• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      種子耐脫水性的生理及分子機制研究進展

      2022-05-16 08:49:12宋松泉劉軍唐翠芳程紅焱王偉青張琪張文虎高家東
      中國農(nóng)業(yè)科學 2022年6期
      關鍵詞:胚軸甲基化線粒體

      宋松泉,劉軍,唐翠芳,程紅焱,王偉青,張琪,張文虎,高家東

      種子耐脫水性的生理及分子機制研究進展

      宋松泉1,2*,劉軍1*,唐翠芳3,程紅焱2,王偉青2,張琪1,張文虎1,高家東1

      1廣東省農(nóng)業(yè)科學院農(nóng)業(yè)生物基因研究中心/廣東省農(nóng)作物種質(zhì)資源保存與利用重點實驗室,廣州 510640;2中國科學院植物研究所,北京 100093;3深圳前海國墾大地基金管理有限公司,廣州 510630

      耐脫水性是指生物體或組織在喪失所有或幾乎所有細胞水分的狀態(tài)下而不產(chǎn)生不可逆損傷的存活能力。種子的耐脫水性是植物在長期進化過程中保證物種生存和繁衍的適應性機制,在植物種子(質(zhì))資源保存中起關鍵作用。種子的耐脫水性是一個復雜的性狀,其分子機理至今尚不清楚。為此,本文綜述了種子耐脫水性的生理及分子機制的研究進展。研究發(fā)現(xiàn),正常性種子的耐脫水性是在發(fā)育過程中逐漸形成的,在生理成熟期達到峰值;頑拗性種子在整個發(fā)育過程中對脫水敏感,不具有成熟脫水的發(fā)育階段。成熟的正常性種子在吸脹初期保持對重新脫水的耐性,隨著萌發(fā)進程,種子的耐脫水性逐漸下降,最后完全喪失;在萌發(fā)初期,種子的耐脫水性可以重建,不同組織具有不同的耐脫水性。種子和胚的耐脫水性程度與其線粒體的呼吸活性下降呈負相關性,頑拗性種子的呼吸活性高于正常性種子。脫水過程中,耐脫水性胚(軸)的H2O2含量、超氧陰離子自由基(·O2-)的產(chǎn)生速率和硫代巴比妥酸活性產(chǎn)物的含量顯著低于脫水敏感性胚(軸),而活性氧清除(包括酶促和非酶促)系統(tǒng)的活性明顯高于脫水敏感性胚(軸)。種子成熟過程中,胚胎發(fā)育晚期豐富(LEA)蛋白、小分子量熱休克蛋白和非還原性棉子糖家族寡聚糖的積累與耐脫水性的形成密切相關。B3轉(zhuǎn)錄因子的AFL亞家族(包括ABI3(ABA INSENSITIVE 3)、FUS3(FUSCA3)和LEC2(LEAFY COTYLEDON 2))通過正向調(diào)控貯藏物和保護性蛋白的積累增加種子(胚)的耐脫水性。在整個種子發(fā)育過程中,DNA甲基化水平顯著增加,隨后在種子萌發(fā)過程中逐漸降低;與發(fā)育早期階段的胚和幼苗相比,成熟胚具有較高水平的基因組甲基化。在種子中,平行的ABA和DOG1(DELAY OF GERMINATION 1)信號轉(zhuǎn)導途徑激活棉子糖家族寡聚糖的合成、LEA基因和HSP基因的表達,從而調(diào)控耐脫水性的起始和向休眠轉(zhuǎn)變。最后,本文提出了該領域需要進一步研究的科學問題,包括利用種子及其組織的不同耐脫水性重建其模式研究系統(tǒng);種子的萌發(fā)能力、耐脫水性和休眠特性都是在發(fā)育過程中起始和完成的,它們之間的相互關系仍不清楚;種子中同時存在核心ABA信號途徑和DOG1信號途徑,這兩條途徑在ABI3或者ABI3下游匯合,在種子脫水過程中哪條途徑優(yōu)先響應?又是如何協(xié)調(diào)?本文將為全面理解種子耐脫水性的生理及其分子機制、提高農(nóng)作物的脅迫抗性與產(chǎn)量、改善資源庫的貯藏條件和長期保存植物種子(質(zhì))資源提供參考。

      抗氧化系統(tǒng);耐脫水性;遺傳調(diào)控;種質(zhì)資源的長期保存;代謝活性;保護性物質(zhì)

      0 引言

      被子植物的種子發(fā)育起始于雙受精,終止于成熟脫水(maturation drying)。在胚胎發(fā)生過程中,受精的卵細胞發(fā)育成為胚,而2個極核與另一個精細胞融合發(fā)育成胚乳。早期的成熟過程包括細胞擴大和貯藏物積累;在成熟后期,種子感受未知的生理和/或環(huán)境信號,開始喪失水分,進入代謝不活躍或者靜止狀態(tài)[1]。種子的貯藏活力和壽命主要取決于種子的含水量和貯藏溫度,成熟干燥的種子能在低溫和低含水量條件下長期存活。因此,種子的耐脫水性是植物種子(質(zhì))資源長期保存的關鍵,而種質(zhì)資源的保存又是農(nóng)作物優(yōu)良種質(zhì)創(chuàng)制和新品種選育的前提。

      成熟脫水是種子發(fā)育的最后階段,它能提高種子的萌發(fā)能力,終止貯藏物的積累,以及使種子胚進入“玻璃態(tài)(glassy state)”,從而導致代謝靜止、增加貯藏壽命和對逆境條件的抵抗能力[2]。耐脫水性(desiccation tolerance)是指生物體或組織在喪失所有或幾乎所有細胞水分(包括自由水和束縛水)的狀態(tài)下而不產(chǎn)生不可逆損傷的存活能力[3]。種子的耐脫水性是植物(特別是一年生和二年生植物)在環(huán)境脅迫中保證物種生存和繁衍的適應性機制。在種子成熟后期,大多數(shù)物種的種子開始喪失水分,收獲干燥后,達到5%—10%含水量(除了特別說明外,均以鮮重為基礎)或低于0.1 g·g-1(H2O/DW,干重為基礎),該程度的水分喪失不會引起正常性種子(orthodox seed)死亡,因此,被認為耐脫水性[2]。耐脫水性也包括種子成功保持重新水合和萌發(fā)的能力[3-4]。

      根據(jù)種子在發(fā)育后期是否具有成熟脫水過程以及成熟后對脫水和低溫的反應,將種子分為正常性種子和頑拗性種子(recalcitrant seed)。正常性種子在母體植株上經(jīng)歷成熟脫水,種子脫落時含水量較低,一般能被進一步干燥,含水量達到5%以下而不發(fā)生傷害,并根據(jù)貯藏溫度和種子含水量能預測其貯藏壽命。頑拗性種子不經(jīng)歷成熟脫水,種子脫落時含水量相對較高,在整個發(fā)育過程中不耐脫水,通常對低溫敏感,在適合正常性種子貯藏的條件下,頑拗性種子的貯藏壽命通常只有幾天到幾周(取決于物種)[5-7]。此外,還有一類種子(如番木瓜()、大薸())表現(xiàn)出中間性貯藏行為(intermediate storage behavior),在相對低的含水量條件下能夠存活(0.2 g·g-1),但不能像正常性種子(<0.1 g·g-1)一樣耐受更低的水分喪失,在脫水狀態(tài)下,對低溫敏感或不敏感[4, 6, 8]。

      研究表明,許多過程或機制可以授予或提高種子的耐脫水性,不同的過程可能在不同的水合水平對水分喪失起保護作用,包括細胞內(nèi)脫分化與代謝關閉、活性氧(reactive oxygen species,ROS)的產(chǎn)生與清除以及保護性分子等作用[7, 9-11]。近年來,隨著多組學(-omics)和現(xiàn)代分子生物學技術的進步,種子耐脫水性的分子機制研究取得了重要進展[4, 11-14]。本文主要從種子發(fā)育過程中耐脫水性的變化、耐脫水性與代謝活性下降、抗氧化系統(tǒng)和保護性物質(zhì)在種子耐脫水性中的作用以及耐脫水性的遺傳調(diào)控等方面進行綜述,以期為深入研究種子耐脫水性的分子機制、改善作物的耐旱性以及種質(zhì)資源的長期保存提供參考。

      1 種子發(fā)育過程中耐脫水性的變化

      1.1 耐脫水性的產(chǎn)生

      種子耐脫水性是在發(fā)育過程中逐漸形成的,在生理成熟期達到峰值。玉米()種子的鮮重和干重隨著發(fā)育進程逐漸增加,分別在授粉后45和50 d達到最大值;而種子的含水量則隨著發(fā)育逐漸下降[15-16]。在種子鮮重達到峰值之前,含水量的下降主要是由于貯藏物的積累,而在種子干重達到峰值之后,含水量的下降是由成熟脫水所引起。在授粉后45 d,玉米種子開始形成萌發(fā)能力,隨著發(fā)育種子的萌發(fā)能力逐漸增強,在授粉后65 d達到峰值。玉米種子在授粉后24 d不耐脫水,此后開始形成耐脫水性,且隨著發(fā)育逐漸提高;直至授粉后40 d,種子的耐脫水性(以萌發(fā)率表示)達到75%[16]。玉米胚在授粉后35—40 d開始形成耐脫水性,授粉后52 d達到100%耐脫水性[17]。玉米胚形成耐脫水性的時間要晚于整粒種子[16-17]。此外,種子和胚形成耐脫水性的時間進程除了與物種的遺傳特性有關外,還與種子發(fā)育時的環(huán)境條件有關。

      研究表明,耐脫水性的形成與脫水速率有關。從授粉后26 d的法國菜豆(French bean)或普通菜豆(common bean)豆莢中離體的種子,若脫水在幾小時內(nèi)完成,種子則不會存活;然而,若在一周內(nèi)緩慢脫水,種子則能夠萌發(fā)[2]。Huang等[18]發(fā)現(xiàn)快速脫水對玉米胚的傷害大于緩慢脫水。如玉米胚從2.53 g·g-1緩慢脫水到0.16 g·g-1時,其存活率為94%;而從2.53 g·g-1快速脫水到0.17 g·g-1時,其存活率僅為5.3%。50%玉米胚因快速脫水而死亡的含水量(water content50,W50)為0.39 g·g-1,而在緩慢脫水的玉米胚中未發(fā)現(xiàn)W50;其原因可能是在緩慢脫水過程中,種子或胚中會形成一些保護性化合物,從而增加它們的存活率[2]。與正常性種子(胚)對脫水速率的反應相反,緩慢脫水對頑拗性黃皮()胚軸的損傷反而更大。如當含水量從0.82 g·g-1快速脫水到0.13 g·g-1時,黃皮胚軸的存活率為100%;而含水量從0.82 g·g-1緩慢脫水到0.24 g·g-1時,其胚軸的存活率僅為52.4%。緩慢脫水和快速脫水引起的黃皮胚軸W50分別為0.24和0.09 g·g-1[18]。Black等[2]提出,在緩慢脫水時,頑拗性胚軸處于中間含水量的時間較長,但此時發(fā)生的代謝是不受調(diào)控的,可能發(fā)生自由基(free radical)介導的破壞性反應。

      1.2 耐脫水性的喪失

      成熟種子吸脹初期保持對重新脫水的耐性,隨著萌發(fā)進程,種子的耐脫水性逐漸下降,最后完全喪失;但耐脫水性喪失的時間進程與物種的遺傳特性和種子吸脹/萌發(fā)時的環(huán)境條件有關。玉米種子吸脹過程中,胚在吸脹初期的含水量迅速增加,隨后出現(xiàn)一個緩慢的吸水時期(平臺期),然后進一步迅速增加[17]。玉米胚在吸脹初期耐脫水;吸脹28 h后,胚根伸出,胚的耐脫水性下降;吸脹72 h時,胚的耐脫水性完全喪失[17]。在豌豆()種子萌發(fā)過程中,種子和胚軸的耐脫水性逐漸喪失,10%和50%的種子和胚軸被脫水致死的含水量明顯增加,種子的耐脫水性明顯高于胚軸[19]。吸脹15 h的豌豆種子脫水到0.1 g·g-1時,能保持其最大的存活能力,隨著吸脹時間的延長,種子的耐脫水性降低,當吸脹時間為48 h時,種子的存活率為0[20]。

      Wang等[13]根據(jù)胚根從種皮伸出的長度(小于1 mm(S1)、2—3 mm(S2)和4—5 mm(S3)),評估了豌豆種子在S1—S3萌發(fā)時期胚軸不同組織的耐脫水性。S1時期,上胚軸、下胚軸和胚根在脫水后的存活率分別為93.3%、94.6%和37.9%;S2時期,分別下降到65.9%、37.5%和0;S3時期,上胚軸的存活率僅為20%,下胚軸和胚根則完全喪失耐脫水性。2,3,5-三苯基氯化四氮唑(2,3,5-triphenyltetrazolium chloride)染色表明,在同一萌發(fā)時期,萌發(fā)豌豆種子的不同胚軸組織表現(xiàn)出不同的耐脫水性:上胚軸(epicotyl,E)>下胚軸-E(hypocotyl-epicotyl,將下胚軸分為兩部分,與上胚軸連接的一部分)>下胚軸-R(hypocotyl-radicle,與胚根連接的一部分)>胚根(radicle,R)[13]。經(jīng)聚乙二醇(polyethylene glycol,PEG)處理,能重新誘導S2時期豌豆種子不同胚軸組織的耐脫水性,即顯著增加上胚軸和下胚軸、稍微增加胚根脫水后的存活率[13]。此外,在花椰菜()種子萌發(fā)過程中,也觀察到子葉的耐脫水性>下胚軸>胚根[2]。

      在發(fā)育過程中,盡管一些頑拗性種子由于貯藏物的積累,其種子或胚(軸)的含水量會降低,但在成熟和脫落時,其含水量仍然較高,在整個發(fā)育過程中和脫落后不耐脫水。如頑拗性荔枝()[21]、非洲鷓鴣花()[5]、箭毒木()[22]和黃皮[23-24]。箭毒木[22]和黃皮[23]胚軸的耐脫水性顯著高于完整的種子。

      2 耐脫水性與代謝活性下降

      Pammenter等[7]提出,正常性種子具有一些保護性過程或機制賦予種子的耐脫水性,其中,重要的過程是代謝關閉和細胞內(nèi)脫分化;然而,頑拗性種子不經(jīng)歷細胞內(nèi)脫分化或任何明顯的代謝關閉,在其脫落時,胚(軸)保持代謝活性,從發(fā)育模式逐漸轉(zhuǎn)變?yōu)榕c萌發(fā)有關的過程。在水分缺乏條件下,細胞存活的一個重要因素是代謝活性和呼吸速率的降低。代謝活性與種子或胚(軸)的脫水敏感性有關,因此,代謝活性的降低是耐脫水性的特征[25]。

      線粒體是種子中的主要細胞器,主要功能是為細胞提供能量,以及為其他大分子生物合成提供碳骨架。代謝活性下降主要表現(xiàn)為線粒體的功能降低。Leprince等[3]提出,形成耐脫水性的一個重要因素是減少對ATP的需求。隨著玉米種子耐脫水性的形成,胚線粒體的耗氧速率、細胞色素c氧化酶(cytochrome c oxidase,CCO;線粒體的標記酶)和NAD+-蘋果酸脫氫酶(NAD+-malate dehydrogenase,NAD+-MDH;線粒體的主要功能酶)活性下降,表明線粒體的活性降低[15]。

      隨著脫水程度的提高,箭毒木胚軸的存活率迅速下降,而未成熟玉米胚的存活率則緩慢降低[26]。為了解它們對脫水的反應,對其線粒體的呼吸速率、CCO活性和CCO活性滯后期(CCO activity latency,線粒體外膜完整性的指標)在脫水過程中的變化進行測定。新采收的箭毒木胚軸線粒體的基礎呼吸速率(basic respiratory rate,狀態(tài)I)和呼吸速率(respiratory rate,狀態(tài)Ⅲ)顯著高于新采收的玉米胚線粒體[26]。箭毒木胚軸線粒體的基礎呼吸速率在脫水早期迅速降低,而玉米胚線粒體則是隨著脫水緩慢下降。當箭毒木胚軸和玉米胚的含水量降低50%時,其線粒體的基礎呼吸速率分別下降70%和17%。箭毒木胚軸和玉米胚線粒體呼吸速率的變化與基礎呼吸速率類似,即箭毒木胚軸線粒體的呼吸速率隨著脫水迅速下降,而玉米胚線粒體的呼吸速率則相對緩慢降低;在整個脫水過程中,箭毒木胚軸線粒體的呼吸速率持續(xù)高于玉米胚線粒體[26]。

      呼吸速率由細胞色素(cytochrome,Cyt)c途徑、交替氧化酶(alternative oxidase,AOX)途徑和其他耗氧途徑組成。利用Cyt c途徑抑制劑氰化鉀(KCN)和AOX途徑抑制劑水楊基羥肟酸(salicylhydroxamic acid,SHAM)分析脫水過程中不同呼吸途徑在呼吸速率中的變化。箭毒木胚軸線粒體中,KCN抑制的呼吸速率占整個呼吸速率的32.5%,并隨著脫水而迅速下降,當胚軸含水量為0.400 g·g-1時,其呼吸速率降低到0。玉米胚線粒體中,KCN抑制的呼吸速率占整個呼吸速率的66.7%,在脫水初期下降,隨后上升。玉米胚線粒體由KCN抑制的呼吸速率遠高于箭毒木胚軸的線粒體[26]。另外,在箭毒木胚軸線粒體中,SHAM抑制的呼吸速率占整個呼吸速率的58%,在脫水早期增加,隨后維持在一個相對恒定的水平。與箭毒木胚軸線粒體相反,玉米胚線粒體中,由SHAM抑制的呼吸速率占整個呼吸速率的25%,隨著脫水,直到胚軸含水量為0.113 g·g-1,呼吸速率略有下降;當胚含水量為0.101 g·g-1時,呼吸速率迅速下降到0。玉米胚線粒體中由SHAM抑制的呼吸速率遠低于箭毒木胚軸的線粒體[26]。除了KCN和SHAM抑制的耗氧(呼吸)途徑外,在箭毒木胚軸和玉米胚線粒體中還存在其他的耗氧途徑,它們在整個呼吸速率中所占的比例隨著脫水程度的提高而增加,但箭毒木胚軸線粒體的其他耗氧速率在脫水過程中低于玉米胚線粒體[26]。

      在對3種咖啡物種種子進行轉(zhuǎn)錄組和蛋白質(zhì)組研究中,Stavrinides等[27]表明,種子中與能量產(chǎn)生相關的基因表達減少。下調(diào)的基因與線粒體電子傳遞鏈(electron transport chain,ETC)復合物(ATP合酶(ATP synthase)、NADH脫氫酶復合物I(NADH dehydrogenase complex I,CⅠ)、輔酶Q-細胞色素bc1復合物(ubiquinol-cytochrome bc1 complex,CⅢ)、CCO(CⅣ))以及三羧酸循環(huán)(tricarboxylic acid cycle)(異檸檬酸脫氫酶(isocitrate dehydrogenase)、丙酮酸脫氫酶(pyruvate dehydrogenase)、琥珀酰輔酶A連接酶(succinyl-CoA ligase)、二氫硫辛酸脫氫酶(dihydrolipoyl dehydrogenase))有關,并且,在線粒體能量代謝調(diào)控方面,耐脫水性和脫水敏感性種子之間存在顯著差異。內(nèi)膜移位酶亞基(translocase inner membrane subunit,TIM44-2)和線粒體剪接因子(mitochondrial splicing factor,OTP439)在脫水敏感的中??Х龋ǎ┓N子中表現(xiàn)出更高的表達,分別參與基礎細胞過程(如蛋白輸入)和細胞器轉(zhuǎn)錄后過程。在耐脫水的小粒咖啡()和歐基尼奧伊德斯種咖啡()種子中,一些調(diào)控能量過程的重要基因(如、和)表達量下調(diào)。在脫水敏感的中??Х确N子成熟后期,一些與線粒體呼吸ETC復合物有關的基因表達量增加。因此,維持高能量代謝可能是頑拗性種子脫水敏感性的原因之一。脫水時,耐脫水種子表現(xiàn)出呼吸速率穩(wěn)定下降,脫水敏感性種子則急劇下降;同時,中??Х鹊暮粑俾矢哂谛×?Х群蜌W基尼奧伊德斯種咖啡[27]。在頑拗性歐洲板栗()種子中,也觀察到類似結果,脫水敏感的子葉比脫水耐性的胚軸表現(xiàn)出更高的呼吸速率[28]。

      3 抗氧化系統(tǒng)對種子脫水的保護作用

      3.1 活性氧的產(chǎn)生

      植物線粒體ETC由復合物Ⅰ(complex Ⅰ,CI)、復合物Ⅱ(complex Ⅱ,CⅡ;琥珀酸脫氫酶(succinate dehydrogenase))、復合物Ⅲ(complex Ⅲ,CⅢ)和復合物Ⅳ(complex Ⅳ,CⅣ)組成。電子在傳遞給末端氧化酶之前,常常會漏出呼吸鏈,并與O2反應生成超氧陰離子自由基(superoxide anion radical,·O2-),這是線粒體ROS的主要來源。線粒體ETC的4種復合物中,CⅠ和CⅢ是產(chǎn)生ROS的部位[29]。此外,植物的ETC還包括5種在哺乳動物線粒體中不存在的酶——1種AOX和4種NAD(P)H脫氫酶,這些脫氫酶與黃素蛋白(flavoprotein)的特性非常相似,也是產(chǎn)生ROS的潛在位點[29]。

      ROS是植物氧化還原代謝的組成性產(chǎn)物,在植物組織中不斷地生成,參與細胞中多個正常的生理過程[30-32]。在多數(shù)情況下,·O2-是ROS的主要類型,易于轉(zhuǎn)化為過氧化氫(H2O2)和其他過氧化物,也易于參與Fenton反應,產(chǎn)生羥基自由基(hydroxyl radical,·OH)[33]。當產(chǎn)生的ROS超過抗氧化保護性系統(tǒng)的清除活性時,它們在組織中的含量增加,并產(chǎn)生氧化脅迫[34]。在分子水平上,氧化脅迫表現(xiàn)為脂質(zhì)過氧化作用增強、膜完整性被破壞、酶失活、蛋白和核酸被氧化降解以及抗氧化庫的耗盡[11-12]。玉米種子發(fā)育過程中,在形成耐脫水性的同時,脫水胚的H2O2含量略有下降;但在吸脹過程中,隨著耐脫水性的喪失,H2O2的含量顯著增加(2.2倍)[17]。在箭毒木種子脫水過程中,種子和胚軸中·O2-的產(chǎn)生速率逐漸增加。如當胚軸含水量從1.42 g·g-1降低到0.26 g·g-1時,·O2-的產(chǎn)生速率從2.85 nmol·g-1DW增加到6.88 nmol·g-1DW。胚軸的H2O2含量也隨著脫水而顯著增加,但種子的H2O2含量在脫水初期和中期明顯增加,后期略有下降[22]。脂質(zhì)過氧化對膜的結構和功能具有很大的傷害,被認為是種子生活力喪失的主要原因之一[1]。硫代巴比妥酸活性產(chǎn)物(thiobarbituric acid reactive substance,TBARS)是脂質(zhì)過氧化的產(chǎn)物。玉米種子發(fā)育過程中,隨著耐脫水性的形成,胚中TBARS的含量顯著下降(3.7倍);成熟玉米種子吸脹過程中,隨著耐脫水性的喪失,胚中TBARS的含量顯著增加(2.7倍)[17]。此外,在脫水過程中,頑拗性荔枝種子[21]、黃皮[23]、非洲鷓鴣花[5]以及箭毒木[22]種子和胚軸中的TBARS含量顯著增加。

      3.2 抗氧化酶系統(tǒng)

      酶促抗氧化系統(tǒng)包括超氧化物歧化酶(superoxide dismutase,SOD)、愈創(chuàng)木酚過氧化物酶(guaiacol peroxidase)、抗壞血酸過氧化物酶(ascorbate peroxidase,AsA-POD)、谷胱甘肽過氧化物酶(glutathione peroxidase)、過氧化氫酶(catalase,CAT)、單脫氫抗壞血酸還原酶(monodehydroascorbate reductase,MDHAR)、脫氫抗壞血酸還原酶(dehydroascorbate reductase,DHAR)和谷胱甘肽還原酶(glutathione reductases,GR)[35-36]。這些酶在·O2-、H2O2和單線態(tài)氧(single oxygen,1O2)的解毒中起重要作用[5, 33]。

      黃皮胚軸和子葉中的SOD活性隨著種子含水量的下降先增加再降低;當種子生活力完全喪失時,胚軸和子葉中的SOD活性分別比未脫水的對照下降了12%和73%;胚軸的SOD活性比子葉高,在種子脫水初期,胚軸SOD活性的增加高于子葉[23]。脫水過程中,非洲鷓鴣花胚軸的SOD、AsA-POD、CAT、GR和DHAR活性下降[5]。箭毒木種子的SOD、CAT和DHAR活性在脫水初期增加,然后隨著進一步的脫水而降低,而AsA-POD和GR的活性隨著脫水逐漸降低;然而,在胚軸中,這些酶的活性在脫水初期增加,然后隨著進一步的脫水而下降[22]。以上結果表明,抗氧化酶的活性與耐脫水性的變化密切相關。

      從發(fā)育的玉米胚中分離線粒體,脫水使授粉后21 d和27 d胚線粒體中的SOD、AsA-POD和MDHAR活性以及授粉后21 d胚線粒體中的DHAR活性顯著降低,但對授粉后50 d胚線粒體中的SOD、AsA-POD、MDHAR和DHAR活性沒有影響;相反,脫水增加授粉后21、27和50 d胚線粒體中的GR活性[15]。王偉青等[24]通過研究黃皮種子脫水過程中線粒體ROS清除酶活性的變化,發(fā)現(xiàn)胚軸線粒體中的SOD、AsA-POD和GR活性隨著脫水迅速下降,但DHAR活性在脫水初期增加,隨后下降;子葉線粒體中的SOD、DHAR和GR活性在脫水初期增加,隨后下降,AsA-POD活性隨著脫水逐漸降低。胚軸線粒體的SOD、DHAR和AsA-POD活性顯著高于子葉線粒體,而子葉線粒體的GR活性明顯高于胚軸線粒體[24]。以上結果表明,線粒體中的抗氧化酶活性與胚(軸)的耐脫水性密切相關。

      蛋白質(zhì)組研究表明,在比較耐脫水的豌豆下胚軸-E中,一些與依賴還原型谷胱甘肽(reduced glutathione,GSH)解毒作用有關的蛋白和過氧化物酶高豐度積累;與此一致,脫水后下胚軸-E中積累的H2O2水平非常低[13]。PEG處理后,胚根和下胚軸-R中2種谷胱甘肽過氧化物酶(GPX1和GPX8L)和3種過氧化物酶(PER15A、PER15B和PER73)的豐度均增加,而GPX8L和PER73也在PEG處理前于下胚軸-E中高豐度積累。結果表明,依賴GSH的解毒酶和過氧化物酶活性的增加可能有助于耐脫水性在胚根和下胚軸中的重建[13]。WANG等[16]也發(fā)現(xiàn)玉米種子的成熟脫水和成熟前強迫脫水均導致一些與ROS解毒相關的蛋白豐度增加,如谷胱甘肽S-轉(zhuǎn)移酶(glutathione S-transferase,GST;胚乳中)、1-Cys-過氧化物酶-PER1(胚乳中)、線粒體醛脫氫酶2(mitochondrial aldehyde dehydrogenase 2,胚中)和乳酰谷胱甘肽裂解酶(lactoylglutathione lysase,也稱為乙二醛酶I(glyoxalase I))。

      此外,氧化還原過程參與成熟種子的代謝調(diào)控和耐脫水性的建立[37]。氧化還原狀態(tài)能夠被抗氧化酶和含有二硫鍵的化合物谷胱甘肽、過氧化氧化還原蛋白(peroxiredoxin,Prx)、硫氧還蛋白(thioredoxin)和谷氧還蛋白(glutaredoxin)調(diào)控[38]。Ratajczak等[39]發(fā)現(xiàn),正常性挪威槭()和頑拗性歐亞槭()種子中存在氧化還原電位的差異。在種子發(fā)育過程中,1-Cys-Prx在挪威槭種子中被還原,在歐亞槭種子中被氧化。

      3.3 非酶抗氧化系統(tǒng)

      非酶抗氧化系統(tǒng)包括低分子量抗氧化劑α-生育酚(α-)、類胡蘿卜素(carotenoid)、AsA和谷胱甘肽[40-41]。還原型AsA能夠直接與ROS相互作用,并參與其他低分子量抗氧化劑生育酚和谷胱甘肽的還原。生育酚是細胞膜的普遍保護劑,參與ROS的猝滅,從而防止脂質(zhì)的非酶促氧化[40, 42]。谷胱甘肽可以直接作為一種ROS的猝滅分子或作為與ROS解毒有關酶的電子供體(例如GST)[43],與ROS相互作用時,伴隨著巰基的氧化和谷胱甘肽二硫化物(GS-SG)的轉(zhuǎn)化。GR存在于干種子中,當種子水合時被迅速激活,將氧化的谷胱甘肽還原為巰基形式[41]。谷胱甘肽的還原態(tài)與氧化態(tài)的比例被認為是種子生活力的一種標記[43-44]。

      2.5—10 mmol·L-1AsA處理可顯著提高非洲鷓鴣花胚軸的耐脫水性和胚軸中SOD、AsA-POD、CAT和GR的活性,降低胚軸電解質(zhì)滲漏率和TBARS含量[5]。AsA和甘露醇(mannitol)處理也能降低黃皮種子的脂質(zhì)過氧化作用,提高種子的生活力[23]。

      4 保護性物質(zhì)在耐脫水性中的作用

      正常性種子耐脫水性的分子機制之一是保護性物質(zhì)的積累,包括胚胎發(fā)育晚期豐富(late embryogenesis abundant,LEA)蛋白、小分子量熱休克蛋白(small heat shock proteins,sHSP)和非還原性棉子糖(raffinose)家族寡聚糖等[4, 45-46]。

      4.1 胚胎發(fā)育晚期豐富蛋白

      LEA蛋白最初在棉籽發(fā)育后期被發(fā)現(xiàn)[47],普遍分布于植物界,從藻類(algae)、苔蘚(moss)、蕨類植物(fern)到被子植物(angiosperm)和復蘇植物(resurrection plant)[4, 48-49]。LEA蛋白的特征是富含甘氨酸殘基,但半胱氨酸和色氨酸殘基的含量非常低(甚至缺乏),丙氨酸、谷氨酸、賴氨酸/精氨酸和蘇氨酸殘基也比較豐富。由于這些主要的結構特征,LEA蛋白在較大的溫度范圍內(nèi)是穩(wěn)定的,并被高度水合。在細胞脫水過程中,LEA蛋白作為分子伴侶(molecular chaperon)起作用,即通過形成密集的氫鍵穩(wěn)定其他蛋白和細胞膜的結構,它們也能穩(wěn)定變性蛋白并促進其重新折疊[50]。LEA蛋白能隔離細胞脫水過程中積累的離子化合物,保護膜蛋白和酶免受離子濃度增加的毒害作用[50]。盡管LEA蛋白在所有的細胞組分中均能被檢測到,但它們主要定位于細胞質(zhì)中[51]。在水溶液中,大多數(shù)LEA蛋白以無序和隨機卷曲的結構存在[50],然而,脫水導致它們重新折疊,形成具有兩親性α-螺旋(amphiphilic α-helix)結構。LEA蛋白的另一個特征是具有柔性結構元件(flexible structural element)(如聚脯氨酸II螺旋(polyproline Ⅱ helix)),能增加與DNA、RNA或者其他蛋白的結合[50, 52]。

      在擬南芥()基因組中已經(jīng)鑒定了51個編碼LEA蛋白的基因[52]。依據(jù)Pfam蛋白結構域數(shù)據(jù)庫,LEA蛋白可以分為8個家族:脫水素(dehydrin,DHN)、LEA-1–LEA-6和種子成熟蛋白(seed maturation protein,SMP)[52-53]。LEA蛋白和一些熱休克蛋白(heat shock protein)屬于兼職功能蛋白(moonlighting protein),它們具有幾種相關的生理功能[53-54]。LEA基因在植物種子中的表達水平比營養(yǎng)器官中高。51個擬南芥LEA基因中,有21個僅在種子中表達,直接參與種子的形成[52]。在茶()中共檢測到48個LEA基因,其中39個基因在種子成熟過程中起重要作用[55]。

      沉默擬南芥第4組LEA蛋白中的3個蛋白足以引起水分缺乏敏感性[56]。玉米胚中LEA蛋白EMB564在胚成熟過程中積累,在萌發(fā)過程中下降,在耐脫水胚的脫水過程中增加[17]。玉米種子的成熟脫水和成熟前強迫脫水均引起LEA蛋白的高豐度積累[16]。蛋白保守結構域分析發(fā)現(xiàn),1個脫水素、4個第1組LEA蛋白和5個第5組LEA蛋白在比較耐脫水性的豌豆胚軸中積累[13]。經(jīng)PEG處理后,6個LEA蛋白在胚根和下胚軸-R中的豐度增加。在這些蛋白中,第1組(SLE2A)和第5組(SLE3)LEA蛋白以及DHN在PEG處理前也在上胚軸和下胚軸-E中高豐度積累。以上結果表明,第1組和第5組LEA蛋白可能在豌豆胚軸耐脫水性中起保護作用[13]。

      頑拗性海欖雌()種子與正常性種子的比較研究表明,脫水敏感性種子缺乏LEA蛋白[57]。與頑拗性中??Х缺容^,在中間性耐脫水的小??Х群蜌W基尼奧伊德斯種咖啡種子成熟后期,一種專一的表達水平和蛋白含量明顯增加[27]。Delahaie等[58]在脫水敏感的栗豆樹()和耐脫水性的蒺藜苜蓿()研究中得出類似結果。比較蛋白組分析表明,6個LEA多肽SBP65、MP2、PM25、LEAm、EM1和EM6在脫水敏感的栗豆樹中豐度較低[58]。在頑拗性茶種子轉(zhuǎn)錄組研究中,發(fā)現(xiàn)所有的LEA蛋白均被下調(diào),表明這些基因的轉(zhuǎn)錄水平不足以導致脫水敏感性[59]。

      通過對脫水敏感的栗豆樹種子研究表明,2種脫水素BudCar5和DHN的同源物大量積累,但在耐脫水的蒺藜苜蓿中幾乎不存在。在栗豆樹種子中,脫水素占LEA蛋白的83%;而在蒺藜苜蓿種子中,脫水素僅占LEA蛋白的20%[58]。此外,在擬南芥種子中,脫水素的沉默不影響耐脫水性,1個或2個LEA基因的缺失也不影響耐脫水性[60]。以上結果表明,并不是所有的LEA蛋白都與耐脫水性的形成有關。

      4.2 熱休克蛋白

      熱休克蛋白系統(tǒng)的激活是生物體對脅迫因子最普遍的反應之一。根據(jù)其分子量,真核生物的HSP可分為六類:Hsp100、Hsp90、Hsp70、Hsp60、Hsp40和sHSP。在整個HSP超家族中,sHSP是分子量在12—43 kD范圍內(nèi)變化最大和最不均一的一組蛋白,它們具有高度保守的C端α-晶狀體ACD),該結構域含有80—100個氨基酸殘基[61]。與LEA蛋白類似,sHSP在種子成熟后期積累并存在于干種子中[36, 45, 61]。在種子中,sHSP具有促進新合成蛋白的折疊、三級結構受損多肽的重新折疊和抗氧化保護的功能[36, 45, 61-62]。sHSP最重要的特征之一是能夠形成大的寡聚復合物(100—1 000 kD),在脅迫條件下,其大小可以達到5 000 kD[61]。顯然,只有相對較大的寡聚復合物才具有高的伴侶活性,即能夠與受損或錯誤折疊的蛋白相互作用并穩(wěn)定其結構[61]。

      擬南芥熱脅迫轉(zhuǎn)錄因子(heat stress transcription factor,HSF)家族由A、B和C 3種類型的21個成員組成[63]。脫水觸發(fā)向日葵()種子中和表達,相應的mRNA水平與水分喪失的程度相關[61]。研究表明,在蓖麻()種子成熟過程中,41個編碼細胞質(zhì)、線粒體和微粒體HSP基因進行表達,這些HSP含有α-晶狀體[64]。Kaur等[62]報道,水稻()種子成熟后期的豐度顯著增加。17.4 kD類型I HSP3在玉米胚成熟過程中積累,在萌發(fā)過程中下降,在耐脫水胚的脫水過程中增加[17]。玉米種子的成熟脫水和成熟前強迫脫水均引起sHSP的高豐度積累[16]。此外,與LEA基因類似,HSP基因的表達受關鍵休眠調(diào)控因子DOG1(DELAY OF GERMINATION 1)的介導[65]。

      4.3 非還原性碳水化合物

      非還原性碳水化合物主要有蔗糖(sucrose)、棉子糖和水蘇糖(stachyose),它們的積累通過取代水分子來穩(wěn)定細胞膜和細胞質(zhì)蛋白的結構,是脫水過程中種子存活的重要方式之一[12]。相反,還原性單糖(reductive monosaccharide)的存在與種子生活力呈負相關[45]??扇苄蕴侵饕羌禾堑钠咸烟?、果糖及其磷酸化衍生物,其豐度在種子成熟后期逐漸減少,而非還原性寡聚糖的積累增加[45-66]。在脫水過程中,寡糖和LEA蛋白能取代水分,成為磷脂極性頭部磷酸基團的氫鍵伙伴(hydrogen-bonding partner)[45],導致膜從液晶相(liquid-crystalline phase)向凝膠相(gel phase)轉(zhuǎn)變;同時,由于在水合外殼(hydrate shell)喪失后,脂質(zhì)頭部之間的范德華(van der Waals)相互作用加強,脂質(zhì)的流動性降低[67]。脫水細胞的細胞質(zhì)變?yōu)椤安AB(tài)”,無細胞質(zhì)向固態(tài)轉(zhuǎn)變。因此,細胞質(zhì)的黏性增加,水分和氧的擴散受到抑制,以及所有可能的化學反應速率顯著降低[67-68]。在脫水過程中,用棉子糖和水蘇糖代替水也能維持膜和蛋白穩(wěn)定所需的氫鍵[36, 69]。由于多種細胞結構的物理化學性質(zhì)發(fā)生變化,正常性種子能夠在幾十年內(nèi)保持生活力[36]。然而,細胞質(zhì)轉(zhuǎn)變成為玻璃態(tài)的分子機制還不清楚,可能涉及一系列編碼不同功能蛋白的基因[11]。

      擬南芥轉(zhuǎn)錄組研究表明,與野生型相比,編碼棉子糖途徑的關鍵酶(包括蔗糖合酶(sucrose synthase)、UDP-D-半乳糖-4-差向異構酶(UDP-D-galactose-4- epimerase)、肌醇半乳糖苷合酶(galactinol synthase)和水蘇糖合酶(stachyose synthase))基因的轉(zhuǎn)錄水平在脫水敏感的突變體種子中被顯著下調(diào)[69];另一方面,轉(zhuǎn)化酶(invertase)的基因被上調(diào),表明D-葡萄糖和D-果糖沒有被代謝成為棉子糖和水蘇糖,這一結果被脫水敏感的突變體種子具有高水平的D-葡萄糖和D-果糖所證實[69]。Jing等[70]的研究得出類似結果,與野生型和耐脫水性增加的突變體種子相比,擬南芥突變體中肌醇半乳糖苷合酶和棉子糖合酶(raffinose synthase)的過表達與高濃度的肌醇半乳糖苷、棉子糖和水蘇糖有關。在正常性象牙花()種子中也發(fā)現(xiàn)棉子糖的積累增加[71]。在耐脫水歐洲山毛櫸()種子中,棉子糖含量增加以及蔗糖與棉子糖的比值降低[72]。糖的積累也是高度耐脫水性復蘇植物的特征[73-74]。以上結果表明,在種子成熟后期,細胞質(zhì)中,與棉子糖途徑相關基因表達的增加和可溶性非還原糖的積累可能是種子形成耐脫水性的關鍵作用之一。

      5 耐脫水性的遺傳調(diào)控

      5.1 轉(zhuǎn)錄水平的基因表達調(diào)控

      耐脫水性和脫水敏感性種子在其成熟過程中的基因表達模式存在一些差異[27, 69],這些差異主要受ABA水平和信號轉(zhuǎn)導途徑的調(diào)控,涉及種子成熟和休眠過程的許多轉(zhuǎn)錄因子,但也有不依賴于ABA信號的機制[11-12, 75-76]。在發(fā)育的種子中,ABA含量通常在發(fā)育中期達到峰值,成熟脫水時下降。ABA的應用賦予未成熟合子胚(如大麥)和敏感體細胞胚(如紫花苜蓿和油菜)的耐脫水性。對ABA不敏感和不能合成ABA的擬南芥突變體產(chǎn)生脫水敏感性種子。在外源ABA存在時,調(diào)控種子成熟的轉(zhuǎn)錄激活因子ABI3(ABA INSENSITIVE 3)的異位表達導致胡蘿卜()非胚性細胞的耐脫水性[2]。

      在種子發(fā)育和成熟過程中,B3轉(zhuǎn)錄因子的AFL亞家族在ABA信號轉(zhuǎn)導中起關鍵作用。AFL來源于、()和()一組基因的首字母,包括與CCAAT轉(zhuǎn)錄因子的NF-YB亞基結合的一個直系同源物(())[77-78],這些轉(zhuǎn)錄因子可以控制數(shù)千個與種子發(fā)育階段有關的基因表達。AFL轉(zhuǎn)錄因子的主要特征是具有一個由七股鏈的β-折疊組成的B3 DNA結合結構域,它排列成一個開放的桶狀,2個短的α-螺旋酶(α-helicase)位于桶的兩端[79]。B3結構域與RY基序結合,能夠激活屬于成熟特異性的基因。此外,ABI3的活性還需要另一個結構域(B2結構域)的參與,該結構域與ABA反應元件結合[80]。AFL基因的突變引起種子貯存物缺乏,降低耐脫水性程度,以及導致難以獲得休眠特性[81]。

      最初鑒定的植物B3轉(zhuǎn)錄因子是玉米VP1(VIVIPAROUS-1),它是擬南芥ABI3轉(zhuǎn)錄因子的直系同源物。玉米突變體種子對ABA不敏感,表現(xiàn)為種子在穗上萌發(fā),因此不能達到靜止狀態(tài)[81]。同樣,擬南芥突變體種子也不能完成成熟程序。因此,它們具有低耐脫水性以及不能獲得休眠[82]。一些突變體種子由于缺乏葉綠素分解代謝而保持綠色,導致生活力和貯藏壽命降低[36]。因此,ABI3很可能與花青素(anthocyanin)和葉綠素的積累減少有關。苜蓿和擬南芥共表達網(wǎng)絡研究表明,ABI3與耐脫水性相關基因的關聯(lián)程度最高[83]。因此,該轉(zhuǎn)錄因子是種子發(fā)育過程中的一個重要的轉(zhuǎn)錄調(diào)控因子。Delahaie等[58]將苜蓿突變體的耐脫水性缺失與LEA蛋白的積累減少相聯(lián)系。擬南芥ABI3不僅是一個與耐脫水性形成相關的LEA蛋白的正調(diào)控因子(圖1),而且也是營養(yǎng)組織專一的LEA蛋白的抑制因子[84]。To等[82]在擬南芥、和3突變體的表達分析中提出,ABI3調(diào)控另一個AFL轉(zhuǎn)錄因子FUS3,特別是在胚軸和子葉中。此外,ABI3也被其他AFL調(diào)控,包括它本身[82](圖1)。、和突變體種子含有較低的貯藏蛋白和脂質(zhì)含量[45, 85-86]。

      Braybrook等[80]證明LEC2在種子發(fā)育最初階段表達,直到成熟中期仍然保持活性。LEC2通過誘導其他AFL轉(zhuǎn)錄因子(如ABI3和FUS3)的表達,直接和間接地激活與種子成熟以及與脂質(zhì)和種子貯藏蛋白(seed storage protein,SSP)積累相關的基因表達[80]。在種子發(fā)育早期階段,需要LEC2激活FUS3表達;在成熟后期階段,需要LEC2來維持ABI3的穩(wěn)定表達水平[82]。通過正調(diào)控FUS3和ABI3的表達,LEC2也阻止花青素和葉綠素的積累[82]。LEC2直接調(diào)控WRI1(WRINKLED 1)的表達,在種子成熟過程中,WRI1在脂肪酸生物合成中起關鍵作用(圖1),但WRI1似乎僅僅在胚的下胚軸中被LEC2轉(zhuǎn)錄誘導[87]。LEC2還調(diào)控與貯藏物積累相關的另一個基因的表達,該基因編碼油素蛋白(oleosin)[80, 88]以及編碼2S和12S貯藏蛋白[80](圖1)。因此,的突變可能引起種子貯藏物的減少。此外,LEC2通過誘導EEL(ENHANCED EM LEVEL)堿性亮氨酸拉鏈(basic leucine zipper,bZIP)轉(zhuǎn)錄因子的表達,進而間接影響和的表達[80]。在擬南芥中,bZIP轉(zhuǎn)錄因子是這些EM蛋白的負調(diào)控因子,EEL轉(zhuǎn)錄因子與EM正調(diào)控因子ABI5競爭其啟動子位點。在成熟后期和脫水過程中,當LEC2含量較低時,EEL的數(shù)量下降,耐脫水性相關蛋白EM1和EM6的表達被ABI5誘導。因此,LEC2在種子耐脫水性形成中的主要作用似乎是調(diào)控與貯藏物積累相關的基因[11]。LEC1激活LEC2和FUS3,而LEC2也激活LEC1和FUS3[89-90]。

      FUS3抑制TTG1(TRANSPARENT TESTA GLABRA 1)轉(zhuǎn)錄因子,一個與脂肪酸和貯藏蛋白生物合成相關基因的負調(diào)控因子;以及正調(diào)控脂肪酸生物合成誘導因子WRI1(WRINKLED 1);因此,F(xiàn)US3間接地正向影響貯藏物的積累。FUS3也在子葉的兩側調(diào)控ABI3表達。LEC2調(diào)控其他B3轉(zhuǎn)錄因子FUS3和ABI3,阻止花青素和葉綠素的積累,以及通過正調(diào)控WRI1和OLE1參與增加脂肪酸的生物合成和貯藏;LEC2也正調(diào)控2S和12S貯藏蛋白的表達。ABI3調(diào)控胚軸和子葉中FUS3的表達,以及通過正調(diào)控HSFA9轉(zhuǎn)錄因子間接參與熱休克保護性蛋白的積累;ABI3是胚胎發(fā)生晚期豐富(LEA)保護性蛋白的主要調(diào)控因子

      另一個關鍵的與發(fā)育種子中貯藏物積累相關的B3轉(zhuǎn)錄因子是FUS3。Wang等[91]研究表明擬南芥FUS3的直接和間接靶基因與營養(yǎng)庫的活性、脂質(zhì)定位、貯藏、代謝過程和種子油體的生物發(fā)生有關。TTG1(TRANSPARENT TESTA GLABRA 1)是擬南芥中抑制種子油和貯藏蛋白積累的轉(zhuǎn)錄因子[92],F(xiàn)US3對貯藏物相關基因的間接轉(zhuǎn)錄調(diào)控與對TTG1的負調(diào)控有關(圖1),通過抑制TTG1,導致編碼2S貯藏蛋白前體基因的表達[92]。TTG1與花青素積累相關,在成熟種子中,花青素與脂肪酸生物合成過程競爭相同的碳源,抑制與脂肪酸碳鏈延長相關的還原酶基因的表達[91-92]。WRI1是發(fā)育種子中脂肪酸生物合成化合物的正調(diào)控因子[93],F(xiàn)US3與LEC2共同誘導WRI1表達,通過抑制TTG1和增強WRI1的表達,間接促進貯藏脂質(zhì)的生物合成。

      5.2 表觀遺傳調(diào)控

      表觀遺傳學(epigenetics)研究基因組中可遺傳的改變,這些改變不伴隨DNA序列的任何變化[94-95]。表觀遺傳事件主要依賴于胞嘧啶殘基的DNA甲基化(DNA methylation)、組蛋白的翻譯后共價修飾(covalent post-translational modification),如乙?;╝cetylation)、甲基化、泛素化(ubiquitylation)和小分子RNA的合成[94-95]。

      研究發(fā)現(xiàn),DNA甲基化在種子成熟后期的耐脫水性形成中起重要作用[41, 96]。DNA甲基化是DNA序列中一種普遍的胞嘧啶共價修飾,可以分為維持型(maintenance type)和從頭型(de novo type)2種類型[97-98]。在所有真核生物中,修飾位點通常定位于CG區(qū)域(CG consensus),但在植物中甲基化也可能發(fā)生在CHG和CHH區(qū)域的胞嘧啶,其中H是除G以外的任何核苷酸[99]。甲基化反應由位點專一的DNA胞嘧啶甲基轉(zhuǎn)移酶(DNA cytosine methyltransferase)催化,在DNA鏈中產(chǎn)生5-甲基胞嘧啶殘基[99]。在從頭甲基化中,底物是非甲基化的DNA分子。維持甲基化是對新合成的DNA鏈進行修飾,與母體DNA互補,以保持現(xiàn)有的胞嘧啶甲基化模式[99]。

      植物中至少有3個DNA甲基轉(zhuǎn)移酶家族,包括甲基轉(zhuǎn)移酶1(methyltransferases 1,MET1)、染色質(zhì)甲基化酶3(chromomethylase 3,CMT3)和域重排甲基轉(zhuǎn)移酶2(domain rearranged methyltransferases 2,DRM2)家族。MET1在CG位點參與維持甲基化,而CMT3在CHG和CHH位點催化維持甲基化[99]。DRM2催化從頭甲基化,在植物所有器官和組織中均有表達。靶甲基化位點的識別依賴于與靶DNA位點互補的小分子干擾RNA(small interfering RNA)。在識別和相互作用后,RNA指導的DNA甲基化(RNA-directed DNA methylation,RdDM)在CG位點發(fā)生,較小程度上在CHG和CHH位點發(fā)生[98]。在種子形成過程中和成熟后期,通過RdDM機制在CHH位點發(fā)生甲基化[100]。在種子形成過程中,CG和CHG位點的DNA甲基化通常保持穩(wěn)定,而mCHH甲基化水平在整個種子發(fā)育過程中顯著增加,隨后在種子萌發(fā)過程中逐漸降低[98, 100]。在整個植物生命周期中,低甲基化的基因組區(qū)域富含編碼轉(zhuǎn)錄因子、貯藏蛋白和脂肪酸代謝酶的基因[101]。與發(fā)育早期的胚和幼苗相比,成熟胚具有較高的基因組甲基化水平,主要是由于CHH位點的高水平甲基化造成的[12]。

      An等[102]分別在CG、CHG和CHH位點鑒定了40、66和2 136個含有差異甲基化區(qū)域的基因,在CG、CHG和CHH位點中檢測到66%、45%和9%的甲基化。因此,在種子成熟過程中,CHH的甲基化水平從6%增加到11%,而含有CHH區(qū)域的基因表達被顯著減少。這些基因主要與DNA復制和細胞分裂有關[102]。在成熟后期,種子脫水引起核DNA的甲基化[96, 103],通常與基因轉(zhuǎn)錄的長期抑制有關[99]。Michalak等[103]發(fā)現(xiàn)正常性野生梨()種子在成熟完成后,總DNA的甲基化水平立即增加。

      盡管胞嘧啶甲基化是一種相對穩(wěn)定的表觀遺傳修飾,但它能被酶促去甲基化(enzymatic demethylation)控制[104]。去甲基化是通過切除甲基化核苷酸,隨后插入非甲基化胞嘧啶完成[105]。參與植物DNA去甲基化的酶包括糖基化酶(demeter,DME)、沉默抑制子1(repressor of silencing 1,ROS1)/類糖基化酶1(demeter-like 1,DML1)、DML2和DML3[106]。

      除了DNA甲基化外,基因表達的表觀遺傳調(diào)控也可能依賴于組蛋白的翻譯后共價修飾和染色質(zhì)重塑(chromatin remodeling)[97]。這種組蛋白的翻譯后修飾(如乙?;?、甲基化和泛素化)在種子形成和休眠調(diào)控中起重要作用[99, 107-108]。此外,小分子干擾RNA和/或長非編碼RNA(long non-coding RNA)也能觸發(fā)休眠或者萌發(fā)種子的表觀遺傳變化[12]。

      5.3 ABA和DOG1對種子成熟的調(diào)控

      種子成熟的調(diào)控除了依賴AFL轉(zhuǎn)錄因子網(wǎng)絡外[107],還依賴ABA的種子成熟調(diào)控因子DOG1和DOG4,它們在胚胎發(fā)生、萌發(fā)抑制、貯藏物積累和耐脫水性中也起重要作用[65, 108-109]。研究表明,ABA激活LEA蛋白合成,從而影響發(fā)育種子的耐脫水性和對不利環(huán)境因子的耐性[45, 85]。脫水敏感突變體的種子直接在母體植株上萌發(fā)[45, 86, 110]。轉(zhuǎn)錄因子DOGL4(DOG1-like 4)誘導70多個種子成熟專一基因的表達,包括編碼貯藏蛋白如白蛋白(albumin)、cruciferin和油素蛋白的基因,被認為是種子貯藏化合物積累的主要調(diào)控因子[109]。

      ABA通過刺激FUS3和LEC1轉(zhuǎn)錄因子促進種子成熟和休眠,從而正調(diào)控貯藏物的生物合成[89]。外源ABA增強FUS3表達,F(xiàn)US3也誘導ABA增加。因此,F(xiàn)US3和ABA相互作為正調(diào)控因子起作用[11, 89]。擬南芥和玉米種子不積累貯藏蛋白,不形成耐脫水性,不進入休眠,可能直接在母體植株上萌發(fā)[111]。

      Nakabayashi等[112]提出DOG1和ABA以平行的途徑在種子休眠調(diào)控中起作用(圖2),這兩條途徑在ABI3或ABI3下游匯合。核心ABA信號轉(zhuǎn)導組分主要由PYR/PYL/RCAR(pyrabactin resistance 1/pyrabactin resistance 1-like/ regulatory components of ABA receptor)蛋白、A組2C類蛋白磷酸酶(group A type 2C protein phosphatase,PP2C)、亞類Ⅲ蔗糖非發(fā)酵-1-相關蛋白激酶2(subclass Ⅲ sucrose nonfermenting-1-related protein kinase 2,SnRK2)和ABF(ABA-responsive element(ABRE)-binding factor/ABRE-binding protein(AREB))轉(zhuǎn)錄因子組成[85, 113-114](圖2)。ABA信號轉(zhuǎn)導與種子成熟相關的調(diào)控基因表達有關[115]。

      DOG1信號轉(zhuǎn)導途徑的關鍵組分是血紅素分子和由AHG1和AHG3編碼的PP2C。PCAR-ABA-PP2C和/或DOG1-血紅素-PP2C的三重復合物阻斷PP2C與SnRK2的結合?;罨腟nRK2使ABI3和ABI5磷酸化,ABI3和ABI5與ABA控制的基因的啟動子(Pro)結合。在種子中,平行的ABA和DOG1信號轉(zhuǎn)導途徑激活棉子糖家族寡聚糖(RFO)的合成、LEA和HSP的表達,從而調(diào)控耐脫水性的起始和向休眠轉(zhuǎn)變。PYB/PYL/PCAR,pyrabactin resistance (PYR)/PYR-like/regulatory component of abscisic acid receptor;AHG,ABA過敏感萌發(fā);PP2C,A組2C類蛋白磷酸酶;SnRK2,亞類Ⅲ蔗糖非發(fā)酵-1-相關蛋白激酶2

      PP2C被稱為ABA信號轉(zhuǎn)導的關鍵負調(diào)控因子,由ABI1和AHG1(ABA hypersensitive germination 1)亞家族組成[116]。在低水平ABA條件下,PP2C通過抑制SnRK2阻斷ABA信號轉(zhuǎn)導,從而阻止由ABI3和ABI5介導的調(diào)控事件。相反,ABA水平的增加誘導PP2C與受體結合,形成一個三重的RCAR-ABA- PP2C復合物,抑制PP2C磷酸酶活性,從而誘導轉(zhuǎn)錄因子ABI3和ABI5的磷酸化,誘導ABA依賴的基因表達[117](圖2)。ABI3、ABI4和ABI5是萌發(fā)擬南芥種子重建耐脫水性所必需的[118]。

      DOG1誘導ABI3/ABI5介導的和表達,增加含氮化合物的積累以及促進種子成熟和隨后的耐脫水性[65]。DOG1信號轉(zhuǎn)導途徑的關鍵組分蛋白磷酸酶AHG1和AHG3是PP2C家族成員,抑制蛋白激酶SnRK2[116](圖2)。此外,DOG1能與血紅素結合。DOG1與AHG1和/或AHG3結合導致SnRK2的釋放和ABI5的磷酸化。DOG1控制多個種子成熟基因的表達,包括和以及棉子糖家族寡聚糖生物合成的基因[12]。因此,由ABA和DOG1調(diào)控的信號轉(zhuǎn)導途徑的激活抑制PP2C家族蛋白磷酸酶的活性,從而抑制ABA依賴的基因表達的轉(zhuǎn)錄因子[110]。

      6 展望

      種子是農(nóng)業(yè)的“芯片”,是農(nóng)業(yè)科學與技術的載體。正常性種子具有耐脫水性,在喪失高達95%水分后仍然能夠保持其生活力。耐脫水性確保了種子在不利環(huán)境條件下長期存活,是種子安全貯藏和植物種質(zhì)資源長期保存的基礎。正常性種子的耐脫水性在發(fā)育過程中形成并逐漸增加,在萌發(fā)過程中又逐漸喪失,PEG可以誘導萌發(fā)種子耐脫水性的重建;頑拗性種子在整個發(fā)育過程中不耐脫水,對水分喪失高度敏感;中間性種子具有一定的耐脫水性;以及種子的不同組織其耐脫水性不同。利用種子的這些特性建立和完善耐脫水性的模式研究系統(tǒng),可以深入研究種子耐脫水性的分子機理。

      種子的耐脫水性是一種復雜的性狀,其形成機制包括代謝活性下降,ROS的產(chǎn)生與清除活性,LEA蛋白、HSP和非還原性棉子糖家族的保護作用,以及AFL亞家族轉(zhuǎn)錄因子網(wǎng)絡及其調(diào)控。值得注意的是,種子的萌發(fā)能力、耐脫水性和休眠特性都是在發(fā)育過程中起始和完成的,它們之間的相互關系還不清楚。研究表明,大多數(shù)具有生理休眠的種子是耐脫水的,但其休眠特性與耐脫水性之間的關系尚不清楚。此外,AFL轉(zhuǎn)錄因子調(diào)控不同類型種子的成熟程序,但耐脫水性和脫水敏感性種子之間的表達模式存在一些差異,產(chǎn)生這些差異的原因也不清楚[11]。

      種子中同時存在核心ABA信號途徑和DOG1信號途徑,這兩條途徑在ABI3或ABI3下游匯合(圖2)。在種子脫水過程中,哪一條途徑優(yōu)先響應以及這兩條途徑怎樣協(xié)調(diào)也不清楚。

      組學技術已經(jīng)應用于種子耐脫水性的研究,在構建新的耐脫水性研究體系的基礎上,結合細胞學、生理學和各種組學技術(包括轉(zhuǎn)錄組、翻譯組、蛋白質(zhì)組和代謝組)研究,可能產(chǎn)生一些新的知識。這些新知識將有助于更全面地理解種子耐脫水性的機制,為提高農(nóng)作物的脅迫抗性與產(chǎn)量,改善資源庫的貯藏條件和長期保存植物種質(zhì)資源提供參考。

      [1] Bewley J D, Bradford K J, Hilhorst H W M, NONOGAKI H.Seeds: Physiology of Development, Germination and Dormancy.3rd ed.New York: Springer, 2013.

      [2] Black M,Bewley J D, Halmer P.The Encyclopedia of Seed.Science, Technology and Uses.Oxfordshire: CAB International, 2006.

      [3] Leprince O, Buitink J.Desiccation tolerance: From genomics to the field.Plant Science, 2010, 179: 554-564.

      [4] Oliver M J, Farran t J M, Hilhorst H W M, MUNDREE S, WILLIAMS B, BEWLEY J D.Desiccation tolerance: Avoiding cellular damage during drying and rehydration.Annual Review of Plant Biology, 2020, 71: 435-460.

      [5] Song S Q, Berjak P, Pammenter N.Desiccation sensitivity ofSond.axes and antioxidant role of ascorbic acid.Acta Botanica Sinica, 2004, 46: 803-810.

      [6] 傅家瑞, 宋松泉.頑拗性種子生物學.北京: 中國科學文化出版社, 2004.

      Fu J R, Song S Q.Recalcitrant Seed Biology.Beijing: China Science and Culture Press, 2004.(in Chinese)

      [7] Pammenter N W, Berjak P.Physiology of desiccation-sensitive (recalcitrant) seeds and the implications for cryopreservation.International Journal of Plant Science, 2014, 175: 21-28.

      [8] Kan J, Song S Q.Effects of dehydration, chilling, light, phytohormones and nitric oxide on germination ofseeds.Seed Science and Technology, 2008, 36: 38-45.

      [9] Berjak P, Pammenter N W.Implications of the lack of desiccation tolerance in recalcitrant seeds.Frontiers in Plant Science, 2013, 4: 478.

      [10] Berjak P, Pammenter N W.Recalcitrant seeds//Benech- Arnold R L, Snchez R A, eds.Handbook of Seed Physiology: Applications to Agriculture.New York: Haworth Press, 2014: 305-345.

      [11] Kijak H, Ratajczak E.What do we know about the genetic basis of seed desiccation tolerance and longevity? International Journal of Molecular Science, 2020, 21: 3612.

      [12] Smolikova G, Leonova T, Vashurina N, FROLOV A, MEDVEDEV S.Desiccation tolerance as the basis of long-term seed viability.International Journal of Molecular Sciences, 2021, 22: 101.

      [13] Wang W Q, Wang Y, Song X J, ZHANG Q, CHENG H Y, LIU J, SONG S Q.Proteomic analysis of desiccation tolerance and its re-establishment in different embryo axis tissues of germinated pea seeds.Journal of Proteome Research, 2021, 20: 2352-2363.

      [14] Xu X, Legay S, Sergeant K, ZORZAN S, LECLERCQ C C, CHARTON S, GIAROLA V, LIU X, CHALLABATHULA D, RENAUT J, HAUSMAN J F, BARTELS D, GUERRIERO E.Molecular insights into plant desiccation tolerance: Transcriptomics, proteomics and targeted metabolite profiling in.The Plant Journal, 2021, 107: 377-398.

      [15] Wu J H, Wang W Q, Song S Q, CHENG H Y.Reactive oxygen species scavenging enzymes and down-adjustment of metabolism level in mitochondria associated with desiccation-tolerance acquisition of maize embryo.Journal of Integrative Plant Biology, 2009, 51: 638-645.

      [16] Wang W Q, Ye J Q, Rogowska-Wrzesinska A, WOJDYLA K, JENSEN O N, M?LLER I M, SONG S Q.Proteomic comparison between maturation drying and prematurely imposed drying ofseeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance.Journal of Proteome Research, 2013, 13: 606-626.

      [17] Huang H, M?ller I M, Song S Q.Proteomics of desiccation tolerance during development and germination of maize embryos.Journal of Proteomics, 2012, 75: 1247-1262.

      [18] Huang H, Song S Q, Wu X J.Response of Chinese wampee axes and maize embryos on dehydration at different rates.Journal of Integrative Plant Biology, 2009, 51: 67-74.

      [19] 宋松泉, Berjak P, Pammenter N W.Temporal pattern of changes in desiccation tolerance during imbibition ofseeds.云南植物研究, 2009, 31: 239-246.

      Song S Q, Berjak P, Pammenter N W.Temporal pattern of changes in desiccation tolerance during imbibition ofseeds.Acta Botanica Yunnanica, 2009, 31: 239-246.(in Chinese)

      [20] Wang W Q, Cheng H Y, M?ller I M, SONG S Q.The role of recovery of mitochondrial structure and function in desiccation tolerance of pea seeds.Physiologia Plantarum, 2012, 144: 20-34.

      [21] Song S Q, Fu J R.Studies on desiccation sensitivity and peroxidation of membrane lipids in lychee (Sonn.) seeds.Chinese Science Bulletin, 1992, 37: 1470-1473.

      [22] Cheng H Y, Song S Q.Possible involvement of reactive oxygen species scavenging enzymes in desiccation sensitivity ofseeds and axes.Journal of Integrative Plant Biology, 2008, 50: 1549-1556.

      [23] 宋松泉, 傅家瑞.黃皮種子脫水敏感性與脂質(zhì)過氧化作用.植物生理學報, 1997, 25: 163-168.

      Song S Q, Fu J R.Desiccation-sensitivity and lipid peroxidation in Chinese wampee [(Lour.) Skeels] seeds.Acta Phytophysiologica Sinica, 1997, 25: 163-168.(in Chinese)

      [24] 王偉青, 程紅焱, 劉樹君, 宋松泉.黃皮種子線粒體呼吸速率和活性氧清除酶對脫水的響應及其生態(tài)學意義.植物生態(tài)學報, 2012, 36: 870-879.

      Wang W Q, Cheng H Y, Liu S J, SONG S Q.Response of respiratory rate and reactive oxygen species scavenging enzyme activity in seed mitochondria ofdehydration and its ecological significance.Chinese Journal Plant Ecology, 2012, 36: 870-879.(in Chinese)

      [25] Obroucheva N V, Sinkevich I A, Lityagina S V.Physiological aspects of seed recalcitrance: A case study on the tree.Tree Physiology, 2016, 36: 1127-1150.

      [26] Song S Q, Tian M H, Kan J, CHENG H Y.The response difference of mitochondria in recalcitrantaxes and orthodoxembryos to dehydration injury.Journal of Integrative Plant Biology, 2009, 51: 646-653.

      [27] Stavrinides A K, Dussert S, Combes M C, FOCK-BASTIDE I, SEVERAC D, MINIER J, BASTOS-SIQUEIRA A, DEMOLOMBE V, HEM S, LASHERMESW P, JO?T T.Seed comparative genomics in three coffee species identify desiccation tolerance mechanisms in intermediate seeds.Journal of Experimental Botany, 2020, 71: 1418-1433.

      [28] Leprince O, Buitink J, Hoekstra F A.Axes and cotyledons of recalcitrant seeds ofMill.exhibit contrasting responses of respiration to drying in relation to desiccation sensitivity.Journal of Experimental Botany, 1999, 50: 1515-1524.

      [29] M?ller I M.Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species.Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 561-591.

      [30] BaillyC.The signalling role of ROS in the regulation of seed germination and dormancy.Biochemical Journal, 2019, 476: 3019-3032.

      [31] Del Río L A.ROS and RNS in plant physiology: An overview.Journal of Experimental Botany, 2015, 66: 2827-2837.

      [32] Mittler R.ROS are good.Trends in Plant Science, 2017, 22: 11-19.

      [33] Demidchik V.Reactive oxygen species and their role in plant oxidative stress//Shabala S, ed.Plant Stress Physiology.CABI: Wallingford, 2017.

      [34] Mullineaux P M, Baker N R.Oxidative stress: Antagonistic signaling for acclimation or cell death? Plant Physiology, 2010, 154: 521-525.

      [35] Jeevan KUMAR S P, Rajendra P S, Banerjee R, THAMMINENI C.Seed birth to death: Dual functions of reactive oxygen species in seed physiology.Annals of Botany-London, 2015, 116: 663-668.

      [36] Sano N, Rajjou L, North H M, DEBEAUJON I, MARION-POLL A, SEO M.Staying alive: Molecular aspects of seed longevity.Plant Cell and Physiology, 2016, 57: 660-674.

      [37] Colville L, Kranner I.Desiccation tolerant plants as model systems to study redox regulation of protein thiols.Plant Growth Regulation, 2016, 2: 241-255.

      [38] Foyer C H, Noctor G.Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses.The Plant Cell, 2005, 17: 1866-1875.

      [39] Ratajczak E, Ma?ecka A, Ciereszko I, STASZAK A M.Mitochondria are important determinants of the aging of seeds.International Journal of Molecular Science, 2019, 20: 1568.

      [40] Chen D, Li Y, Fang T, SHI X, CHEN X.Specific roles of tocopherols and tocotrienols in seed longevity and germination tolerance to abiotic stress in transgenic rice.Plant Science, 2016, 244: 31-39.

      [41] Kurek K, Plitta-Michalak B, Ratajczak E.Reactive oxygen species as potential drivers of the seed aging process.Plants, 2019, 8: 174.

      [42] Kranner I, Minibayeva F V, Beckett R P, SEAL C E.What is stress? Concepts, definitions and applications in seed science.New Phytologist, 2010, 188: 655-673.

      [43] Roach T, Nagel M, B?rner A, EBERLE C, KRANNER I.Changes in tocochromanol and glutathione reveal differences in the mechanisms of seed ageing under seed bank conditions and controlled deterioration in barley.Environmental and Experimental Botany, 2018, 156: 8-15.

      [44] Shvachko N A, Khlestkina E K.Molecular genetic bases of seed resistance to oxidative stress during storage.Vavilov Journal Genetics and Breeding, 2020, 24: 451-458.

      [45] Leprince O, Pellizzaro A, Berriri S, BUITINK J.Late seed maturation: Drying without dying.Journal of Experimental Botany, 2017, 68: 827-841.

      [46] Marques A, Buijs G, Ligterink W, HILHORST H.Evolutionary ecophysiology of seed desiccation sensitivity.Functional Plant Biology, 2018, 45: 1083.

      [47] Dure L I I I, Galau G A.Developmental biochemistry of cottonseed embryogenesis and germination: XIII.Regulation of the biosynthesis of the principal storage proteins.Plant Physiology, 1981, 68: 187-194.

      [48] Battaglia M, Covarrubias A A.Late embryogenesis abundant (LEA) proteins in legumes.Frontiers in Plant Science, 2013, 4: 190.

      [49] Costa M C D, Cooper K, Hilhorst H W M, FARRANT J M.Orthodox seeds and resurrection plants: Two of a kind? Plant Physiology, 2017, 175: 589-599.

      [50] Amara I, Zaidi I, Masmoudi K, LUDEVID M D, PAGèS M, GODAY A, BRINI F.Insights into late embryogenesis abundant (LEA) proteins in plants: From structure to the functions.American Journal of Plant Sciences, 2014, 5: 3440-3455.

      [51] Candat A, Paszkiewicz G, Neveu M, GAUTIER R, LOGAN D C, AVELANGE-MACHEREL M H, MACHEREL D.The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments inoffers tailored protection against abiotic stress.The Plant Cell, 2014, 26: 3148-3166.

      [52] Hundertmark M, Hincha D K.LEA (late embryogenesis abundant) proteins and their encoding genes in.BMC Genomics, 2008, 9: 118.

      [53] Artur M A S, Zhao T, Ligterink W, SCHRANZ E, HILHORST H W M.Dissecting the genomic diversification of late embryogenesis abundant (LEA) protein gene families in plants.Genome Biology and Evolution, 2019, 11: 459-471.

      [54] Chen C, Zabad S, Liu H, WANG W, JEFFERY C.MoonProt 2.0: An expansion and update of the moonlighting proteins database.Nucleic Acids Research, 2018, 46: D640-D644.

      [55] Jin X, Cao D, Wang Z, MA L, TIAN K, LIU Y, GONG Z, ZHU X, JIANG C, LI Y.Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses.Scientific Reports, 2019, 9: 14123.

      [56] Olvera-Carrillo Y, Campos F, Reyes J L, GARCIARRUBIO A, COVARRUBIAS A A.Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in.Plant Physiology, 2010, 154: 373-390.

      [57] Farrant J M, Pammenter N W, Berjak P.Seed development in relation to desiccation tolerance: A comparison between desiccation-sensitive (recalcitrant) seeds ofand desiccation-tolerant types.Seed Science Research, 1993, 3: 1-13.

      [58] Delahaie J, Hundertmark M, Bove J, LEPRINCE O, ROGNIAUX H, BUITINK J.LEA polypeptide profiling of recalcitrant and orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation tolerance.Journal of Experimental Botany, 2013, 64: 4559-4573.

      [59] Jin X, Liu D, Ma L, GONG Z, CAO D, LIU Y, LI Y, JIANG C.Transcriptome and expression profiling analysis of recalcitrant tea (L.) seeds sensitive to dehydration.International Journal of Genomics, 2018, 2018: 5963797.

      [60] Dussert S, Serret J, Bastos-Siqueira A, MORCILLO F, DèCHAMP E, ROFIDAL V, LASHERMES P, ETIENNE H, JO?T T.Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds.Journal of Experimental Botany, 2018, 69: 1583-1597.

      [61] Kalemba E M, Pukacka S.Possible role of LEA proteins and sHSPs in seed protection: A short review.Biology Letters, 2007, 44: 3-16.

      [62] Kaur H, Petla B P, Kamble N U, SINGH A, RAO V, SALVI P, GHOSH S, MAJEE M.Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress.Frontiers in Plant Science, 2015, 6: 713.

      [63] Nover L, Bharti K, D?ring P, MISHRA S K, GANGULI A, SCHARF K D.and the heat stress transcription factor world: How many heat stress transcription factors do we need? Cell Stress and Chaperones, 2001, 6: 177.

      [64] Neto V G, Barbosa R R, Carosio M G A, FERREIRA A G, FERNANDEZ L G, DE CASTRO R D, LIGTERINK W, HILHORST H, RIBERIRO P R.Sequence analysis ofsmall heat shock protein (sHSP) subfamily and its role in abiotic stress responses.Industrial Crops and Products, 2020, 152: 112541.

      [65] Dekkers B J W, He H, Hanson J, WILLEMS L A J, JAMER D C L, CUEFF G, RAJJOU L, HILHORST H W M, BENTSINK L.Thegene affects() expression and genetically interacts withduringseed development.The Plant Journal, 2016, 85: 451-465.

      [66] Baud S, Dubreucq B, Miquel M, ROCHAT C, LEPINIEC L.Storage reserve accumulation in: Metabolic and developmental control of seed filling.The Arabidopsis Book, 2008, 6: e0113.

      [67] Buitink J, Leprince O.Intracellular glasses and seed survival in the dry state.Comptes Rendus Biologies, 2008, 331: 788-795.

      [68] Walters C.Orthodoxy, recalcitrance and in-between: Describing variation in seed storage characteristics using threshold responses to water loss.Planta, 2015, 242: 397-406.

      [69] González-Morales S I, Chávez-Montes R A, Hayano- Kanashiro C, ALEJO-JACUINDE G, RICO-CAMBRON T Y, DE FOLTER S, HERRERA-ESTRELLA L.Regulatory network analysis reveals novel regulators of seed desiccation tolerance in.Proceedings of the National Academy of Sciences of the United Stated America, 2016, 113: E5232-E5241.

      [70] Jing Y, Lang S, Wang D, XUE H, WANG X F.Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developingseeds.Journal of Plant Physiology, 2018, 230: 109-121.

      [71] Hell A F, Kretzschmar F S, Sim?es K, HEYER A G, BARBEDO C J, BRAGA M R, CENTENO D C.Metabolic changes on the acquisition of desiccation tolerance in seeds of the brazilian native tree.Frontiers in Plant Science, 2019, 10: 1356.

      [72] Pukacka S, Ratajczak E, Kalemba E.Non-reducing sugar levels in beech () seeds as related to withstanding desiccation and storage.Journal of Plant Physiology, 2009, 166: 1381-1390.

      [73] Ingram J, Chandler J W, Gallagher L, SALAMINI F, BARTELS D.Analysis of cDNA clones encoding sucrose-phosphate synthase in relation to sugar interconversions associated with dehydration in the resurrection plantHochst.Plant Physiology, 1997, 115: 113-121.

      [74] Peters S, Mundree S G, Thomson J A, FARRANT J M, KELLER F.Protection mechanisms in the resurrection plant(Baker): Both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit.Journal of Experimental Botany, 2007, 58: 1947-1956.

      [75] Yoshida T, Mogami J, Yamaguchi-Shinozaki K.ABA- dependent and ABA-independent signaling in response to osmotic stress in plants.Current Opinion in Plant Biology, 2014, 21: 133-139.

      [76] Liu S, Lü Z, Liu Y, LI L, ZHANG L.Network analysis of ABA-dependent and ABA- independent drought responsive genes in.Genetics and Molecular Biology, 2018, 41: 624-637.

      [77] Fatihi A, Boulard C, Bouyer D, BAUD S, DUBREUCQ B, LEPINIEC L.Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds.Plant Science, 2016, 250: 198-204.

      [78] Carbonero P, Iglesias-Fernández R, Vicente- Carbajosa J.The AFL subfamily of B3 transcription factors: Evolution and function in angiosperm seeds.Journal of Experimental Botan, 2017, 68: 871-880.

      [79] Yamasaki K, Kigawa T, Seki M, SHINOZAKI K, YOKOYAMA S.DNA-binding domains of plant-specific transcription factors: Structure, function, and evolution.Trends in Plant Science, 2013, 18: 267-276.

      [80] Braybrook S A, Stone S L, Park S, BUI A Q, LE B H, FISCHER R L, GOLDBERG R B, HARADA J J.Genes directly regulated by LEAFY COTYLEDON 2 provide insight into the control of embryo maturation and somatic embryogenesis.Proceedings of the National Academy of Sciences of the United Stated America, 2006, 103: 3468-3473.

      [81] Grimault A, Gendrot G, Chaignon S, GILARD F, TCHERKEZ G, THèVENIN J, DUBREUCQ B, DEPèGE-FARGEIK N, ROGOWSKY P M.Role of B3 domain transcription factors of the AFL family in maize kernel filling.Plant Science, 2015, 236: 116-125.

      [82] To A, Valon C, Savino G, GUILLEMINOT J, DRVIC M, GIRAUDAT J, PARCY F.A network of local and redundant gene regulation governsseed maturation.The Plant Cell, 2006, 18: 1642-1651.

      [83] Righetti K, Vu J L, Pelletier S, VU B L, GLAAB E, LALANNE D, PASHA A, PATEL R V, PROVART N J, VERDIER J, LEPRINCE O, BUITINKA J.Inference of longevity-related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways.The Plant Cell, 2015, 27: 2692-2708.

      [84] Bies-Ethève N, Gaubier-Comella P, Debures A, LASSERRE E, JOBET E, RAYNAL M, COOKE R, DELSENY M.Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in.Plant Molecular Biology, 2008, 67: 107-124.

      [85] Chen K, Li G, Bressan R A, SONG C, ZHU J, ZHAO Y.Abscisic acid dynamics, signaling, and functions in plants.Journal of Integrative Plant Biology, 2020, 62: 25-54.

      [86] Jo L, Pelletier J M, Harada J J.Central role of the LEAFY COTYLEDON 1 transcription factor in seed development.Journal of Integrative Plant Biology, 2019, 61: 564-580.

      [87] Baud S, Mendoza M S, To A, HARSCO?T E, LEPINIEC L, DUBREUCQ B.WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON 2 towards fatty acid metabolism during seed maturation in.The Plant Journal, 2007, 50: 825-838.

      [88] Che N, Yang Y, Li Y, WANG L, HUANG P, GAO Y, An C.Efficient LEC2 activation of OLEOSIN expression requires two neighboring RY elements on its promoter.Science in China Series C-Life Sciences, 2009, 52: 854-863.

      [89] Braybrook S A, Harada J J.LECs go crazy in embryo development.Trends in Plant Science, 2008, 13: 624-630.

      [90] Graeber K, Nakabayashi K, Miatton E, LEUBNER- METZGER G, SOPPE W J J.Molecular mechanisms of seed dormancy.Plant Cell and Environment, 2012, 35: 1769-1786.

      [91] Wang F, Perry S E.Identification of direct targets of fusca3, a key regulator ofseed development.Plant Physiology, 2013, 161: 1251-1264.

      [92] Chen M, Zhang B, Li C, KULAVEERASINGAM H, CHEW F T, YU H.TRANSPARENT TESTA GLABRA 1 regulates the accumulation of seed storage reserves in.Plant Physiology, 2015, 169: 391-402.

      [93] Yamamoto A, Kagaya Y, Usui H, HOBO T, TAKEDA S, HATTORI T.Diverse roles and mechanisms of gene regulation by theseed maturation master regulator FUS3 revealed by microarray analysis.Plant Cell and Physiology, 2010, 51: 2031-2046.

      [94] Berr A, Shen W H.Molecular mechanisms in epigenetic regulation of plant growth and development//Pua E C, Davey M R, eds.Plant Developmental Biology Biotechnological Perspectives.Springer: Berlin/Heidelberg Press, 2010: 325-344.

      [95] Cabej N R.Epigenetic Principles of Evolution.Elsevier Inc.: Amsterdam, The Netherlands, 2019: 733-781.

      [96] Plitta-Michalak B P, Naskret-Barciszewska M Z, Kotlarski S, TOMASZEWSKI D, TYLKOWSKI T, BARCISZEWSKI J, CHMIELARZ P, MICHALAK M.Changes in genomic 5-methylcytosine level mirror the response of orthodox (L.) and recalcitrant (L.) seeds to severe desiccation.Tree Physiology, 2018, 38: 617-629.

      [97] Lebedeva M A, Tvorogova V E, Tikhodeyev O N.Epigenetic mechanisms and their role in plant development.Russian Journal of Genetics, 2017, 53: 1057-1071.

      [98] Bouyer D, Kramdi A, Kassam M, HEESE M, SCHNITTGER A, ROUDIER F, COLOT V.DNA methylation dynamics during early plant life.Genome Biology, 2017, 18: 1-12.

      [99] Bartels A, Han Q, Nair P, STACEY L, GAYNIER H, MOSLEY M, HUANG Q, PEARSON J, HSIEH T F, An Y Q, XIAO W.Dynamic DNA methylation in plant growth and development.International Journal of Molecular Science, 2018, 19: 2144.

      [100] Kawakatsu T, Nery J R, Castanon R, ECKER J R.Dynamic DNA methylation reconfiguration during seed development and germination.Genome Biology, 2017, 18: 1-12.

      [101] Chen M, Lin J Y, Hur J, PELLETIER J M, BADEN R, PELLEGRINI M, HARADA J J, GOLDBERG R B.Seed genome hypomethylated regions are enriched in transcription factor genes.Proceedings of the National Academy of Sciences of the United States of America, 2018, 115: E8315-E8322.

      [102] An Y Q C, Goettel W, Han Q, BARTELS A, LIU Z, XIAO W.Dynamic changes of genome-wide DNA methylation during soybean seed development.Scientific Reports, 2017, 7: 1-14.

      [103] Michalak M, Barciszewska M Z, Barciszewski J, PLITTA B P, CHMIELARZ P.Global changes in DNA methylation in seeds and seedlings ofafter seed desiccation and storage.PLoS ONE, 2013, 8: e70693.

      [104] Li Y, Kumar S, Qian W.Active DNA demethylation: Mechanism and role in plant development.Plant Cell Report, 2018, 37: 77-85.

      [105] Zhu J K.Active DNA demethylation mediated by DNA glycosylases.Annual Review of Genetics, 2009, 43: 143-166.

      [106] Liu R, Lang Z.The mechanism and function of active DNA demethylation in plants.Journal of Integrative Plant Biology, 2020, 62: 148-159.

      [107] Lepiniec L, Devic M, Roscoe T J, BOUYER D, ZHOU D X, BOULARD C, BAUD S, DUBREUCQ B.Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development.Plant Reproduction, 2018, 31: 291-307.

      [108] Nonogaki H.Seed germination and dormancy: The classic story, new puzzles, and evolution.Journal of Integrative Plant Biology, 2019, 61: 541-563.

      [109] Sall K, Dekkers B J W, Nonogaki M, KATSURAGAWA Y, KOYARI R, HENDRIX D, WILLEMS L A J, BENTSINK L, NONOGAKI H.DELAY OF GERMINATION 1-LIKE 4 acts as an inducer of seed reserve accumulation.The Plant Journal, 2019, 100: 7-19.

      [110] Soppe W J J, Bentsink L.Seed dormancy back on track; its definition and regulation by DOG1.New Phytologist, 2020, 228: 816-819.

      [111] Gutierrez L, Wuytswinkel O V, Castelain M, BELLINI C.Combined networks regulating seed maturation.Trends in Plant Science, 2007, 12: 294-300.

      [112] Nakabayashi K, Bartsch M, Xiang Y, MIATTON E, PELLENGAHR S, YANO R, SEO M, SOPPE W J J.The time required for dormancy release inis determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds.The Plant Cell, 2012, 24: 2826-2838.

      [113] Cutler S R, Rodriguez P L, Finkelstein R R, ABRAMS S R.Abscisic acid: Emergence of a core signaling network.Annual Review of Plant Biology, 2010, 61: 651-679.

      [114] Dejonghe W, Okamoto M, Cutler S R.Small molecule probes of ABA biosynthesis and signaling.Plant Cell and Physiology, 2018, 59: 1490-1499.

      [115] Xu P, Cai W.Function ofBnABI3 ings1, an allele of AtABI3, in seed development and stress response.Frontiers in Plant Science, 2019, 10: 67.

      [116] Nishimura N, Tsuchiya W, Moresco J J, HAYASHI Y, SATOH K, KAIWA N, IRISA T, KIOOSHITA T, SCHROEDER J I, YATES J R, HIRAYAMA T, YAMAZAKI T.Control of seed dormancy and germination by DOG1-AHG1 PP2C phosphatase complex via binding to heme.Nature Communications, 2018, 9: 2132.

      [117] Dekkers B J W, Bentsink L.Regulation of seed dormancy by abscisic acid and delay of germination 1.Seed Science Research, 2015, 25: 82-98.

      [118] Maia J, Dekkers B J W, Dolle M J,LIGTERINK W, HILHORST H W M.Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinatedseeds.New Phytologist, 2014, 203: 81-93.

      Research progress on the physiology and its molecular mechanism of seed desiccation tolerance

      SONG SongQuan1,2*, LIU Jun1*, TANG CuiFang3, CHENG HongYan2, WANG WeiQing2, ZHANG Qi1, ZHANG WenHu1, GAO JiaDong1

      1Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Lab for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640;2Institute of Botany, Chinese Academy of Sciences, Beijing 100093;3Shenzhen Qianhai Guoken Earth Fund Management Co., Ltd, Guangzhou 510630

      Dehydration tolerance (DT) is defined as the ability of an organism or tissue to survive the removal of all, or almost all the cellular water without irreversible damage.DT of seeds is an adaptive mechanism to ensure the survival and reproduction of plant species in the long-term evolution process, and plays a key role in the conservation of plant seeds and germplasm resources.However, the DT of seeds is a complex trait, and its molecular mechanism is not now largely understood.Therefore, in the present paper, the research progresses on the physiological and molecular mechanisms of seed DT were reviewed.It was found that the DT of orthodox seeds was gradually formed during development, and reached the peak at physiological maturity.Recalcitrant seeds do not undergo the development stage of maturity dehydration, and are very sensitive to dehydration throughout development.Mature orthodox seeds maintained their resistance to re-dehydration at the initial stage of imbibition.With the time course of germination, the DT decreased gradually, and finally lost completely.The DT of seeds and embryos can be re-established during the early stage of germination, and of different tissues is different.The DT of seeds and embryos was inversely correlated with the decrease in mitochondrial respiratory activity.Respiratory activity of recalcitrant axis mitochondria was higher than that of orthodox embryo ones.During dehydration, the H2O2content, the production rate of superoxide anion radical (·O2-) and the content of thiobarbituric acid reactive substance in desiccation-tolerant embryos (axes) were significantly lower than those of desiccation-sensitive embryos (axes), while the reactive oxygen species scavenging system in desiccation-tolerant embryos (axes), including enzymatic and non-enzymatic activities, was significantly higher than that in desiccation-sensitive embryos (axes).During the maturation of seeds, the accumulation of late embryogenesis abundant (LEA) proteins, small heat shock proteins and non-reducing oligosaccharides is closely related to the formation of DT.The AFL subfamily of B3 transcription factors (including ABI3 (ABA INSENSITIVE 3), FUS3 (FUSCA3) and LEC2 (LEAFY COTYLEDON 2)) increase the DT of seeds and embryos by positively regulating the accumulation of storage materials and protective proteins.The level of DNA methylation increased significantly throughout seed development and then decreased gradually during seed germination.Compared with embryos during the early stage of development and seedlings, mature embryos had a higher level of genomic methylation.In seeds, the parallel ABA and DOG1 (DELAY OF GERMINATION 1) signaling pathways activate synthesis of raffinose family oligosaccharides, and expression of LEA and HSP (heat shock protein) genes, thus regulating the onset of DT and transit to dormancy.Finally, the scientific issues that require to be further studied in this field are proposed, including the re-establishment of their model research system by using seeds and their tissues with different DT.Germinability, DT and dormancy characteristics of seeds are initiated and completed during development, and the relationship among them is still now unclear.There are both core ABA signaling pathway and DOG1 signaling pathway in seeds, and they converge at the ABI3 or downstream of ABI3.Which pathway will response preferentially and how these two pathways coordinate during dehydration of seeds? This paper will provide a reference for comprehensively understanding of the physiology and molecular mechanism of seed DT, increasing the stress resistance and yield of plant crops, improving the storage conditions of the resource bank and long-term preserving plant seed (germplasm) resources.

      antioxidant system; desiccation tolerance; genetic regulation; long-term conservation of germplasm resource; metabolic activity; protective substance

      2021-08-12;

      2021-10-08

      國家科技支撐計劃(2012BAC01B05)、廣東省農(nóng)作物種質(zhì)資源保存與利用重點實驗室項目(2020B121201008)、國家自然科學基金(31871716)

      通信作者宋松泉,E-mail:sqsong@ibcas.ac.cn。通信作者劉軍,E-mail:liujun@gdaas.cn

      (責任編輯 李莉)

      猜你喜歡
      胚軸甲基化線粒體
      不同鮮重秋茄胚軸形態(tài)及其對幼苗生長的影響
      棘皮動物線粒體基因組研究進展
      海洋通報(2021年1期)2021-07-23 01:55:14
      線粒體自噬與帕金森病的研究進展
      生物學通報(2021年4期)2021-03-16 05:41:26
      控制水稻中胚軸伸長的QTL 定位
      中國稻米(2019年6期)2019-12-05 03:34:22
      利用重測序和集團分離分析鑒定水稻中胚軸延長相關染色體區(qū)域
      水稻中胚軸伸長研究進展
      鼻咽癌組織中SYK基因啟動子區(qū)的甲基化分析
      胃癌DNA甲基化研究進展
      NF-κB介導線粒體依賴的神經(jīng)細胞凋亡途徑
      基因組DNA甲基化及組蛋白甲基化
      遺傳(2014年3期)2014-02-28 20:58:49
      大邑县| 安仁县| 墨竹工卡县| 平利县| 张家口市| 佳木斯市| 准格尔旗| 阿克陶县| 六盘水市| 乐安县| 云龙县| 扎赉特旗| 河池市| 宣汉县| 方正县| 庆云县| 阜平县| 探索| 锡林郭勒盟| 永丰县| 巢湖市| 利辛县| 清水河县| 高邑县| 东光县| 德庆县| 漳平市| 丰城市| 抚顺县| 吉木萨尔县| 铜川市| 峨边| 吴桥县| 得荣县| 原平市| 积石山| 镇安县| 阿坝县| 内乡县| 寻甸| 青阳县|