閆樂(lè)樂(lè),卜璐璐,牛良,曾文芳,魯振華,崔國(guó)朝,苗玉樂(lè),潘磊,王志強(qiáng)
廣泛靶向代謝組學(xué)解析桃蚜危害對(duì)桃樹(shù)次生代謝產(chǎn)物的影響
閆樂(lè)樂(lè),卜璐璐,牛良,曾文芳,魯振華,崔國(guó)朝,苗玉樂(lè),潘磊*,王志強(qiáng)*
中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹(shù)研究所,鄭州 450009
【目的】闡明桃蚜()危害條件下桃樹(shù)抗蚜和感蚜品種的代謝響應(yīng)機(jī)制,并確定桃樹(shù)響應(yīng)桃蚜危害過(guò)程中起關(guān)鍵作用的次生代謝產(chǎn)物?!痉椒ā坎捎每寡梁透醒撂覙?shù)幼嫩新梢進(jìn)行桃蚜危害處理,取接種3 d的桃樹(shù)新梢進(jìn)行次生代謝產(chǎn)物提取,并利用超高效液相色譜串聯(lián)質(zhì)譜(UPLC-MS/MS)對(duì)抗蚜品種(品系)‘96-5-1’(9651)和棗油桃(ZYT),感蚜品種中油13號(hào)(CN13)和中農(nóng)金輝(ZNJH)進(jìn)行廣泛靶向代謝組分析,以|log2fold change|≥1,-value≤0.01作為篩選差異代謝物(differentially altered metabolite,DAM)的閾值。采用OPLS-DA模型的VIP值表示抗蚜和感蚜品種之間的差異?!窘Y(jié)果】對(duì)桃蚜危害3 d后的處理取樣,處理后的樣品進(jìn)行廣泛靶向代謝組學(xué)分析,全部樣品中共鑒定出528種代謝物。通過(guò)主成分分析(PCA)、層次聚類分析(HCA)和維恩圖分析,發(fā)現(xiàn)感蚜品種中油13號(hào)被桃蚜危害后的差異代謝物總數(shù)為7種,有2種含量下降,5種含量上升;中農(nóng)金輝被桃蚜危害后的差異代謝物總數(shù)為7種,有3種含量下降,4種含量上升??寡疗贩N‘96-5-1’被桃蚜危害后的差異代謝物總數(shù)為33種,有1種含量下降,32種含量上升;棗油桃被桃蚜危害后的差異代謝物總數(shù)為55種,有12種含量下降,43種含量上升。大多數(shù)差異代謝物來(lái)自兩個(gè)抗蚜品種,并且抗蚜品種中差異代謝物的變化幅度比感蚜品種更大。經(jīng)過(guò)分析獲得的15種次生代謝產(chǎn)物(6種氨基酸及其衍生物、5種酚酸、3種核苷酸及其衍生物、1種有機(jī)酸)可能與壽星桃來(lái)源的桃蚜抗性相關(guān)?!窘Y(jié)論】抗蚜品種在桃蚜危害后顯著上調(diào)的次生代謝產(chǎn)物可能參與桃樹(shù)對(duì)桃蚜的抗性反應(yīng)過(guò)程,這些次生代謝產(chǎn)物(氨基酸及其衍生物、酚酸類物質(zhì)、核苷酸及其衍生物和有機(jī)酸)的調(diào)控是桃樹(shù)抵抗桃蚜危害的重要機(jī)制。
桃樹(shù);桃蚜;抗性;代謝組學(xué);次生代謝產(chǎn)物;超高效液相色譜串聯(lián)質(zhì)譜
【研究意義】桃蚜()是春季危害桃樹(shù)最嚴(yán)重的害蟲(chóng),通常以若蟲(chóng)、成蟲(chóng)群集于桃樹(shù)新梢幼嫩葉片背面,通過(guò)刺吸式口器刺吸樹(shù)體汁液,導(dǎo)致葉片卷曲。此外,桃蚜分泌的蜜露還會(huì)污染葉片,易誘發(fā)煤污病,影響樹(shù)體正常生長(zhǎng)及光合作用,進(jìn)而影響桃果實(shí)的產(chǎn)量和品質(zhì),嚴(yán)重時(shí)還會(huì)導(dǎo)致桃樹(shù)枯死[1]。目前,蚜蟲(chóng)防治主要依靠噴施農(nóng)藥,所需勞動(dòng)力和經(jīng)濟(jì)成本較高,長(zhǎng)期使用還會(huì)誘導(dǎo)桃蚜產(chǎn)生對(duì)農(nóng)藥的抗性,且有益昆蟲(chóng)也會(huì)受到負(fù)面影響[2]。發(fā)掘鑒定桃抗蚜資源并對(duì)其抗性機(jī)制進(jìn)行研究,將有助于培育桃蚜抗性品種,并從根本上解決桃樹(shù)蚜蟲(chóng)危害問(wèn)題。研究桃樹(shù)抗蚜品種在桃蚜取食過(guò)程中取食部位次生代謝產(chǎn)物的變化情況,是探索桃樹(shù)桃蚜抗性機(jī)制形成的重要途徑?!厩叭搜芯窟M(jìn)展】目前,國(guó)內(nèi)外已報(bào)道了多類桃屬抗蚜資源。法國(guó)農(nóng)業(yè)科學(xué)研究院(INRA)的研究人員先后報(bào)道了來(lái)源于桃砧木品種Rubira、垂枝花桃(weeping flower peach,WFP)和山桃P1908等為主的桃抗蚜資源[3-5],其中WFP和Rubira的桃蚜抗性為顯性單基因調(diào)控,其抗性位點(diǎn)被命名為和[6-7]。國(guó)內(nèi)中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹(shù)研究所王力榮等[8]對(duì)桃屬植物5個(gè)種419份資源進(jìn)行了桃蚜抗性鑒定,并篩選出壽星桃、山桃和碧桃3類抗蚜資源。牛良等[9]對(duì)壽星桃類抗蚜材料‘粉壽星’來(lái)源的遺傳群體抗性分析發(fā)現(xiàn),‘粉壽星’對(duì)桃蚜的抗性為顯性單基因控制,而后將該調(diào)控位點(diǎn)命名為[10]。張南南等[11]將壽星桃抗性調(diào)控位點(diǎn)定位到第1號(hào)染色體末端區(qū)域。Po?ssel等[12]通過(guò)代謝組分析發(fā)現(xiàn)Rubira中的抗蚜性可能與酚類化合物二咖啡酰奎寧酸的積累相關(guān)。NIU等[10]對(duì)桃蚜危害前后桃樹(shù)抗蚜品種的轉(zhuǎn)錄組分析發(fā)現(xiàn),壽星桃類抗性品種在桃蚜危害之后,苯丙烷、類黃酮、芥子油苷、木脂素、生物堿和萜類等次生代謝產(chǎn)物合成路徑基因的表達(dá)水平顯著激活。眾多研究表明,多類次生代謝產(chǎn)物在植物防御害蟲(chóng)危害過(guò)程中發(fā)揮關(guān)鍵作用,這些存在于植物中的次生代謝產(chǎn)物會(huì)對(duì)害蟲(chóng)起到阻止取食甚至導(dǎo)致死亡的作用[13-14]。Applebaum等[15]最早提出皂甙類化合物在植物害蟲(chóng)防御過(guò)程中的重要作用。目前,已有大量研究確認(rèn)植物中的皂甙類物質(zhì)如三萜類化合物對(duì)昆蟲(chóng)具有多種抗蟲(chóng)活性[16-17]?!颈狙芯壳腥朦c(diǎn)】我國(guó)擁有豐富的抗蚜資源,但是對(duì)于抗蚜機(jī)制缺乏深入研究。雖然目前對(duì)桃抗蚜基因的定位已有相關(guān)報(bào)道,但是從代謝組學(xué)的角度全面解析的研究卻鮮見(jiàn)報(bào)道。本研究通過(guò)廣泛靶向代謝組技術(shù),全面、快速地獲取桃樹(shù)抗蚜品種蚜蟲(chóng)危害后的代謝物信息,并系統(tǒng)分析代謝物差異水平和種類變化?!緮M解決的關(guān)鍵問(wèn)題】采用廣泛靶向代謝組技術(shù)對(duì)桃蚜危害后的抗蚜品種進(jìn)行研究,探明抗蚜和感蚜品種桃蚜取食前后的代謝物含量變化情況,闡釋基于次生代謝產(chǎn)物的桃樹(shù)抗蚜機(jī)制的形成過(guò)程,為桃樹(shù)桃蚜防控提供理論依據(jù)。
供試4個(gè)桃樹(shù)品種(品系),包括抗蚜品種(品系)‘96-5-1’(9651)和棗油桃(ZYT),感蚜品種中油13號(hào)(CN13)和中農(nóng)金輝(ZNJH),由中國(guó)農(nóng)業(yè)科學(xué)院鄭州果樹(shù)研究所桃育種課題組育種圃保存。
試驗(yàn)材料處理于2020年春季4月份桃蚜易發(fā)生的季節(jié)進(jìn)行,供試桃蚜采自育種圃感蚜品種自然生長(zhǎng)的健康成蟲(chóng)。試驗(yàn)組進(jìn)行桃蚜處理時(shí),選擇沒(méi)有桃蚜危害癥狀和桃蚜分布的幼嫩桃樹(shù)新梢,保證選取的試驗(yàn)材料無(wú)前期桃蚜危害,然后將15—20只桃蚜成蟲(chóng)用棉簽輕輕放在待處理的新梢頂端,每個(gè)品種(品系)處理4株桃樹(shù),作為生物學(xué)重復(fù)。4—6 h內(nèi)如發(fā)現(xiàn)蚜蟲(chóng)顯著減少,則重新補(bǔ)接蚜蟲(chóng)。經(jīng)過(guò)3 d,試驗(yàn)組和未經(jīng)桃蚜危害的對(duì)照組取新梢頂端的3片嫩葉,3—5個(gè)新梢混為一個(gè)生物學(xué)樣品,每組重復(fù)4次,采樣后于-80℃下保存并在30 d內(nèi)完成代謝組測(cè)試。
1.2.1 樣品預(yù)處理 將從各品種(品系)上收集的樣品放置于凍干機(jī)(Scientz-100F)中真空冷凍干燥;用研磨儀(MM 400,Retsch)以30 Hz頻率研磨1.5 min,將樣品研磨成粉末;稱取100 mg的樣品粉末,溶于0.6 ml 70%甲醇提取液中;溶解的樣品儲(chǔ)存于4℃冰箱中過(guò)夜,其間渦旋6次以提高提取率;然后,樣品在離心機(jī)中10 000×離心10 min,并吸取上清液。用0.22 μm微孔濾膜過(guò)濾樣品,并儲(chǔ)存在進(jìn)樣瓶中,以便用于超高效液相色譜串聯(lián)質(zhì)譜(UPLC-MS/MS)分析。
1.2.2 UPLC和MS/MS分析條件 UPLC采用的色譜柱為Agilent SB-C18 1.8 μm(2.1 mm×100 mm),采用的流動(dòng)相分為兩種,A相為超純水(加入0.1%的甲酸),B相為乙腈。洗脫梯度:0—9 min,B相比例從5%升至95%;9—10 min,B相比例保持95%;10—11 min,B相比例從95%降至5%;并以5%保持至14 min;流速0.35 ml·min-1;期間柱溫為40℃;進(jìn)樣量為4 μl。
質(zhì)譜條件主要包括:電噴霧離子源(electrospray ionization,ESI)溫度550℃,質(zhì)譜電壓5 500 V,簾氣(curtain gas,CUR)30 psi,碰撞誘導(dǎo)電離(collision-activated dissociation,CAD)參數(shù)設(shè)置為高。在三重四級(jí)桿(triple quadrupole,QQQ)中,根據(jù)優(yōu)化的去簇電壓(declustering potential,DP)和碰撞能(collision energy,CE)進(jìn)行掃描檢測(cè)每個(gè)離子對(duì)[18]。
1.2.3 數(shù)據(jù)分析 利用多元統(tǒng)計(jì)分析方法,在OPLS- DA結(jié)果基礎(chǔ)上,從獲得的多變量分析OPLS-DA模型的變量重要性投影(variable importance in projection,VIP),篩選出不同樣品間的差異代謝物(differentially altered metabolite,DAM)。然后結(jié)合單變量分析的-value值或差異倍數(shù)值(fold change,F(xiàn)C)進(jìn)一步篩選出差異代謝物。本試驗(yàn)存在生物學(xué)重復(fù),因此結(jié)合差異倍數(shù)值和OPLS-DA模型的VIP值篩選差異代謝物。篩選標(biāo)準(zhǔn):選取FC≥2和FC<0.5的代謝物。如果對(duì)照組和試驗(yàn)組中的代謝物差異在2倍以上或0.5倍以下,則認(rèn)為差異顯著。VIP值表示對(duì)應(yīng)代謝物之間的差異在模型中各組樣品分類判別中的影響強(qiáng)度,一般認(rèn)為VIP>1的代謝物具有顯著性差異。在自建數(shù)據(jù)庫(kù)MWDB(metware database)的基礎(chǔ)上,根據(jù)二級(jí)譜信息進(jìn)行代謝物定性。獲得不同樣品的代謝物質(zhì)譜分析數(shù)據(jù)后,將所有物質(zhì)質(zhì)譜峰進(jìn)行峰面積積分,并對(duì)其中不同樣品中的同一代謝物質(zhì)譜出峰進(jìn)行積分校正[19]。
經(jīng)過(guò)代謝組分析,4個(gè)桃品種(品系)中共鑒定出528種代謝物,按照這些代謝物的一級(jí)分類可以劃分為11大類,具體種類及相應(yīng)數(shù)目見(jiàn)表1。
表1 桃蚜危害前后桃新梢中檢測(cè)到的528種代謝物質(zhì)分類
為了解各組樣品之間的代謝物差異和組內(nèi)樣品之間的變異度,對(duì)樣品進(jìn)行主成分分析(PCA)[20]。其中質(zhì)控樣品mix是各測(cè)試樣品的一個(gè)混合樣品。在PCA圖中,PC1表示第一主成分,PC2表示第二主成分,百分比表示該主成分對(duì)數(shù)據(jù)集的解釋率。從圖1可看出UPLC-MS/MS分析所得原始數(shù)據(jù)在PC1、PC2兩種主成分中得到良好地呈現(xiàn)。在圖中,第一主成分的貢獻(xiàn)率為23.47%,第二主成分的貢獻(xiàn)率為14.55%,兩種主成分貢獻(xiàn)率之和為38.02%,代表兩個(gè)主成分能夠基本反映桃樹(shù)新梢樣品的主要特征信息。同組樣品在圖中聚集在一起,說(shuō)明組內(nèi)重復(fù)性好。感蚜品種中油13號(hào)和中農(nóng)金輝處理前后樣品分組在圖中聚集在一起,說(shuō)明感蚜品種在桃蚜危害處理前后的代謝成分差異變化較??;抗蚜品種棗油桃桃蚜處理前的樣品和兩個(gè)感蚜品種桃蚜處理前后樣品分組在一起,‘96-5-1’桃蚜處理前的樣品和兩個(gè)感蚜品種桃蚜處理前后樣品分組所處的位置也較近,說(shuō)明抗蚜品種與感蚜品種桃蚜處理前樣品的代謝成分差異很小,其中‘96-5-1’桃蚜處理前的樣品沒(méi)有與感蚜品種桃蚜處理前樣品完全重疊,表明本試驗(yàn)中‘96-5-1’的對(duì)照樣品可能存在部分蚜蟲(chóng)危害情況。而兩個(gè)抗蚜品種‘96-5-1’和棗油桃在桃蚜危害處理后與抗蚜品種處理前和感蚜品種處理前后的分組分開(kāi)明顯、距離最遠(yuǎn),說(shuō)明它們之間代謝成分差異較大,蚜蟲(chóng)危害處理使抗蚜品種內(nèi)的代謝物成分發(fā)生了顯著的變化。質(zhì)控樣品mix也被一起分組,表明試驗(yàn)條件是穩(wěn)定、可重復(fù)的(圖1)。
圖中每個(gè)點(diǎn)代表一個(gè)樣品,同一組的樣品使用同一種顏色,每組4個(gè)生物學(xué)重復(fù)。重復(fù)性不好的樣品,可以去掉一個(gè)樣品點(diǎn)
為了進(jìn)一步分析抗蚜和感蚜品種在桃蚜危害前后的代謝物變化情況,采用層次聚類分析(HCA)對(duì)蚜蟲(chóng)危害前后所有樣品的整體代謝物變化進(jìn)行可視化分析。整體而言,抗蚜品種‘96-5-1’和棗油桃蚜蟲(chóng)危害后的樣品與‘96-5-1’取食前的樣品聚在一起,說(shuō)明這些樣品中代謝物的表達(dá)模式一致性更高(圖2),該結(jié)果與主成分分析(圖1)得到的結(jié)果基本一致,即兩個(gè)抗蚜品種‘96-5-1’和棗油桃在桃蚜危害處理后的樣品與其他樣品(兩個(gè)感蚜品種處理前后的樣品和抗蚜品種處理前的樣品)是分開(kāi)的,其中‘96-5-1’的對(duì)照樣品可能存在部分蚜蟲(chóng)危害情況,因此與兩個(gè)抗蚜品種蚜蟲(chóng)危害后的樣品聚在一起(圖2)。
為了更加明確的展示不同品種對(duì)于桃蚜危害的代謝相應(yīng),比較了‘96-5-1’、棗油桃、中油13號(hào)和中農(nóng)金輝在桃蚜危害3 d后各自差異代謝物的數(shù)目,抗蚜品種‘96-5-1’和棗油桃在桃蚜危害后差異代謝物的數(shù)目多于感蚜品種,且差異代謝物的含量均以上調(diào)為主,‘96-5-1’和棗油桃中上調(diào)代謝物占比分別為97.0%(32/33)和78.2%(43/55);說(shuō)明抗蚜品種對(duì)于桃蚜危害的響應(yīng)要強(qiáng)于感蚜品種,顯現(xiàn)出明顯的誘導(dǎo)性抗性特征(圖3-A)。
采用維恩圖分析4個(gè)桃品種在桃蚜危害后差異代謝物的異同,共有19種代謝物在抗蚜品種‘96-5-1’和棗油桃受蚜蟲(chóng)危害前后出現(xiàn)含量的變化,其中15種代謝產(chǎn)物含量的變化是在兩個(gè)抗蚜品種中特異的,這15種代謝產(chǎn)物含量在兩個(gè)感蚜品種中油13號(hào)和中農(nóng)金輝蚜蟲(chóng)危害前后無(wú)差異,推測(cè)這15種代謝物與壽星桃來(lái)源的桃蚜抗性相關(guān)(圖3-B)。
在總樣品中檢測(cè)到的次生代謝產(chǎn)物的熱圖。紅色表示高豐度,綠色表示低豐度
A:柱狀圖Histogram;B:韋恩圖Venn diagram
用正交偏最小二乘判別分析(orthogonal PLS- DA,OPLS-DA)模型篩選出蚜蟲(chóng)處理前后不同樣品的差異代謝物并進(jìn)行直觀展示,感蚜品種中農(nóng)金輝在桃蚜處理后,有521種代謝物含量變化不顯著,4種代謝物含量上升,3種代謝物含量下降(圖4-A);中油13號(hào)在桃蚜處理后,有521種代謝物含量變化不顯著,5種代謝物含量上升,2種代謝物含量下降(圖4-B)??寡疗贩N‘96-5-1’在桃蚜處理后,有495種代謝物含量變化不顯著,32種代謝物含量上升,1種代謝物含量下降(圖5-A);棗油桃在桃蚜處理后,有473種代謝物含量變化不顯著,43種代謝物含量上升,12種代謝物含量下降(圖5-B)。
一個(gè)點(diǎn)表示一種代謝物,綠點(diǎn)為下調(diào)差異表達(dá)代謝物,紅點(diǎn)為上調(diào)差異表達(dá)代謝物,灰色部分為能檢測(cè)到但含量變化不顯著的代謝物。圖5同
圖5 抗蚜品種‘96-5-1’和棗油桃桃蚜危害前后差異代謝物火山圖
通過(guò)圖3-B的韋恩圖分析可以看出,在所有檢測(cè)到的差異代謝物中,有15種差異代謝物同時(shí)在抗蚜品種‘96-5-1’和棗油桃蚜蟲(chóng)危害后含量發(fā)生了變化,并且這15種差異代謝物在感蚜品種中油13號(hào)和中農(nóng)金輝蚜蟲(chóng)危害后含量未發(fā)生明顯變化,推測(cè)這些代謝物可能與壽星桃來(lái)源的桃蚜抗性相關(guān)。這15種差異代謝物包含6種氨基酸及其衍生物,5種酚酸類物質(zhì),3種核苷酸及其衍生物,1種有機(jī)酸(圖6)。15種差異代謝物含量在感蚜品種蚜蟲(chóng)危害前后變化較小,而在抗蚜品種中含量變化明顯(圖6)。
圖6 4個(gè)品種被蚜蟲(chóng)危害3 d后檢測(cè)到的差異代謝物
昆蟲(chóng)取食植物后,植物首先利用形態(tài)學(xué)上的特殊結(jié)構(gòu)進(jìn)行物理防御,然后利用自身存在的或經(jīng)誘導(dǎo)合成的代謝產(chǎn)物抵御昆蟲(chóng)取食。通常,按照防御物質(zhì)出現(xiàn)的先后順序?qū)⒅参锏目剐苑磻?yīng)分為組成性抗性和誘導(dǎo)性抗性。組成性抗性是指植物在遭受昆蟲(chóng)危害前就存在的特性,而誘導(dǎo)性抗性是指植物在受到昆蟲(chóng)的取食、產(chǎn)卵、寄生等因素脅迫時(shí)才產(chǎn)生的一系列抗性反應(yīng)[21-23]。誘導(dǎo)性抗性的植物在被昆蟲(chóng)取食后產(chǎn)生次生代謝產(chǎn)物防御昆蟲(chóng)[24]。研究表明,次生代謝產(chǎn)物與植物對(duì)昆蟲(chóng)的抗性緊密相關(guān),其對(duì)昆蟲(chóng)的主要作用方式有拒食和毒殺[24]。本研究運(yùn)用UPLC-MS/MS的方法,對(duì)抗蚜品種‘96-5-1’、棗油桃和感蚜品種中油13號(hào)、中農(nóng)金輝桃蚜危害3 d處理的幼嫩葉梢中的代謝物進(jìn)行分析,共檢測(cè)出包括有黃酮類、酚酸類、脂質(zhì)類、氨基酸及其衍生物類、有機(jī)酸、核苷酸及其衍生物類、生物堿類、木脂素和香豆素類、萜類、鞣質(zhì)類等528種次生代謝產(chǎn)物。在桃蚜危害處理后,抗蚜品種‘96-5-1’和棗油桃中差異代謝物的數(shù)量和幅度顯著大于感蚜品種中油13號(hào)和中農(nóng)金輝,且抗蚜品種對(duì)于桃蚜危害的響應(yīng)多以代謝物含量的上升為主(圖3-A),表明來(lái)源于壽星桃的桃蚜抗性表現(xiàn)出明顯的誘導(dǎo)性抗性特征。Pedersen等[25]比較不同苜蓿品種皂苷類化合物的濃度及植物體被蚜蟲(chóng)危害后的表型,發(fā)現(xiàn)苜蓿中的三萜皂苷具有抑制蚜蟲(chóng)發(fā)育的作用。本文利用廣泛靶向代謝組學(xué)研究桃樹(shù)對(duì)桃蚜危害的響應(yīng),發(fā)現(xiàn)某些特定次生代謝產(chǎn)物可能對(duì)壽星桃來(lái)源的桃蚜抗性具有重要作用,這與前期轉(zhuǎn)錄組研究得到的結(jié)論基本一致[10]。
通過(guò)UPLC-MS/MS對(duì)抗蚜和感蚜品種桃蚜危害前后代謝成分分析,篩選了15種差異代謝物,包含6種氨基酸及其衍生物,5種酚酸類物質(zhì),3種核苷酸及其衍生物和1種有機(jī)酸(圖6),這些代謝物在感蚜品種蚜蟲(chóng)危害前后含量變化較小,而在抗蚜品種蚜蟲(chóng)危害前后代謝物含量明顯提高,推測(cè)可能為壽星桃來(lái)源的桃蚜抗性相關(guān)代謝物成分。這4類代謝物參與植物免疫反應(yīng)的可能路徑主要有3類:(1)代謝物自身有抗菌或昆蟲(chóng)毒性活性,直接作為植物體內(nèi)防御化合物存在。合成具有抗菌或毒性活性的天然產(chǎn)物是植物應(yīng)對(duì)病原體和昆蟲(chóng)危害的防御措施[26]。酚酸類物質(zhì)被昆蟲(chóng)取食后會(huì)產(chǎn)生毒性。例如東方斜紋夜蛾()幼蟲(chóng)的取食誘導(dǎo)辣椒中酚類化合物蘆丁、香草醛和突觸酸的產(chǎn)生,從而影響幼蟲(chóng)發(fā)育和成蟲(chóng)的反應(yīng)[27]。(2)作為植物體內(nèi)防御化合物的合成前體。例如硫代葡萄糖苷及其降解產(chǎn)物是植物中一類抗菌和抗蟲(chóng)物質(zhì)[28-29],硫代葡萄糖苷分為脂肪族硫代葡萄糖苷、苯丙氨酸/酪氨酸衍生的苯系硫代葡萄糖苷和吲哚類硫代葡萄糖苷,這3類硫代葡萄糖苷均來(lái)源于不同的氨基酸前體[30]??Х纫蚴且环N典型的嘌呤生物堿,天然存在于咖啡、茶和可可等植物中,其化學(xué)本質(zhì)是一類黃嘌呤生物堿,在植物體內(nèi)以黃嘌呤類核酸為前體[31]。通常認(rèn)為,植物體中的咖啡因也是一種防御化合物,例如煙草和菊花中過(guò)表達(dá)N-甲基轉(zhuǎn)移酶基因后咖啡因含量增加,并增強(qiáng)植物體對(duì)昆蟲(chóng)和病菌的抗性[32]。(3)作為信號(hào)物質(zhì)影響植物體抗性。例如氨基酸類物質(zhì)在植物體免疫過(guò)程中作為信號(hào)物質(zhì)存在,擬南芥中高絲氨酸或蘇氨酸積累相關(guān)基因突變導(dǎo)致的氨基酸失衡,能夠提高植物體對(duì)卵菌病原體的抗性,但對(duì)病原真菌或細(xì)菌抗性沒(méi)有影響[33]。
通過(guò)對(duì)桃蚜危害條件下抗蚜和感蚜品種次生代謝產(chǎn)物的綜合比較,發(fā)現(xiàn)抗蚜品種中響應(yīng)危害過(guò)程的代謝物為氨基酸及其衍生物、酚酸類物質(zhì)、核苷酸及其衍生物和有機(jī)酸。在桃蚜危害后,抗蚜品種的植物體比感蚜品種的植物體檢測(cè)到更多次生代謝產(chǎn)物成分的變化,并且這些變化以代謝物上調(diào)為主,這可能是壽星桃來(lái)源桃蚜抗性代謝物層面的產(chǎn)生機(jī)理。桃蚜危害后產(chǎn)生的酚酸類物質(zhì)可能是作為植物體內(nèi)的防御化合物,而氨基酸及其衍生物和核苷酸及其衍生物可能作為植物體內(nèi)防御化合物的合成前體或抗性信號(hào)存在。
[1] 牛良.壽星桃抗蚜性鑒定及分子機(jī)制解析[D].武漢: 華中農(nóng)業(yè)大學(xué), 2019.
NIU L.Identification of resistance to green peach aphids of Shouxing peach and its molecular mechanism[D]. Wuhan: Huazhong Agricultural University, 2019.(in chinese)
[2] CUTLER G C, RAMANAIDU K, ASTATKIE T, ISMAN M B.Green peach aphid,(Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin.Pest Management Science, 2009, 65(2): 205-209.
[3] MASSONIé G, MAISON P, MONET R, GRASSELLY C.Résistance au puceron vert du pêcher,Sulzer (Homoptera Aphididae) chez(L.) Batsch et d’autres espèces de.Agronomie, 1982, 2(1): 63-70.
[4] MONET R, MASSONIé G.Déterminisme génétique de la résistance au puceron vert () chez le pêcher.Résultats complémentaires.Agronomie, 1994, 14(3): 177-182.
[5] SAUGE M H, KERVELLA J, PASCAL T.Settling behaviour and reproductive potential of the green peach aphidon peach varieties and a related wild.Entomologia Experimentalis et Applicata, 1998, 89(3): 233-242.
[6] SAUGE M H, LACROZE J P, PO?SSEL J L, PASCAL T, KERVELLA J.Induced resistance byin the peach cultivar ‘Rubira’.Entomologia Experimentalis et Applicata, 2002, 102(1): 29-37.
[7] SAUGE M H, MUS F, LACROZE J P, PASCAL T, KERVELLA J, PO?SSEL J L.Genotypic variation in induced resistance and induced susceptibility in the peach -aphid system.Oikos, 2006, 113(2): 305-313.
[8] 王力榮, 朱更瑞, 方偉超, 左覃元, 韓立新.桃種質(zhì)資源對(duì)桃蚜的抗性評(píng)價(jià).果樹(shù)學(xué)報(bào), 2001, 18(3): 145-147.
Wang L R, ZHU G R, FANG W C, ZUO Q Y, HAN L X.Study on the resistance to peach aphid of peach germplasm.Journal of Fruit Science, 2001, 18(3): 145-147.(in chinese)
[9] 牛良, 魯振華, 曾文芳, 崔國(guó)朝, 潘磊, 徐強(qiáng), 李國(guó)懷, 王志強(qiáng).‘粉壽星’對(duì)桃綠蚜抗性的遺傳分析.果樹(shù)學(xué)報(bào), 2016, 33(5): 578-584.
NIU L, LU Z H, ZENG W F, CUI G C, PAN L, XU Q, LI G H, WANG Z Q.Inheritance analysis of resistance to green peach aphids (Sülzer) for peach cultivar ‘Fen Shouxing’ (var.).Journal of Fruit Science, 2016, 33(5): 578-584.(in chinese)
[10] NIU L, PAN L, ZENG W F, LU Z H, CUI G C, FAN M L, XU Q, WANG Z Q, LI G H.Dynamic transcriptomes of resistant and susceptible peach lines after infestation by green peach aphids (Sülzer) reveal defence responses controlled by thelocus.BMC Genomics, 2018, 19: 846.
[11] 張南南, 魯振華, 崔國(guó)朝, 潘磊, 曾文芳, 牛良, 王志強(qiáng).基于SNP標(biāo)記桃抗蚜性狀的基因定位.中國(guó)農(nóng)業(yè)科學(xué), 2017, 50(23): 4613-4621.
ZHANG N N, LU Z H, CUI G C, PAN L, ZENG W F, NIU L, WANG Z Q.Gene mapping of aphid-resistant for peach using SNP markers.Scientia Agricultura Sinica, 2017, 50(23): 4613-4621.(in chinese)
[12] PO?SSEL J L, SAUGE M H, STAUDT M, DUFOUR C, DEBORDE C, RAHBé Y, JACKSON B, RENAUD C, MAUCOURT M, CORRE M N, EL-AOUNI H, LACROZE J P, MOING A.PR-proteins and induced resistance against pathogens and insects. Neuchatel, Switzerland, 2011.
[13] NAWROT J, HARMATHA J.Phytochemical feeding deterrents for stored product insect pests.Phytochemistry Reviews, 2012, 11(4): 543-566.
[14] KANDA D, KAUR S, KOUL O.A comparative study of monoterpenoids and phenylpropanoids from essential oils against stored grain insects: acute toxins or feeding deterrents.Journal of Pest Science, 2017, 90: 531-545.
[15] APPLEBAUM S W, MARCO S, BIRK Y.Saponins as possible factors of resistance of legume seeds to the attack of insects.Journal of Agricultural and Food Chemistry, 1969, 17(3): 618-622.
[16] HUSSAIN M, DEBNATH B, QASIM M, BAMISILE B S, ISLAM W, HAMEED M S, WANG L, QIU D.Role of saponins in plant defense against specialist herbivores.Molecules, 2019, 24(11): 2067.
[17] DíAZ A, HERFINDAL L, RATHE B A, SLETTA K Y, Vedeler A, Haavik S,FOSSEN T.Cytotoxic saponins and other natural products from flowering tops ofL.Phytochemistry, 2019, 164: 67-77.
[18] CHEN W, GONG L, GUO Z, WANG W S, ZHANG H Y, LIU X Q, YU S B, XIONG L Z, LUO J.A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics.Molecular Plant, 2013, 6(6): 1769-1780.
[19] FRAGA C G, CLOWERS B H, MOORE R J, ZINK E M.Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics.Analytical Chemistry, 2010, 82(10): 4165-4173.
[20] CHEN Y H, ZHANG R P, SONG Y M, HE J M, SUN J H, BAI J F, AN Z L, DONG L J, ZHAN Q M, ABLIZ Z.RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer.Analyst, 2009, 134(10): 2003-2011.
[21] CONRATH U, BECKERS G, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M A, Pieterse C M J, Poinssot B, Pozo M J,.Priming: getting ready for battle.Molecular Plant-Microbe Interactions, 2006, 19(10): 1062-1071.
[22] BRUCE T J, PICKETT J A.Plant defence signalling induced by biotic attacks.Current Opinion in Plant Biology, 2007, 10(4): 387-392.
[23] TON J , D’ALESSANDRO M, JOURDIE V, JAKAB G, Karlen D, Held M, Mauch-Mani B, TURLINGS T.Priming by airborne signals boosts direct and indirect resistance in maize.The Plant Journal, 2007, 49(1): 16-26.
[24] 陳曉亞, 薛紅衛(wèi).植物生理與分子生物學(xué).4版.北京: 高等教育出版社, 2012: 716-734.
CHEN X Y, XUE H W.Plant Physiology and Molecular Biology.4th ed.Beijing: Higher Education Press, 2012: 716-734.(in chinese)
[25] PEDERSEN M W, BARNES D K, SORENSEN E L, GRIFFIN G D, NIELSON M W, HILL R R, FROSHEISER F I, SONODA R M, HANSON C H, HUNT O J,.Effects of low and high saponin selection in alfalfa on agronomic and pest resistance traits and the interrelationship of these traits.Crop Science, 1976, 16(2): 193-199.
[26] AHUJA I, KISSEN R, BONES A M.Phytoalexins in defense against pathogens.Trends in Plant Science, 2012, 17(2): 73-90.
[27] MOVVA V, PATHIPATI U R.Feeding-induced phenol production inL.influencesF.larval growth and physiology.Archives of Insect Biochemistry and Physiology, 2017, 95(1): e21387.
[28] BARTH C, JANDER G.myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense.The Plant Journal, 2006, 46: 549-562.
[29] BEDNAREK P, PISLEWSKA-BEDNAREK M, SVATOS A, SCHNEIDER B, DOUBSKY J, MANSUROVA M, HUMPHRY M, CONSONNI C, PANSTRUGA R, SANCHEZ-VALLET A, Molina A, Schulze-Lefert P.A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense.Science, 2009, 323(5910): 101-106.
[30] S?NDERBY I E, GEU-FLORES F, HALKIER B A.Biosynthesis of glucosinolates – gene discovery and beyond.Trends in Plant Science, 2010, 15(5): 283-290.
[31] ASHIHARA H, CROZIER A.Caffeine: a well known but little mentioned compound in plant science.Trends in Plant Science, 2001, 6(9): 407-413.
[32] SANO H, KIM Y S, CHOI Y E.Like cures like: caffeine immunizes plants against biotic stresses.Advances in Botanical Research, 2013, 68: 273-300.
[33] VAN DAMME M, ZEILMAKER T, ELBERSE J, ANDEL A, DE SAIN-VAN DER VELDEN M, VAN DEN ACKERVEKEN G.Downy mildew resistance inby mutation of.The Plant Cell, 2009, 21(7): 2179-2189.
Widely targeted metabolomics analysis of the Effects offeeding onsecondary metabolites
YAN LeLe, BU LuLu, NIU Liang, ZENG WenFang, LU ZhenHua, CUI GuoChao, MIAO YuLe, PAN Lei*, WANG ZhiQiang*
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009
【Objective】The objective of this study is to clarify the underlying biochemical mechanisms related to the resistance and susceptibility of peach towards, and to identify the key secondary metabolites of peach responding to theinfection.【Method】New shoots of resistant (‘96-5-1’ (9651), ZaoYouTao (ZYT)) and susceptible (Zhong You 13 (CN13), Zhong Nong Jin Hui (ZNJH)) peach trees were inoculated withfor 3 days and used for secondary metabolite extraction and UPLC-MS/MS analysis.Differentially altered metabolites (DAMs) were screened with |log2fold change|≥1,-value≤0.01 as threshold.The VIP value of the OPLS-DA model was used to perform differences between resistant and susceptible peach.【Result】To illustrate the biochemical mechanisms ofresistance in peach, aphid-resistant/aphid-susceptible peach varieties infested withfor 3 days.A total of 528 metabolites were identified in the treated samples through widely targeted metabolomics analysis.Using principal component analysis (PCA), hierarchical cluster analysis (HCA) and venn diagram analysis, it was found that 7 DAMs were identified from the susceptible variety CN13, and 2 of them were significantly decreased, 5 of them were significantly increased.7 DAMs were identified from the susceptible variety ZNJH, and 3 of them were significantly decreased, 4 of them were significantly increased.33 DAMs were identified from the resistant variety ‘96-5-1’, and 1 of them was significantly decreased, 32 of them were significantly increased.55 DAMs were identified from the resistant variety ZYT, and 12 of them were significantly decreased, 43 of them were significantly increased.The majority of the DAMs were identified from the two resistant varieties, and the overall magnitude of change was greater in the resistant varieties than that in the susceptible varieties.Finally, 15 secondary metabolites (6 amino acids and their derivatives, 5 phenolic acids, 3 nucleotides and their derivatives, and 1 organic acid) were considered to be involved inresistance of ‘Shou xing tao’.【Conclusion】The significantly up-regulated secondary metabolites obtained in-resistant peach varieties were mainly involved in the response tofeeding.The regulation of these secondary metabolites (amino acids and their derivatives, phenolic acids, nucleotides and their derivatives, organic acid) is the important mechanism of defense reaction to.
peach; green peach aphid (); resistance; metabolomics; secondary metabolite; UPLC-MS/MS
2021-08-13;
2021-09-17
國(guó)家自然科學(xué)基金(32071800,31701880)、中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(CAAS-ASTIP-2021-ZFRI)、國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019YFD1000801)
閆樂(lè)樂(lè),E-mail:275101462@qq.com。通信作者王志強(qiáng),E-mail:wangzhiqiang@caas.cn。通信作者潘磊,E-mail:panlei@caas.cn
(責(zé)任編輯 岳梅)