)高溫錳系磷化工藝處理的試樣,表面均是錳酸鹽結(jié)晶,熔滴堆疊緊密,但有明顯的孔隙存在,晶粒粗大,孔隙較多。由圖1b可知,未噴砂MoS2/Cu/C復(fù)合涂層試樣,表面發(fā)黑,存在孔隙較少,裂紋明顯。由圖1c可知,噴砂MoS2/Cu/C復(fù)合涂層試樣,表面發(fā)黑,存在孔隙最少,覆蓋均勻、完全,孔隙率小。噴砂預(yù)處理可大幅增加涂層的表面粗糙度,從而增加涂層與基體的接觸面積,提高粘結(jié)強(qiáng)度和附著力。因此,在石油管螺紋表面采用無(wú)氣噴涂+高溫固化得到的MoS2/Cu/C復(fù)合涂層,經(jīng)噴砂預(yù)處理,可以明顯提高涂層的均勻度,增加粘結(jié)強(qiáng)度[17-20]。噴砂處理的MoS2/Cu/C復(fù)合涂層是本文研究的重點(diǎn)。
對(duì)噴砂預(yù)處理的MoS2/Cu/C復(fù)合涂層截面進(jìn)行微觀分析,如圖2所示。涂層厚度為176.2 μm,涂層截面呈致密的層狀結(jié)構(gòu),說(shuō)明在無(wú)氣噴涂+高溫固化過(guò)程中,半熔融粉末經(jīng)過(guò)多次疊加,每次都是以極高的速度(≥700 m/s)沉積形成致密的結(jié)構(gòu)。同時(shí),通過(guò)半熔融粉末的高速沉積以及基材表面的噴砂處理,使得涂層與基體之間呈鋸齒形緊密結(jié)合,如圖3所示。涂層與基體為機(jī)械結(jié)合,涂層致密,未見(jiàn)明顯孔隙[21]。
首先,使用HT-1000型高溫摩擦磨損實(shí)驗(yàn)機(jī)對(duì)A、B、C試樣進(jìn)行摩擦系數(shù)檢測(cè)[22]。在室內(nèi)25 ℃,施加5 N的力,得到3種試樣的摩擦系數(shù)曲線,如圖4所示,平均摩擦系數(shù)見(jiàn)表2。由圖4和表2可知,A試樣的摩擦系數(shù)最大,B試樣次之,C試樣的摩擦系數(shù)最小。下文將著重針對(duì)C試樣開(kāi)展研究和分析。
使用HT-1000型高溫摩擦磨損實(shí)驗(yàn)機(jī)對(duì)噴砂無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層C試樣在有/無(wú)螺紋脂的情況下進(jìn)行摩擦系數(shù)檢測(cè),在室內(nèi)25 ℃,分別施加3、6、10 N的力,得到的摩擦系數(shù)曲線如圖5所示。平均摩擦系數(shù)見(jiàn)表3。
圖1 不同表面處理工藝涂層的SEM表面形貌
圖2 噴砂無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層的表面SEM形貌
圖3 噴砂無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層結(jié)合部位的表面SEM形貌
圖4 A/B/C試樣在5 N下的摩擦系數(shù)檢測(cè)曲線
表2 A/B/C試樣在5 N力下的平均摩擦系數(shù)
Tab.2 Average friction coefficient of A/B/C specimen under 5 N force
圖5 噴砂無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層試樣摩擦系數(shù)檢測(cè)曲線
表3 噴砂無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層試樣平均摩擦系數(shù)
Tab.3 Average friction coefficient of sandblasted airless sprayed MoS2/Cu/C composite
由圖5和表3可知,噴砂無(wú)氣噴涂MoS2/Cu/ C復(fù)合涂層試樣在進(jìn)行摩擦系數(shù)測(cè)試時(shí),未涂抹螺紋脂的試樣,摩擦系數(shù)較小,而涂抹螺紋脂的試樣,摩擦系數(shù)相對(duì)較大。這是因?yàn)槟壳霸谑凸苤菁y連接時(shí),常用的抗粘扣螺紋脂是添加銅顆粒的,由于銅顆粒較大,增加了接觸面的粗糙度,因而相對(duì)摩擦系數(shù)較大。對(duì)于施加3 N力且涂抹螺紋脂的試樣,螺紋脂中的銅顆粒先破壞了復(fù)合涂層,使摩擦系數(shù)增大,但隨后復(fù)合涂層進(jìn)行了自修復(fù),摩擦系數(shù)減小,但一直大于未涂抹螺紋脂的試樣。因此,綜合考慮螺紋粘扣機(jī)理等因素,在實(shí)物試樣上卸扣試驗(yàn)時(shí),可以不涂抹螺紋脂[23-27],旨在降低螺紋表面粗糙度,減少上卸扣時(shí)的摩擦熱量,從而降低粘扣風(fēng)險(xiǎn)。下文將針對(duì)未涂抹螺紋脂但噴砂處理的MoS2/Cu/C復(fù)合涂層開(kāi)展研究和分析。
使用R574洛氏硬度實(shí)驗(yàn)機(jī)對(duì)無(wú)氣噴涂+高溫固化前油管環(huán)形試樣基體、噴砂無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層試樣基體分別進(jìn)行硬度測(cè)試,檢測(cè)位置見(jiàn)圖6,試驗(yàn)結(jié)果見(jiàn)表4。結(jié)果顯示,噴砂無(wú)氣噴涂前后,基體的硬度值未發(fā)生明顯改變,說(shuō)明該工藝對(duì)金屬基體未造成不利影響。
圖6 硬度檢測(cè)位置
表4 洛氏硬度試驗(yàn)結(jié)果(HRC)
Tab.4 Rockwell hardness testing results (HRC)
2.4.1 套管上卸扣試驗(yàn)
以177.8 mm×9.19 mm P110 BTC套管為例,準(zhǔn)備2組試樣,其中1#試樣進(jìn)行常規(guī)磷化處理[28],2#試樣內(nèi)外螺紋噴砂后無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層。設(shè)置扭矩為10 914、14 800、18 507 N·m,試驗(yàn)步驟及方法按照API RP 5C5上卸扣試驗(yàn)過(guò)程[29-30],上卸扣3次,均未發(fā)生粘扣現(xiàn)象,試驗(yàn)結(jié)果如圖7所示。
由圖7可知,磷化和無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層后的P110 LTC套管上扣時(shí),起始扭矩圈數(shù)基本相同,但無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層試樣提前0.305圈(折合0.97 mm)達(dá)到15 000 N·m。對(duì)應(yīng)相等值(擰接后管端到接箍中心的理論長(zhǎng)度)條件下,扭矩下降約19.9%。
圖7 ?177.8 mm×9.19 mm P110 BTC套管扭矩/圈數(shù)對(duì)比
2.4.2 鉆桿上卸扣試驗(yàn)
以3-1/2″NC38 G105鉆桿為例進(jìn)行試驗(yàn),內(nèi)外螺紋噴砂,再無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層,進(jìn)行100次上卸扣試驗(yàn),試驗(yàn)數(shù)據(jù)見(jiàn)表5,試驗(yàn)結(jié)果如圖8所示。由表5和圖8可知,3-1/2″NC38 G105鉆桿經(jīng)100次上卸扣試驗(yàn)后,內(nèi)外螺紋表面完好,未出現(xiàn)咬傷、撕裂、劃傷等粘扣現(xiàn)象,而且肩負(fù)扭矩未發(fā)生明顯變化,滿足現(xiàn)場(chǎng)鉆桿多次循環(huán)作業(yè)的使用要求。
表5 4.3-1/2″NC38 G105鉆桿上卸扣參數(shù)
Tab.5 3-1/2″NC38 G105 Drill pipe make-up and screw off parameters
基于無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層177.8 mm× 9.19 mm、鋼級(jí)N80Q BTC套管,先后在海上油氣田應(yīng)用10余井次,其中X1井均為難度較大的水平井,設(shè)計(jì)井深達(dá)3 350.78 m,水平段長(zhǎng)950 m,最大井斜90°,套管順利下入無(wú)遇阻現(xiàn)象,并被送至目的層位。整個(gè)下入過(guò)程扭矩曲線平滑,未發(fā)現(xiàn)粘扣現(xiàn)象,螺紋參數(shù)良好,受到了業(yè)主及現(xiàn)場(chǎng)監(jiān)督的認(rèn)可和好評(píng)。
1)對(duì)螺紋表面噴砂處理,無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層,可有效增強(qiáng)復(fù)合涂層的粘結(jié)強(qiáng)度,且摩擦系數(shù)較小,大幅降低上卸扣摩阻。實(shí)物上卸扣試驗(yàn)過(guò)程中,內(nèi)外螺紋表面完好,未出現(xiàn)粘扣,且上扣過(guò)程扭矩曲線平滑,螺紋參數(shù)良好。
2)新型無(wú)污染的無(wú)氣噴涂表面處理工藝可用于制備MoS2/Cu/C復(fù)合涂層,能顯著提高海上油套管螺紋的抗粘扣性能。該方法具有操作簡(jiǎn)便、成本低、環(huán)保等優(yōu)點(diǎn),可為海上油氣安全、高效、環(huán)保開(kāi)采提供技術(shù)保障。
3)無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層用于提高海上管柱抗粘扣性能是無(wú)氣噴涂表面處理工藝在海上油氣田的一次成功應(yīng)用與實(shí)踐,對(duì)于其他領(lǐng)域具有極大的借鑒意義和應(yīng)用推廣價(jià)值。
[1] 殷啟帥, 楊進(jìn), 施山山, 等. 南海東部某油田隔水導(dǎo)管腐蝕失效分析[J]. 表面技術(shù), 2018, 47(11): 134-141.
YIN Qi-shuai, YANG Jin, SHI Shan-shan, et al. Corrosion Failure Analysis of Conductor in Eastern Oilfield in the South China Sea[J]. Surface Technology, 2018, 47(11): 134-141.
[2] 殷啟帥, 楊進(jìn), 楊宇平, 等. 海上油田注水開(kāi)采中H2S成因及油管腐蝕分析[J]. 表面技術(shù), 2017, 46(9): 171-178.
YIN Qi-shuai, YANG Jin, YANG Yu-ping, et al. Origin of H2S and Corrosion Analysis of Tubing in Offshore Oil-field Flooding[J]. Surface Technology, 2017, 46(9): 171- 178.
[3] 蘇文瑛, 武振鵬, 朱繪麗, 等. 鉆鋌螺紋加工工藝的研究[J]. 煤礦機(jī)械, 2021, 42(2): 100-103.
SU Wen-ying, WU Zhen-peng, ZHU Hui-li, et al. Rese-arch on Processing Technology of Drill Collar Thread[J]. Coal Mine Machinery, 2021, 42(2): 100-103.
[4] 張毅, 陳建初, 陳甦. 使用液壓鉗對(duì)油管粘扣的影響分析[J]. 石油機(jī)械, 2002, 30(11): 4-7.
ZHANG Yi, CHEN Jian-chu, CHEN Su. Influence of Using Hydraulic Tongs on Thread Gluing of Tubing[J]. China Petroleum Machinery, 2002, 30(11): 4-7.
[5] 黃志潛, 李平全, 劉天民, 等.石油工業(yè)發(fā)展對(duì)油套管和管線管的要求與對(duì)策[J]. 石油專用管, 1998(4): 1-10.
HUANG Zhi-qian, LI Ping-quan, LIU Tian-min, et al. Requirements and Countermeasures for Oil Casing and Line Pipe in the Development of Petroleum Industry[J]. Petroleum Special Pipe, 1998(4): 1-10.
[6] 王丹凈, 李景魁, 孫偉. 框架結(jié)構(gòu)用螺紋鋼磷化處理及耐蝕性研究[J]. 電鍍與精飾, 2021, 43(6): 15-19.
WANG Dan-jing, LI Jing-kui, SUN Wei. Study on Phos-phating Treatment and Corrosion Resistance of Screw-Thread Steel Used in Frame Structure[J]. Plating and Finishing, 2021, 43(6): 15-19.
[7] 許瑾璐. 框架結(jié)構(gòu)用螺紋鋼中溫鋅錳系磷化及封閉處理[J]. 兵器材料科學(xué)與工程, 2021, 44(6): 15-20.
XU Jin-lu. Medium-Temperature Zinc-Manganese Phos-pha-ting of Screw-Thread Steel for Frame Structure and Sealing Treatment[J]. Ordnance Material Science and Engi-neering, 2021, 44(6): 15-20.
[8] 段正勇, 彭勇, 王輝鋒. 石油鉆鋌接頭螺紋磷化處理裝置研究[J]. 石油礦場(chǎng)機(jī)械, 2014, 43(7): 62-66.
DUAN Zheng-yong, PENG Yong, WANG Hui-feng. Study on Phosphating Device Applied to Oil Drill Collar Coupling Screw Thread[J]. Oil Field Equipment, 2014, 43(7): 62-66.
[9] 王少蘭, 費(fèi)敬銀, 駱立立, 等. 石油鉆具螺紋防粘扣技術(shù)及應(yīng)用[J]. 電鍍與精飾, 2014, 36(1): 18-22.
WANG Shao-lan, FEI Jing-yin, LUO Li-li, et al. Anti- Galling Brush Plating Technology for Oil Drill Thread and Its Application[J]. Plating & Finishing, 2014, 36(1): 18-22.
[10] 何體財(cái). 石油鉆具螺紋應(yīng)力分析與減摩涂料的開(kāi)發(fā)[D]. 西安: 西安科技大學(xué), 2019.
HE Ti-cai. Analysis of Thread Stress of Oil Drill and Deve-lopment of Thread Reduction Coating[D]. Xi'an: Xi'an University of Science and Technology, 2019.
[11] 劉強(qiáng), 范曉東, 宋生印, 等. 鈦合金油管表面抗粘扣處理工藝研究[J]. 石油管材與儀器, 2017, 3(4): 26-31.
LIU Qiang, FAN Xiao-dong, SONG Sheng-yin, et al. Rese-arch on Process of Thread Gluing Resistance for Titanium Alloy Tubing Surface[J]. Petroleum Tubular Goods & Instruments, 2017, 3(4): 26-31.
[12] 楊云, 史彬, 趙世龍, 等. 特殊螺紋套管接頭納米銅干式涂層的制備及性能研究[J]. 潤(rùn)滑與密封, 2015, 40(12): 90-94.
YANG Yun, SHI Bin, ZHAO Shi-long, et al. Preparation and Properties of Nano-Copper Dry Lubrication Coating of Premium Connection for Casing[J]. Lubrication Engineering, 2015, 40(12): 90-94.
[13] 孟昭, 楊云, 趙世龍, 等. 納米銅/PTFE復(fù)合納米減摩涂料在石油專用管材上的應(yīng)用[J]. 潤(rùn)滑與密封, 2014, 39(7): 93-97.
MENG Zhao, YANG Yun, ZHAO Shi-long, et al. Appli-cation of Composite Nano-Copper/PTFE Friction Redu-cing Coating in Oil Country Tubular Goods[J]. Lubri-ca-tion Engineering, 2014, 39(7): 93-97.
[14] 劉媛媛, 王萌, 姜立勇, 等. 高壓無(wú)氣噴涂在工程機(jī)械制造業(yè)中的應(yīng)用探討[J]. 現(xiàn)代涂料與涂裝, 2013, 16(7): 52-53.
LIU Yuan-yuan, WANG Meng, JIANG Li-yong, et al. Dis-cussion on Application of High Pressure Airless Spraying Used in Construction Machinery Manufacturing Industry[J]. Modern Paint & Finishing, 2013, 16(7): 52- 53.
[15] 孫禹, 趙民, 夏海渤, 等. 用于高壓無(wú)氣噴涂原子灰的扇形噴嘴內(nèi)部流場(chǎng)的數(shù)值仿真[J]. 大連交通大學(xué)學(xué)報(bào), 2018, 39(4): 42-46.
SUN Yu, ZHAO Min, XIA Hai-bo, et al. Numerical Simulation of Internal Flow Field of Fan-Shaped Nozzle Used for High-Pressure Airless Spraying Putty[J]. Journal of Dalian Jiaotong University, 2018, 39(4): 42-46.
[16] 朱祿發(fā), 龍劍平, 劉二勇, 等. 等離子噴涂Al2O3- 13%TiO2涂層的海水腐蝕磨損性能[J]. 中國(guó)表面工程, 2015, 28(6): 96-103.
ZHU Lu-fa, LONG Jian-ping, LIU Er-yong, et al. Tribo-co-rrosion Behavior of Plasma Sprayed Al2O3-13%TiO2Coatings in Seawater[J]. China Surface Engineering, 2015, 28(6): 96-103.
[17] 張繼豪, 宋凱強(qiáng), 張敏, 等. 高性能陶瓷涂層及其制備工藝發(fā)展趨勢(shì)[J]. 表面技術(shù), 2017, 46(12): 96-103.
ZHANG Ji-hao, SONG Kai-qiang, ZHANG Min, et al. Development Trend of High Performance Ceramic Coa-tings and Preparation Technologies[J]. Surface Techno-logy, 2017, 46(12): 96-103.
[18] 楊宏波, 劉朝輝, 丁逸棟, 等. 熱化學(xué)反應(yīng)法制備Al2O3-13%TiO2陶瓷涂層及其性能研究[J]. 表面技術(shù), 2017, 46(9): 215-222.
YANG Hong-bo, LIU Zhao-hui, DING Yi-dong, et al. Preparation of Al2O3-13%TiO2Ceramic Coating in the Method of Thermo-Chemical Reaction and Its Proper-ties[J]. Surface Technology, 2017, 46(9): 215-222.
[19] 石緒忠, 許康威, 武笑宇. 等離子噴涂納米氧化鋁鈦涂層機(jī)械性能研究[J]. 表面技術(shù), 2018, 47(4): 96-101.
SHI Xu-zhong, XU Kang-wei, WU Xiao-yu. Mechanical Behavior of Plasma Sprayed Nano-Al2O3/TiO2Coatings [J]. Surface Technology, 2018, 47(4): 96-101.
[20] 劉美淋, 孫宏飛, 于惠博, 等. 降低熱噴涂涂層孔隙率的方法[J]. 腐蝕與防護(hù), 2007, 28(4): 171-173.
LIU Mei-lin, SUN Hong-fei, YU Hui-bo, et al. A Method to Decrease the Porosity of Thermal Spray Coating[J]. Corrosion & Protection, 2007, 28(4): 171-173.
[21] 李水清, 糜亮, 丁毅, 等. Ni對(duì)Cr2O3涂層孔隙率及耐蝕性的影響[J]. 表面技術(shù), 2011, 40(3): 8-10.
LI Shui-qing, MI Liang, DING Yi, et al. The Effect of Ni-ckle on Porosity and Corrosion Resistance of Chro-mium Oxide Coating[J]. Surface Technology, 2011, 40(3): 8-10.
[22] 楊云, 孟昭, 王晰, 等. 復(fù)合納米抗粘扣涂層在油管上的應(yīng)用[J]. 材料保護(hù), 2016, 49(9): 64-68.
YANG Yun, MENG Zhao, WANG Xi, et al. Application of Nano-Composite Anti-Galling Coating on Tubing[J]. Materials Protection, 2016, 49(9): 64-68.
[23] 賈碧, 潘復(fù)生, 陳春江, 等. Al2O3對(duì)等離子噴涂Cr2O3/TiO2/Al2O3/SiO2復(fù)合陶瓷涂層性能影響研究[J]. 表面技術(shù), 2020, 49(8): 55-62.
JIA Bi, PAN Fu-sheng, CHEN Chun-jiang, et al. Effect of Al2O3on Properties of Plasma Sprayed Cr2O3/TiO2/Al2O3/ SiO2Composite Ceramic Coating[J]. Surface Technology, 2020, 49(8): 55-62.
[24] 鄭志剛, 劉敏, 鄧春明. 等離子噴涂Al2O3涂層/GCr15干摩擦磨損性能研究[J]. 材料研究與應(yīng)用, 2009, 3(1): 55-59.
ZHENG Zhi-gang, LIU Min, DENG Chun-ming. Dry Wear Behavior of Plasma Sprayed Alumina Coating Aga-inst GCr15[J]. Materials Research and Application, 2009, 3(1): 55-59.
[25] 楊媛, 王婷婷, 朱定一, 等. Au-30%Si合金熔體與石墨的潤(rùn)濕性及鋪展動(dòng)力學(xué)[J]. 中國(guó)有色金屬學(xué)報(bào), 2016, 26(6): 1175-1181.
YANG Yuan, WANG Ting-ting, ZHU Ding-yi, et al. Wet-ta-bility and Spreading Dynamics of Melting Au-30%Si Alloys with Graphite[J]. The Chinese Journal of Non-fer-rous Metals, 2016, 26(6): 1175-1181.
[26] 呂玥, 殷勇高. 填料表面參數(shù)對(duì)LiCl溶液降膜潤(rùn)濕性的影響[J]. 東南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 50(5): 889-895.
Lü Yue, YIN Yong-gao. Effects of Filler Surface Condi-tions on Falling-Film Plate Wettability Using LiCl- H2O[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(5): 889-895.
[27] 李振鐸, 吳朝軍, 曾克里, 等. 等離子噴涂納米結(jié)構(gòu)Cr2O3/5SiO2/3TiO2涂層性能研究[J]. 有色金屬, 2007(1): 72-74.
LI Zhen-duo, WU Chao-jun, ZENG Ke-li, et al. Study on Pro-perties of Plasma Sprayed Nanostructured Cr2O3/5SiO2/ 3TiO2Coating[J]. Nonferrous Metals, 2007(1): 72-74.
[28] 趙世龍, 孟昭, 楊丁門(mén), 等. 納米銅/PTFE復(fù)合納米減摩涂料在P110套管上的應(yīng)用[J]. 潤(rùn)滑與密封, 2016, 41(8): 92-96.
ZHAO Shi-long, MENG Zhao, YANG Ding-men, et al. Application of Composite Nano-Copper/PTFE Friction Reducing Coating on P110 Casing[J]. Lubrication Engi-neering, 2016, 41(8): 92-96.
[29] 李振坤, 殷啟帥, 李鐵, 等. 中短半徑側(cè)鉆井新型套管螺紋設(shè)計(jì)及應(yīng)用[J]. 石油機(jī)械, 2019, 47(8): 140-144.
LI Zhen-kun, YIN Qi-shuai, LI Tie, et al. Design and Application of a New Type of Casing Thread for Medium and Short Radius Sidetracking Well[J]. China Petroleum Machinery, 2019, 47(8): 140-144.
[30] YIN Qi-shuai, YANG Jin, XIU Hai-mei, et al. Material Qualification of a 13Cr-L80 Casing for Sour Condi-tions[J]. Materials Testing, 2019, 61(9): 833-841.
Effect of Airless Spray MoS2/Cu/C Composite Coating on Buckle-resistant Performance of Offshore Pipe String Threads
1,1,2,3,3,4,1
(1.China University of Petroleum (Beijing), Beijing 102249, China; 2. Engineering Technology Branch of CNOOC Energy Development Co., Ltd., Tianjin 300452, China; 3. CNOOC Enertech Equipment Technology Co., Ltd., Tianjin 300452, China; 4. ZS Titanium Co., Ltd., Liaoning Dandong 118002, China)
Threaded pipes deliver offshore oil or gas under high pressure. Thus, threaded connections must be gas or liquid tight in the severe offshore environment. Uneven force or deformation on the surface of the thread tooth will cause galling and even lead to thread failure. Galling is the key that affects the safety and life of the pipe strings and restricts the quality and efficiency of offshore drilling and well completions. In addition, environmental protection has become the primary concern in recent years. This paper aims to innovatively prepare MoS2/Cu/C composite coatings using a non-polluting airless spray coating technology to improve the anti-galling performance of the threads of the offshore pipe strings. MoS2/C coating is a well-known solid lubricant that can reduce drag. Further, nano-scale Cu powder has good thermal conductivity. The prepared MoS2/Cu/C composite coatings provide a thin layer of heterogeneous composite materials with good thermal conductivity, and excellent friction reduction on the thread surface of the offshore pipe strings. The MoS2/Cu/C composite coatings are prepared by doping MoS2/C coating with nano-scale Cu powder and adopting airless spraying and high-temperature curing. Properties of the composite coatings, including microstructure, microhardness, and friction coefficient, are evaluated first. Then, the morphology of the prepared MoS2/Cu/C composite coatings is analyzed by scanning electron microscopy. Finally, make-up and breakout tests are conducted on the pipe string samples with the prepared MoS2/Cu/C composite coatings to test their anti-galling performance. As a result, the semi-molten powder is superimposed and deposited multiple times during airless spraying and high-temperature curing, forming a dense structure without apparent pores. Besides, sandblasting pretreatment of MoS2/Cu/C composite coatings significantly improved the uniformity and adhesive strength of the coatings. Moreover, the coatings and the metal substrate are tightly combined in a zigzag shape. The hardness of the metal substrate does not change before and after sandblasting and airless spraying. The MoS2/Cu/C composite coatings formed a smooth protective film on the thread surface and had no detrimental effect on the metal substrate. The friction coefficient of the thread surface is reduced. The make-up torque is reduced by 19% to 23%. In conclusion, doping nano-scale Cu powder in MoS2/C coating to form MoS2/Cu/C composite coatings effectively reduce the friction coefficient of the thread surface without reducing the strength of the metal substrate. The MoS2/Cu/C composite coatings obtained by airless spraying and high-temperature curing can effectively improve the anti-galling performance of the threads of the offshore pipe strings. Pipe strings with the prepared MoS2/Cu/C composite coatings have been successfully applied to offshore drilling and well completions. The prepared MoS2/Cu/C composite coatings turn out to prolong the life of the pipe strings and enhance the efficiency of offshore drilling and well completions, saving a substantial amount of money for the oil and gas industry. Overall, the technology presented in this paper has excellent reference significance and is recommended for offshore drilling and well completions.
MoS2/Cu/C; composite coatings; airless spraying; thread; anti-galling; drill string; tubing and casing; offshore drilling and completion
TG115.5+8;TE921
A
1001-3660(2022)05-0024-08
10.16490/j.cnki.issn.1001-3660.2022.05.003
2022–03–07;
2022–04–25
2022-03-07;
2022-04-25
“十三五”國(guó)家科技重大專項(xiàng)(2017ZX05032-004);中海油能源發(fā)展裝備技術(shù)有限公司項(xiàng)目(ZX2021ZCZBF5808);國(guó)家自然科學(xué)基金青年基金項(xiàng)目(52101340);海南省科技專項(xiàng)資助(ZDKJ2021026);博士后創(chuàng)新人才支持計(jì)劃項(xiàng)目(BX2021372);博士后科學(xué)基金面上項(xiàng)目(2021M693495);中國(guó)石油大學(xué)(北京)科研基金項(xiàng)目(2462021BJRC008,2462022YXZZ001)
The 13th Five-Year National Science and Technology Major Project of the Ministry of Science and Technology of China (2017ZX05032-004);CNOOC Science and Technology Project (ZX2021ZCZBF5808); Youth Fund Project of National Natural Science Foundation of China (52101340); Hainan Province Science and Technology Special Fund (ZDKJ2021026); China Postdoctoral Innovation Talent Support Project (BX2021372); China Postdoctoral Science Foundation (2021M693495); Science Foundation of China University of Petroleum, Beijing (2462021BJRC008, 2462022YXZZ001)
殷啟帥(1991—),男,博士,講師,主要研究方向?yàn)榘踩こ獭⒑Q笥蜌夤こ?、海上油田腐蝕與防護(hù)。
YIN Qi-shuai (1991-), Male, Doctor, Lecturer, Research focus: safety engineering, offshore oil and gas engineering, corrosion and protection of offshore oilfield.
楊進(jìn)(1966—),男,博士,教授,主要研究方向?yàn)楹Q筱@完井、海洋油氣工程。
YANG Jin (1966-), Male, Doctor, Professor, Research focus: drilling and completion of offshore oilfield, offshore oil and gas engineering.
殷啟帥, 楊進(jìn), 李振坤, 等. 無(wú)氣噴涂MoS2/Cu/C復(fù)合涂層對(duì)海上管柱螺紋抗粘扣性能的影響[J]. 表面技術(shù), 2022, 51(5): 24-31.
YIN Qi-shuai, YANG Jin, LI Zhen-kun, et al. Effect of Airless Spray MoS2/Cu/C Composite Coating on Buckle-resistant Performance of Offshore Pipe String Threads[J]. Surface Technology, 2022, 51(5): 24-31.
責(zé)任編輯:劉世忠