• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      中國北方地區(qū)小麥覆蓋栽培增產(chǎn)效應(yīng)的薈萃(Meta)分析

      2022-05-16 08:49:08秦羽青程宏波柴雨葳馬建濤李瑞李亞偉常磊柴守璽
      中國農(nóng)業(yè)科學(xué) 2022年6期
      關(guān)鍵詞:增產(chǎn)率穗數(shù)覆膜

      秦羽青,程宏波,柴雨葳,馬建濤,李瑞,李亞偉,常磊,柴守璽*

      中國北方地區(qū)小麥覆蓋栽培增產(chǎn)效應(yīng)的薈萃(Meta)分析

      秦羽青,程宏波,柴雨葳,馬建濤,李瑞,李亞偉,常磊,柴守璽*

      甘肅省干旱生境作物學(xué)重點實驗室/甘肅農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,蘭州 730070

      【目的】明確中國北方地區(qū)秸稈覆蓋和地膜覆蓋技術(shù)對小麥生產(chǎn)的影響,探索兩種覆蓋體系的適宜推廣區(qū)域?!痉椒ā吭诮?0年的時間跨度中檢索并篩選出165篇相關(guān)文獻,將其置于薈萃分析(Meta-analysis)的框架下,通過效應(yīng)分析的不同展現(xiàn)形式(如變化率及反應(yīng)比)開展理論研究。整體采用隨機效應(yīng)模型,分析對比不同覆蓋模式下小麥農(nóng)藝指標和農(nóng)田水分狀況的變化情況。進而以亞組分析的形式,重點揭示覆蓋增產(chǎn)效應(yīng)對不同環(huán)境條件(海拔、降水量、氣溫、日照)及田間管理措施(覆蓋周期、種植密度、耕作、施肥)的響應(yīng)規(guī)律,對其進行函數(shù)擬合、權(quán)重分析及統(tǒng)計檢驗。并且通過皮爾遜相關(guān)性分析量化本研究涉及的各個變量之間的相關(guān)性。【結(jié)果】相較于露地栽培,秸稈和地膜覆蓋分別使小麥產(chǎn)量顯著提高了19.53%(95%= 0.55%—38.52%)和24.91%(95%= 3.18%—46.64%),并且抑制了農(nóng)田蒸散。不同覆蓋模式下產(chǎn)量構(gòu)成因素對增產(chǎn)的貢獻率亦存在一定差異,分別為有效穗數(shù)>穗粒數(shù)>千粒重(秸稈覆蓋);有效穗數(shù)>千粒重>穗粒數(shù)(地膜覆蓋)。其中秸稈覆蓋下的穗粒數(shù)增幅較高,達5.7%(95%= -4.10%—15.50%);而覆膜的有效穗數(shù)和千粒重增長更顯著,分別為25.2%(95%= 14.11%—36.29%)和6.4%(95%= 1.50%—11.30%)。除了具有促產(chǎn)優(yōu)勢,覆膜的生物量和水分利用效率同樣比覆秸稈高出18.17%和14.39%。具體表現(xiàn)為在大部分氣象亞區(qū)中地膜覆蓋的增產(chǎn)率相較于秸稈覆蓋高出0.89%—23.34%。同時,隨著地勢的下降,覆膜的增產(chǎn)效應(yīng)相對于非覆蓋呈現(xiàn)出增長趨勢,在低海拔地區(qū)(<800 m)增產(chǎn)率可達34.26%。然而,塑料薄膜相對于秸稈的增產(chǎn)優(yōu)勢會隨著覆蓋年限的增加而逐漸縮小,在超過8年的試驗中,覆蓋秸稈的整體增產(chǎn)率反而更高。秸稈覆蓋產(chǎn)量還受到施肥和耕作措施的影響,尤其是在免耕,不施肥以及單施磷肥這3種處理中,增產(chǎn)率分別達到32.68%,25.94%和21.71%。由統(tǒng)計學(xué)檢驗可知,在海拔、年均日照時數(shù)和種植密度3個亞組中,組間異質(zhì)Q的檢驗量整體較大,說明該組內(nèi)各效應(yīng)量的變異程度更高。秸稈和地膜覆蓋條件下,同產(chǎn)量相關(guān)度最高的因子分別為有效穗數(shù)(= 0.808)和水分利用效率(= 0.718),而影響兩種覆蓋體系中土壤含水量的首要因子分別為蒸散量(= -0.859)以及水分利用效率(= 0.856)?!窘Y(jié)論】兩種覆蓋模式皆具有明顯的增產(chǎn)效應(yīng),且地膜覆蓋在低海拔、偏旱、偏寒地區(qū)更具優(yōu)勢;而秸稈覆蓋更適合融入長期的保護性耕作體系,從而實現(xiàn)生產(chǎn)和生態(tài)的多元協(xié)調(diào)式發(fā)展。因此,因地制宜、因時制宜選擇科學(xué)的覆蓋方法是我國北方小麥覆蓋技術(shù)取得成功的關(guān)鍵。

      秸稈覆蓋;地膜覆蓋;小麥;產(chǎn)量;Meta分析

      0 引言

      【研究意義】表土覆蓋栽培技術(shù)是緩解我國北方地區(qū)作物生產(chǎn)同水資源短缺之間尖銳矛盾的有效措施[1-4]。當(dāng)前我國北部各省區(qū)最重要的覆蓋方式包括地膜覆蓋和秸稈覆蓋,在當(dāng)?shù)氐霓r(nóng)業(yè)生產(chǎn)實踐中均有著良好的表現(xiàn)[5-6]。而小麥(L.)作為世界上播種面積最廣、同時也是北方農(nóng)作區(qū)十分重要的谷類作物,亦成為覆蓋栽培研究的重點方向之一[7-9]。研究兩種覆蓋模式下小麥生產(chǎn)的優(yōu)勢和劣勢,可以為該技術(shù)的區(qū)域性精準推廣奠定理論基礎(chǔ)?!厩叭搜芯窟M展】Gan等[10]的研究發(fā)現(xiàn),地膜覆蓋相較無覆蓋土壤含水量增加25%—50%,貯水量增加20%—40%,水分虧缺程度下降5%—70%,這種良好的節(jié)水保墑特性使得覆膜技術(shù)在我國干旱少雨的小麥產(chǎn)區(qū)得到了廣泛的應(yīng)用[11-13]。同時地膜可以顯著提升表土溫度[14-16],為小麥生長發(fā)育提供足夠的熱量條件并減緩前期的冷害和凍害[17]。因此,塑料薄膜覆蓋在西北、華北、東北等秦嶺-淮河以北的干旱半干旱農(nóng)區(qū)得到大范圍的推廣,并且發(fā)展出一系列衍生技術(shù),包括全膜平鋪穴播、全膜平鋪溝播、全膜雙壟溝播、壟膜覆蓋溝播、壟膜覆蓋膜側(cè)溝植、液態(tài)地膜等[18]。另一方面,推行秸稈覆蓋可以減少秸稈焚燒所引發(fā)的大氣污染,將原本被棄置的秸稈資源重新加以利用,已成為當(dāng)下農(nóng)業(yè)可持續(xù)發(fā)展的關(guān)鍵技術(shù)之一[19],并同少免耕技術(shù)和輪作制一起構(gòu)成了保護性耕作體系的三大支柱[20]。同時,秸稈覆蓋還優(yōu)化了土壤的耕層結(jié)構(gòu)[21]、肥力[22-23]以及微生物活性[24]。當(dāng)覆蓋層破損以后,其殘余部分的分解將會促進土壤養(yǎng)分循環(huán),使得這些營養(yǎng)元素更易于被小麥吸收利用[25-26]。相對而言,地膜覆蓋處理下小麥產(chǎn)量和水分利用效率的提升幅度較大[27],0—200 cm土層中的平均儲水量比秸稈覆蓋高31.52%[28]。而秸稈覆蓋能夠提升土壤真菌群落的豐度和穩(wěn)定性[29],土壤有機碳和全氮含量相對地膜覆蓋分別提高l16.21%和13.24%[30],這些農(nóng)田土壤生態(tài)的外源性改善同樣對作物生產(chǎn)有促進效應(yīng)?!颈狙芯壳腥朦c】在我國相關(guān)的Meta分析領(lǐng)域,往往只涉及兩種覆蓋模式之一,且多以變化率(change ratio)為計量單位,罕有效應(yīng)量分析。這就使得研究結(jié)果缺乏橫向的覆蓋模式對比或者縱向的統(tǒng)計尺度對比,難以綜合性地揭示覆蓋增產(chǎn)效應(yīng)的變化規(guī)律,致使該技術(shù)的科學(xué)推廣缺乏規(guī)范化標準。況且各種試驗結(jié)果表明,中國北方地區(qū)秸稈和地膜覆蓋都具有特定的優(yōu)缺點,需要在復(fù)雜的時空動態(tài)下進行逐區(qū)分析?!緮M解決的關(guān)鍵問題】本研究旨在通過薈萃分析(meta- analysis)的相關(guān)理論和方法[31],探討不同的環(huán)境條件及栽培管理措施下兩種覆蓋模式對于小麥生產(chǎn)的影響及其相互之間的比較優(yōu)勢,為本地區(qū)覆蓋技術(shù)的精準運用提供理論支撐。

      1 材料與方法

      1.1 數(shù)據(jù)收集和提取

      利用中國知網(wǎng)(CNKI),萬方數(shù)據(jù)知識服務(wù)平臺和ScienceDirect進行文獻檢索,并選取“中國北方”“小麥”“產(chǎn)量”“覆蓋”“秸稈”“地膜”為中英文檢索關(guān)鍵詞。選取的文獻需要同時符合以下標準:(1)文獻中的數(shù)據(jù)來源于中國北方地區(qū)的田間試驗;(2)每組試驗至少包括秸稈覆蓋或者地膜覆蓋其中的一種;(3)排除設(shè)置灌溉梯度處理的試驗;(4)文獻中應(yīng)包含明確的試驗地基本信息和試驗?zāi)晗?。最終篩選出符合要求的104篇中文文獻和61篇英文文獻,并且優(yōu)先從文本和表格中搜集數(shù)據(jù),其次使用圖形數(shù)字化軟件GetData2.3.1以及PicPick5.1.2從圖中提取。本論文搜集到的各項研究所實施的具體時間為1982—2021年,地點位于秦嶺-淮河以北的中國北方地區(qū)。

      1.2 數(shù)據(jù)歸納

      將搜集到的各項研究中相對應(yīng)的試驗地信息以及田間管理措施進行分類匯總,從而探究小麥產(chǎn)量受這些因素影響所表現(xiàn)出的變化規(guī)律。本研究歸納出的解釋變量有8項,分別為試驗地海拔、年均降水量、年均氣溫、日照時數(shù)、覆蓋年限、種植密度、耕作方式、施肥方式。最終將這些因素劃分為不同梯度的亞區(qū),并將兩種覆蓋處理同時納入各個亞區(qū)中進行比較。

      1.3 效應(yīng)量分析

      選取效應(yīng)比的自然對數(shù)ln作為Meta分析中評價效應(yīng)量大?。╡ffect size)的數(shù)據(jù)標度。

      式中,ln為反應(yīng)比,和表示觀察組(覆蓋栽培)和對照組(露地栽培)數(shù)據(jù)的算術(shù)平均值。每項獨立研究的ln的方差由下式計算:

      式中,和分別為觀察組和對照組的數(shù)據(jù)標準差;和分別為觀察組和對照組的樣本容量。

      式中,和代表擁有個研究的亞組中觀察組和對照組的樣本容量。求得的效應(yīng)值還需要進行量化處理,使其轉(zhuǎn)化為變化率(change ratio,,%)以

      便于亞組和處理之間的直接比較:

      1.4 異質(zhì)性檢驗

      利用異質(zhì)性檢驗統(tǒng)計量Q,研判本文選取的165篇文獻中獨立試驗結(jié)果間的差異性。Q值同效應(yīng)量的變異程度成正相關(guān)關(guān)系。當(dāng)異質(zhì)性檢驗結(jié)果顯著時,應(yīng)該選取隨機效應(yīng)模型(REM);否則,選取固定效應(yīng)模型(FEM)[32]。由于兩種覆蓋處理的統(tǒng)計量Q的顯著性均小于0.05(表1),所以運用REM模型進行效應(yīng)量分析。

      表1 秸稈覆蓋和地膜覆蓋下小麥產(chǎn)量的效應(yīng)值分析和統(tǒng)計檢驗

      Z 為效應(yīng)量檢驗的統(tǒng)計量;P 為效應(yīng)量的顯著性水平;Q 為異質(zhì)性檢驗統(tǒng)計量;PQ為Q 統(tǒng)計量的顯著性;n 為效應(yīng)量個數(shù)

      Z is the statistic of effect size test; P is significant level of effect size; Q is the statistic of heterogeneity test; PQis the significant level of Q statistic; N is the number of effectors

      2 結(jié)果

      2.1 秸稈覆蓋和地膜覆蓋對小麥生產(chǎn)的影響

      本文共搜集到8組具有特定樣本容量的小麥栽培學(xué)農(nóng)藝指標,分別為產(chǎn)量(421)、生物量(193)、有效穗數(shù)(183)、穗粒數(shù)(167)、千粒重(182)、蒸散(331)、水分利用效率(315)和土壤含水量(259)(圖1)。其中千粒重及水分利用效率數(shù)據(jù)的置信區(qū)間較小,這兩組數(shù)據(jù)的分析結(jié)果可信度較高。整體而言,在中國北方地區(qū),兩種覆蓋模式均能顯著提升小麥產(chǎn)量(表1)。地膜覆蓋的增產(chǎn)率為24.91%(95%= 3.18%—46.64%,=5.51),平均比秸稈覆蓋(95%=0.55%—38.52%,=7.05)高5.38%。本文中秸稈和地膜覆蓋的產(chǎn)量效應(yīng)量數(shù)目分別為185和236。其中覆膜的效應(yīng)量檢驗統(tǒng)計量(Z)為6.43,比秸稈高出8.25%,說明膜下整體增產(chǎn)幅度更高。而秸稈覆蓋樣本的異質(zhì)性檢驗統(tǒng)計量(Q)為956,比地膜高17.44%,說明小麥產(chǎn)量數(shù)據(jù)在秸稈覆蓋條件下變異程度更高。具體而言,秸稈覆蓋下試驗數(shù)據(jù)的組間異質(zhì)性在海拔、種植密度及施肥方式3個亞組當(dāng)中超過了地膜覆蓋(表2—3)。

      通過研究覆蓋處理的效應(yīng)量及其分布規(guī)律,發(fā)現(xiàn)這些效應(yīng)量整體上呈正態(tài)分布(圖2)。只有在地膜覆蓋下,有效穗數(shù)的ln數(shù)據(jù)在0.2—0.8的范圍內(nèi)出現(xiàn)了先降后升的趨勢,故而導(dǎo)致其擬合曲線呈弧形分布(圖2-c)。在產(chǎn)量指標中,覆秸稈樣本的反應(yīng)比在0.2—0.4區(qū)間內(nèi)的分布最廣(32.35%),而覆膜樣本的效應(yīng)量數(shù)據(jù)相對集中于0.4<ln<0.6的區(qū)間內(nèi)(28.85%);同時在地膜覆蓋的反應(yīng)比擬合曲線中,其峰值點對應(yīng)的ln相對更大,說明地膜覆蓋的增產(chǎn)效應(yīng)要優(yōu)于秸稈覆蓋(圖2-a)。進一步發(fā)現(xiàn)在覆膜條件下,大多數(shù)農(nóng)藝指標的加權(quán)反應(yīng)比更高。然而,秸稈覆蓋的穗粒數(shù)樣本在ln>0的區(qū)間內(nèi)占比為73.82%,比地膜高9.4%(圖2-d),該趨勢亦符合圖1兩種覆蓋模式下穗粒數(shù)指標的相關(guān)變化(秸稈5.7%,地膜4.2%)。

      小麥的有效穗數(shù)以及水分利用效率均受兩種覆蓋模式的顯著影響(圖1)。相較于露地栽培,地膜和秸稈覆蓋使得生物量分別增加34.48%(95%= 0.36%—68.60%,= 11.92)和16.30%(95%= -14.28%—46.88%,= 9.25),覆膜在增長率更高的同時波動性亦更強。綜合來看,地膜覆蓋的生物產(chǎn)量增加率比籽粒產(chǎn)量的增加率高9.57%,而在覆蓋秸稈時籽粒產(chǎn)量的增加率則更高。說明秸稈覆蓋小麥雖然整體產(chǎn)量不及地膜覆蓋,但是收獲指數(shù)更高,這在自然資源相對匱乏的北方地區(qū)具有重要意義。整體上看,秸稈和地膜處理對于產(chǎn)量三要素的影響分別為有效穗數(shù)(18.5%±12.68%,= 4.19)>穗粒數(shù)(5.7%±9.80%,=0.44)>千粒重(4.8%± 11.20%,= 4.34);以及有效穗數(shù)(25.2%±11.09%,= 1.25)>千粒重(6.4%±4.90%,=2.86)>穗粒數(shù)(4.2%± 23.24%,= 5.41)。其中,兩種覆蓋因素主要通過提高單位面積有效穗數(shù)來促進增產(chǎn),此外秸稈覆蓋對穗粒數(shù)的影響高于地膜,而后者對千粒重的影響則更明顯。

      兩種覆蓋模式下小麥田的蒸散量顯著下降(秸稈:-6.61%,95%= -29.56%—16.33%,=6.31;地膜:-14.71%,95%= -50.74%—21.32%,=4.02),地膜對于田間蒸散的總體抑制能力更優(yōu)。與之相對應(yīng)的是,覆膜處理下土壤含水量平均增加17.22%(95%=6.22%—28.22%,= 2.34),比覆秸稈高7.48個百分點。這些抗旱節(jié)水效應(yīng)的最終結(jié)果是覆膜水分利用效率的平均增長率(45.44%±9.08%,=5.52)同樣高于秸稈(31.05%±13.71%,=1.71),且離散程度更低。

      黑點和白點所在的線段代表秸稈和地膜處理的變化率,無括號和有括號的SD分別對應(yīng)秸稈和地膜處理

      2.2 環(huán)境因素對于小麥覆蓋栽培的影響

      試驗地海拔高度直接影響了覆蓋條件下的小麥產(chǎn)量,隨著平均海拔的升高,其產(chǎn)量增長率相對露地處理逐漸減少(圖3-a)。在海拔超過1 250 m的地區(qū),地膜帶來了10.95%(95%=-10.95%—32.86%)的增產(chǎn)效應(yīng),而在地勢最低的亞組中(海拔<800 m),該增長率可達34.26%(95%= 21.16%—47.35%)。覆秸稈小麥的增長率表現(xiàn)為:海拔>1 250 m,6.25%(95%=-8.32%—20.82%);海拔800—1 150 m,18.80%(95%= 4.08%—33.52%);海拔<800 m,18.92%(95%= 2.01%—35.84%);海拔1 150—1 250 m,24.17%(95%= 4.58%—43.77%)。

      隨著年均降水量的增多,覆蓋小麥的產(chǎn)量呈正增長趨勢(圖3-b)。本研究中,地膜覆蓋的增產(chǎn)率在不同的降水梯度中均高于秸稈覆蓋,但是兩者的差距在干旱半干旱區(qū)(年均降水量<550 mm)比相對濕潤的地區(qū)更為明顯。當(dāng)降水量高于650 mm,秸稈覆蓋樣本的增產(chǎn)率最高,達到了29.84%;而地膜覆蓋在450—550 mm降水量的地區(qū)具有最顯著的增產(chǎn)效應(yīng)(36.57%±2.29%)。覆膜產(chǎn)量的效應(yīng)量為0.273,比覆秸稈處理高出55.15%(圖4-a,b)。

      RCS為Reduced Chi-Sqr的縮寫,代表殘差均方 RCS is the abbreviation of Reduced Chi-Sqr, representing mean square of residual

      黑點和白點所在的線段代表秸稈和地膜處理的變化率。圖5同

      溫度的升高同樣促進了覆蓋體系的生產(chǎn)力(圖3-c)。相對而言,當(dāng)平均氣溫超過12.5℃時,秸稈覆蓋的增產(chǎn)率(35.25%±16.52%)高過地膜約5.03%。而在9—10.5℃的亞區(qū)中,雖然地膜處理的增產(chǎn)率(18.14%)要高于秸稈(17.25%),但是差距是微弱的。整體而言,覆膜的增產(chǎn)幅度在平均氣溫10.5—12.5℃的地區(qū)最為明顯,達到了39.01%(95%=27.82%—50.21%)。全體覆膜樣本的平均效應(yīng)(0.207)比秸稈覆蓋高28.76%。不同覆蓋模式下小麥產(chǎn)量同氣溫的擬合曲線有著明顯差異(圖4-c,d)。雖然兩者均表現(xiàn)出上升趨勢,但是秸稈覆蓋曲線的節(jié)點導(dǎo)數(shù)值(即該點的曲線斜率)隨氣溫增加有逐漸升高的趨勢,而在覆膜處理下其二次曲線的斜率則有下降趨勢。這說明隨著試驗地溫度條件的改善,覆膜的優(yōu)勢逐漸下降,而覆秸稈的優(yōu)勢則相對凸顯。同時,秸稈覆蓋曲線的決定系數(shù)2為0.67,比地膜覆蓋高40個百分點,說明前者的擬合關(guān)系可以更準確地解釋小麥產(chǎn)量的變異。

      秸稈或地膜處理中,年日照時數(shù)顯著影響了小麥產(chǎn)量(圖3-d)。覆蓋秸稈的增產(chǎn)率依次為日照時數(shù)>2 500 h,25.71%(95%= 11.89%—39.52%);日照時數(shù)<2 200 h,19.94%(95%= 14.43%—25.44%);日照時數(shù)2 200—2 500 h,15.96%(95%= 12.43%—19.49%)。而地膜試驗的產(chǎn)量則隨日照時數(shù)的增加逐漸提高。當(dāng)日照時數(shù)高于2 500 h時,增產(chǎn)率為30.08%(95%= 11.76%—48.40%),分別比(0,2 200 h)和(2 200,2 500 h)這兩個日照區(qū)間高13.54%(95%=1.54%—31.54%)和8.05%(95%= 1.49%—42.56%)。

      2.3 田間管理對于小麥覆蓋栽培的影響

      隨著時間推移,地膜覆蓋的優(yōu)勢顯著下降,在覆蓋年限1—2年、3—4年、5—8年以及大于8年的分組中其增產(chǎn)率分別為39.50%(95%= 22.87%—56.13%)、24.27%(95%= 1.06%—47.48%)、19.65%(95%=2.93%—36.37%)、21.86%(95%=16.97%—26.75%);相反,秸稈覆蓋的增產(chǎn)效應(yīng)則通過時間的積累而逐漸顯現(xiàn),對應(yīng)的增產(chǎn)率分別為3.37%(95%= -14.29%—21.03%)、11.24%(95%= -7.06%—29.54%)、9.81%(95%= -9.35%—28.98%)、46.53%(95%= 30.20%—62.87%)(圖5-a)。擬合分析的結(jié)果顯示,覆膜的產(chǎn)量效應(yīng)量在時間尺度上先增后減(圖6-b)。在超過5年的秸稈覆蓋試驗中,產(chǎn)量效應(yīng)量為0.198,比1—2年的處理高出25.53%;而5年以上覆膜試驗的效應(yīng)量為0.238,盡管依然優(yōu)于同期的秸稈處理,但是相對于1—2年的覆膜小麥卻顯著降低了6.36%(圖6-a,b)。

      各曲線和公式反映了產(chǎn)量同降水量或氣溫的二次擬合。a,c和b,d分別代表秸稈和地膜處理

      種植密度對兩種覆蓋小麥的影響基本上是相反的。在密度最低的亞組(<300萬株/hm2)中,地膜覆蓋的增產(chǎn)優(yōu)勢最明顯,為42.93%(95%= 28.07%—57.78%)。相對而言秸稈覆蓋的增產(chǎn)效應(yīng)在低密度栽培條件下最弱,僅為1.31%(95%= -6.05%—8.66%)(圖5-b)。而在密植小麥亞組(>400萬株/hm2)中情況則正好相反,秸稈覆蓋下小麥產(chǎn)量的變化率增至18.89%(95%= -1.59%—39.37%),而地膜處理則降為28.79%(95%= 6.21%—51.37%)。兩種覆蓋模式下產(chǎn)量的效應(yīng)量均隨種植密度增加而表現(xiàn)出先升后降的趨勢(圖6-c,d)。通過分類運算,發(fā)現(xiàn)在密度超過400萬株/hm2的亞組中,地膜覆蓋的效應(yīng)值(0.264)相對秸稈覆蓋增加了51.21%,為各個亞組之最。而圖5-b的結(jié)果顯示,該亞組間兩種覆蓋體系的增產(chǎn)率比較接近。研究中出現(xiàn)這種矛盾的現(xiàn)象說明效應(yīng)值和增產(chǎn)率是兩種獨立的分析尺度,通過兩者的同步使用可以更完整地揭示覆蓋對小麥產(chǎn)量的動態(tài)影響。

      免耕技術(shù)和秸稈覆蓋相結(jié)合可以使得產(chǎn)量的相對增長量得以顯著提高(32.68%±27.78%),之后依次是旋耕(19.55%±26.58%),傳統(tǒng)耕作(17.39%±9.35%)及深松耕(16.53%±11.34%)(圖5-c)。在傳統(tǒng)耕作處理中,兩種覆蓋方式的增產(chǎn)率差異最大,其中地膜處理(95%= 25.27%—51.84%)要高出21.16個百分點。而在旋耕以及深松耕條件下,覆蓋間的增產(chǎn)效應(yīng)差距不大,地膜處理僅高出4.24%(95%= 6.21%—41.37%)和4.72%(95%=1.36%—41.14%)。

      表2 環(huán)境因素對產(chǎn)量影響的亞組分析

      Qtra為組內(nèi)異質(zhì)Q檢驗量,P-Qtra為組內(nèi)異質(zhì)性檢驗的顯著程度,Qter為組間異質(zhì)Q檢驗量,P-Qter為組間異質(zhì)性檢驗的顯著程度,CV為變異系數(shù),Weight為效應(yīng)量權(quán)重。每組數(shù)據(jù)中左邊為秸稈覆蓋,右邊括號中的為地膜覆蓋。下同

      Qtra is test statistic of intra group heterogeneity Q, P-Qtra is the significance of intra group heterogeneity test, Qter is test statistic of inter group heterogeneity Q, P-Qter is the significance of inter group heterogeneity test, CV is coefficient of variation, and weight is the effect weight.In each group of data, the left is straw mulching, and the right in bracket is plastic film mulching.The same as below

      圖5 田間管理措施對于覆蓋栽培模式下小麥產(chǎn)量的影響

      各曲線和公式反映了產(chǎn)量同覆蓋年限或者種植密度的二次擬合。a,c和b,d分別代表秸稈和地膜處理

      在肥料梯度處理中,不施肥條件下的秸稈覆蓋使小麥產(chǎn)量顯著提高25.94%(95%= -0.07%—51.94%),其優(yōu)勢相對最為明顯(高出地膜覆蓋11.40個百分點)(圖5-d)。接著依次是單施磷肥,21.71%(95%= 2.89%—40.52%);單施氮肥,19.96%(95%= 13.43%—26.49%);單施有機肥,18.25%(95%= 6.72%—29.77%);單施無機肥,15.50%(95%= 12.89%—18.11%)以及有機無機配施,13.36%(95%= -8.99%—35.71%)。而在覆膜條件下,小麥增產(chǎn)率在單施磷肥、單施無機肥、有機無機配施的處理中高于秸稈覆蓋,其中當(dāng)化肥結(jié)合有機肥施用時,其產(chǎn)量相較于覆蓋秸稈增幅最大,為22.57%(95%= 17.80%—27.34%)。在單施有機肥的處理中,兩種覆蓋方式的增產(chǎn)率最為接近,其中覆秸稈處理(95%= 6.72%—29.77%)高出1.03%。

      2.4 覆蓋條件下小麥主要農(nóng)藝指標及耗水指標的相關(guān)性分析

      通過皮爾遜相關(guān)性分析可知,覆秸稈小麥的產(chǎn)量同生物產(chǎn)量、有效穗數(shù)、穗粒數(shù)、千粒重、土壤含水量之間存在顯著的相關(guān)關(guān)系;而在覆蓋地膜的處理中,與產(chǎn)量顯著相關(guān)的指標有生物產(chǎn)量、有效穗數(shù)、千粒重、水分利用效率、土壤含水量(表4)。從產(chǎn)量構(gòu)成要素的角度分析,秸稈及地膜覆蓋下與產(chǎn)量的關(guān)聯(lián)性密切程度分別表現(xiàn)為有效穗數(shù)(0.808)>穗粒數(shù)(0.796)>千粒重(0.549);有效穗數(shù)(0.677)>千粒重(0.586)>穗粒數(shù)(0.364),整體而言有效穗數(shù)對產(chǎn)量的貢獻率最高。秸稈覆蓋下的產(chǎn)量三要素之間皆存在顯著的負相關(guān)關(guān)系,由于變化率(圖1)和相關(guān)性(表4)分析的結(jié)果都反映出這三者之間有效穗數(shù)對產(chǎn)量形成的意義最為重要,建議實際生產(chǎn)中主攻穗數(shù)。而在覆膜條件下,有效穗數(shù)對穗粒數(shù)、千粒重分別表現(xiàn)出極顯著負相關(guān)(-0.887)及顯著正相關(guān)(0.760),因此可以在適當(dāng)犧牲穗粒數(shù)的前提下,全力保證小麥的穗數(shù)和千粒重。

      表3 田間管理因素對產(chǎn)量影響的亞組分析

      CT、NT、RT、ST、NF、AN、AP、AO、AI、OIF分別代表傳統(tǒng)耕作、免耕、旋耕、深松耕、不施肥、單施氮肥、單施磷肥、單施有機肥、單施無機肥、有機無機配施

      CT, NT, RT, ST, NF, AN, AP, AO, AI and OIF respectively represent conventional tillage, no tillage, rotary tillage, subsoiling tillage, no fertilization, single application of nitrogen fertilizer, single application of phosphorus fertilizer, single application of organic fertilizer, single application of inorganic fertilizer and combined application of organic and inorganic fertilizer

      表4 覆蓋模式下小麥主要農(nóng)藝指標及農(nóng)田水分狀況的相關(guān)性分析

      每組數(shù)據(jù)的上排和下排分別為秸稈覆蓋以及地膜覆蓋處理

      The top and bottom rows of every group data are straw mulching and plastic film mulching treatments, respectively

      從農(nóng)田水分動態(tài)的層面分析,土壤含水量同覆蓋產(chǎn)量呈顯著正相關(guān),其中覆膜處理的相關(guān)系數(shù)為0.492,比秸稈處理高0.019;而覆膜水分利用效率同產(chǎn)量極顯著相關(guān)(0.718)。此外,雖然蒸散量同產(chǎn)量之間并無統(tǒng)計學(xué)意義,但是卻與水分利用效率呈顯著的負相關(guān)(秸稈-0.561,地膜 -0.913)。因此覆蓋材料抑制生產(chǎn)性耗水(尤其是棵間蒸發(fā))的效應(yīng)和作物水生產(chǎn)力的提高有直接關(guān)系。同時,覆蓋對土壤溫度的影響也決定著土壤水分的運行和蒸散強度。最終這種水溫耦合效應(yīng)促成了小麥水分利用效率的提高。

      3 討論

      3.1 覆蓋對小麥生產(chǎn)的影響

      在相對干旱的地區(qū),覆蓋技術(shù)被證實對產(chǎn)量[33-34]、水分生產(chǎn)力[35-37]、耗水狀況[38]、經(jīng)濟效益[39]及整個農(nóng)田生態(tài)系統(tǒng)[40]有著廣泛的影響。本文基于Meta分析的方法檢索到165篇有效文獻,從中篩選出2 051組試驗數(shù)據(jù)進行研究。結(jié)果表明秸稈覆蓋和地膜覆蓋都可以顯著地提高小麥產(chǎn)量,但是覆膜措施的增產(chǎn)率和增產(chǎn)的效應(yīng)量分別比秸稈覆蓋高5.38%和13.85%。影響秸稈和地膜覆蓋產(chǎn)量的主要因素分別為有效穗數(shù)、穗粒數(shù)、生物產(chǎn)量以及水分利用效率、有效穗數(shù)、千粒重。前人在研究覆秸稈小麥的增產(chǎn)規(guī)律時,發(fā)現(xiàn)有效穗數(shù)、穗粒數(shù)、千粒重對產(chǎn)量的貢獻度依次降低[41],該結(jié)論同本研究一致。然而在地膜覆蓋試驗中,3種因素對于產(chǎn)量的影響按相關(guān)系數(shù)劃分依次為有效穗數(shù)(0.677)>千粒重(0.586)>穗粒數(shù)(0.364),說明兩種覆蓋措施不僅在增產(chǎn)效應(yīng)方面存在差距,而且對各產(chǎn)量構(gòu)成要素的影響也是不同的。同時,覆蓋技術(shù)顯著抑制了農(nóng)田蒸散,但是秸稈覆蓋處理的降幅為6.61%(95%= -29.56%—16.33%),尚不及地膜覆蓋的一半(14.71%,95%= -50.74%—21.32%)。利用反應(yīng)比ln的加權(quán)分析,發(fā)現(xiàn)覆膜水分利用效率和土壤含水量比秸稈覆蓋顯著高出26.44%和17.47%。另一方面,就秸稈覆蓋而言,在年均降水量、年均氣溫、覆蓋周期這3個亞組中組間異質(zhì)性較低(表2—3),說明對應(yīng)覆蓋效應(yīng)的組間合并結(jié)果較為可靠;具體而言,當(dāng)年均降水550—650 mm(Qtra =4.34)、年均氣溫>12.5℃(Qtra =1.25)、覆蓋周期5—8年(Qtra =1.89)時,組內(nèi)合并結(jié)果較為可靠。而在年均降水<450 mm(Qtra =4.09)、氣溫9—10.5℃(Qtra =1.12)、不施肥(Qtra =2.16)這3個小組中,地膜覆蓋的組內(nèi)異質(zhì)性較低,故而具有良好的覆蓋效應(yīng)檢驗效果。整體上講,地膜覆蓋技術(shù)為中國北方地區(qū)小麥的生產(chǎn)帶來了更可觀的正向效應(yīng)。然而,殘存的農(nóng)用地膜難以分解將會導(dǎo)致逐漸累積的土壤退化[42-43]。與之相比,秸稈覆蓋則改善了農(nóng)田生態(tài)系統(tǒng),有利于作物生產(chǎn)力的可持續(xù)發(fā)展[44]。為了更好地發(fā)揮覆蓋技術(shù)的特定優(yōu)勢,也有許多學(xué)者正在開展秸稈地膜雙覆蓋的研究[29, 45-46]。

      3.2 覆蓋模式下小麥產(chǎn)量對環(huán)境因素的響應(yīng)

      覆蓋栽培的成功與否很大程度上取決于外界的環(huán)境因素[47-48]。本研究中,日照時數(shù)顯著改變了不同覆蓋模式下小麥的產(chǎn)量(圖3-d),其中覆膜增產(chǎn)效應(yīng)受到年均降水和氣溫的影響(圖3-b,c)。在大多數(shù)的環(huán)境梯度里,地膜覆蓋的表現(xiàn)要優(yōu)于秸稈覆蓋,其增產(chǎn)率相對高出0.89%—23.34%。但是當(dāng)試驗地年均氣溫高于12.5℃時,秸稈覆蓋的增產(chǎn)幅度(35.25%,95%= 18.72%—51.77%)反超地膜(30.22%,95%= 18.06%—42.38%),該現(xiàn)象符合當(dāng)?shù)氐拇筇锔采w研究結(jié)果[49]。究其原因,秸稈覆蓋在某種程度上抑制了土壤溫度的升高[50],在小麥的早期生長階段,這種影響危及了植株的出苗和幼根發(fā)育,致使其后期穗分化不充分,小穗數(shù)減少,旗葉尖部枯黃。在氣溫偏低的亞組中(<9℃),該連鎖生理反應(yīng)最終導(dǎo)致秸稈覆蓋的產(chǎn)量增幅較覆膜處理下降了4.35%。整體而言,在中國北方地區(qū)的小麥栽培實踐中,當(dāng)氣溫偏高時秸稈覆蓋的增產(chǎn)潛力相對較大,而地膜覆蓋則更適合于低海拔(<1 150 m)以及半干旱偏濕潤(降水量450—550 mm)區(qū)推廣。

      3.3 覆蓋模式下小麥產(chǎn)量對田間管理的響應(yīng)

      田間管理措施同樣廣泛地影響了覆蓋小麥的生產(chǎn)狀況[51-52]。隨著覆蓋周期的延長,秸稈覆蓋的增產(chǎn)率顯著提高,當(dāng)連續(xù)使用該技術(shù)超過8年以上,其增產(chǎn)率及效應(yīng)值分別較地膜處理顯著提高24.67%和14.80%(圖5-a,圖6-a,b)。相應(yīng)地,一旦覆膜時限超過2年,其增產(chǎn)率基本維持穩(wěn)定,而反應(yīng)比則呈現(xiàn)出先增后減的趨勢。長期使用塑料薄膜會影響土壤微生物群落的正常發(fā)展,加速有機質(zhì)竭耗,并且提高土壤的斥水性[53],從而為整個地區(qū)農(nóng)業(yè)生產(chǎn)的可持續(xù)性帶來隱患。另一方面,相較于露地栽培,秸稈覆蓋同免耕、不施肥以及單施磷肥這3種農(nóng)藝措施相結(jié)合可以顯著增產(chǎn)32.68%,25.94%以及21.71%。通過減量施肥、保護性耕作及秸稈覆蓋的協(xié)調(diào)配合,可以在確保高產(chǎn)的同時明顯改善土壤質(zhì)量[54],這就為當(dāng)下覆蓋技術(shù)的突破提供了有益思路。在實踐生產(chǎn)中,需要統(tǒng)籌考量各項田間管理措施的適用條件,如是方能將其與不同的覆蓋模式進行科學(xué)組合,從而建立起立體、高效、綠色的作物栽培體系。

      4 結(jié)論

      在中國北方地區(qū),表土覆蓋是不可替代的小麥節(jié)水增產(chǎn)技術(shù)。筆者希望利用Meta分析的理論框架對兩種覆蓋模式的優(yōu)劣進行分類探討。本研究中,覆秸稈和地膜分別顯著增產(chǎn)19.53%和24.91%,其中小麥的穗粒數(shù)在覆秸稈條件下增幅較大(5.7%),而有效穗數(shù)和千粒重在覆膜處理中增長更明顯(25.2%和6.4%)。同時,秸稈和地膜覆蓋可以促使土壤含水量增加9.74%和17.22%。而最終的覆蓋效應(yīng)又會隨著不同的環(huán)境條件和田間管理措施產(chǎn)生相應(yīng)的變化。在北方復(fù)雜的時空動態(tài)條件下,構(gòu)建符合地區(qū)特點的覆蓋栽培體系需要把握精準的生態(tài)尺度和農(nóng)藝尺度。以精準覆蓋為基點,將短期收益和長期效益相平衡,將經(jīng)濟產(chǎn)出和生態(tài)保護相結(jié)合,將應(yīng)用價值和技術(shù)潛力相統(tǒng)籌,才能促進小麥栽培學(xué)科的良性發(fā)展。本文希望通過對相關(guān)文獻的整合分析為覆蓋技術(shù)的區(qū)域性推廣提供初步的理論參考。

      [1] WANG C R, TIAN X H, LI S X.Effects of plastic sheet-mulching on ridge for rainwater-harvesting cultivation on WUE and yield of winter wheat.Scientia Agricultura Sinica, 2004, 37(2): 208-214.

      [2] RAMAKRISHNA A, TAM H M, WANI S P, LONG T D.Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam.Field Crops Research, 2006, 95(2/3): 115-125.

      [3] CHAKRABORTY D, NAGARAJAN S, AGGARWAL P, GUPTA V K, TOMAR R K, GARG R N, SAHOO R N, SARKAR A, CHOPRA U K, SARMA K S, KALRA N.Effect of mulching on soil and plant water status, and the growth and yield of wheat (L.) in a semi-arid environment.Agricultural Water Management, 2008, 95(12): 1323-1334.

      [4] ZRIBI W, ARAGüéS R, MEDINA E, FACI J M.Ef?ciency of inorganic and organic mulching materials for soil evaporation control.Soil and Tillage Research, 2015, 148: 40-45.

      [5] Lin W, Liu W Z, Xue Q W.Spring maize yield, soil water use and water use effciency under plastic ?lm and straw mulches in the Loess Plateau.Scientific Reports, 2016, 6: 38995.

      [6] REN A T, ZHOU R, MO F, LIU S T, LI J Y, CHEN Y L, ZHAO L, XIONG Y C.Soil water balance dynamics under plastic mulching in dryland rainfed agroecosystem across the Loess Plateau.Agriculture Ecosystems & Environment, 2021, 312: 107354.

      [7] HE G, WANG Z H, LI F C, DAI J, LI Q, XUE C, CAO H B, WANG S, MALHI S S.Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China.Agricultural Water Management, 2016, 171: 1-9.

      [8] FANG H, LI Y N, GU X B, LI Y P, CHEN P P.Can ridge-furrow with film and straw mulching improve wheat-maize system productivity and maintain soil fertility on the Loess Plateau of China? Agricultural Water Management, 2021, 246: 106686.

      [9] FU W, FAN J, HAO M D, HU J S, WANG H.Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China.Agricultural Water Management, 2021, 244: 106550.

      [10] GAN Y T, SIDDIQUE K, TURNER N C, LI X G, NIU J Y, YANG C, LIU L P, Chai Q.Ridge-furrow mulching systems—an innovative technique for boosting crop productivity in semiarid rain-fed environments.Advances in Agronomy, 2013, 118: 429-476.

      [11] ZHOU L M, ZHANG F, LIU C A.Improved yield by harvesting water with ridges and subgrooves using buried and surface plastic mulchs in a semiarid area of China.Soil and Tillage Research, 2015, 150: 21-29.

      [12] LI C J, WEN X X, WAN X J, LIU Y, HAN J, LIAO Y C, WU W.Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area.Field Crops Research, 2016, 188: 62-73.

      [13] LUO L C, WANG Z H, HUANG M, HUI X L, WANG S, ZHAO Y, HE H X, ZHANG X, DIAO C P, CAO H B, MA Q X, LIU J S.Plastic film mulch increased winter wheat grain yield but reduced its protein content in dryland of northwest China.Field Crops Research, 2018, 218: 69-77.

      [14] MO F, WANG J Y, XIONG Y C, NGULUU S N, LI F M.Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity.European Journal of Agronomy, 2016, 80: 124-136.

      [15] QIN X L, LI Y Z, HAN Y L, HU Y C, LI Y J, WEN X X, LIAO Y C, SIDDIQUE-KADAMBOT H M.Ridge-furrow mulching with black plastic film improves maize yield more than white plastic film in dry areas with adequate accumulated temperature.Agricultural and Forest Meteorology, 2018, 262: 206-214.

      [16] SUBRAHMANIYAN K, VEERAMANI P, HARISUDAN C.Heat accumulation and soil properties as affected by transparent plastic mulch in Blackgram () doubled cropped with Groundnut () in sequence under rainfed conditions in Tamil Nadu, India.Field Crops Research, 2018, 219: 43-54.

      [17] FAN Y Q, DING R S, KANG S Z, HAO X M, DU T S, TONG L, LI S.Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland.Agricultural Water Manage, 2017, 179: 122-231.

      [18] 董孔軍, 楊天育, 何繼紅, 任瑞玉, 張磊.西北旱作區(qū)不同地膜覆蓋種植方式對谷子生長發(fā)育的影響.干旱地區(qū)農(nóng)業(yè)研究, 2013, 31(1): 37-40.

      DONG K J, YANG T Y, HE J H, REN R Y, ZHANG L.Effects of different plastic film mulching planting methods on millet growth and development in arid areas of Northwest China.Agricultural Research in Arid Areas, 2013, 31(1): 37-40.(in Chinese)

      [19] ZHAO H B, LIU J F, CHEN X W, WANG Z H.Straw mulch as an alternative to plastic film mulch: Positive evidence from dryland wheat production on the Loess Plateau.Science of the Total Environment, 2019, 676: 782-791.

      [20] POWLSON D S, STIRLING C M, JAT M L, GERARD B G, PALM C A, SANCHEZ P A, CASSMAN K G.Limited potential of no-till agriculture for climate change mitigation.Nature Climate Change, 2014, 4(8): 678-683.

      [21] KADER M A, SENGE M, MOJID M A, ITO K.Recent advances in mulching materials and methods for modifying soil environment.Soil and Tillage Research, 2017, 168: 155-166.

      [22] ZHANG S L, LI P R, YANG X Y, WANG Z H, CHEN X P.Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize.Soil and Tillage Research, 2011, 112 (1): 92-97.

      [23] AULAKH M S, WALTERS D T, DORAN J W, FRANCIS D D, MOSLER A R.Crop residue type and placement effects on denitrification and mineralization.Soil Science Society of America Journal, 1991, 55(4): 1020-1025.

      [24] KLADIVKO E J.Tillage systems and soil ecology.Soil and Tillage Research, 2001, 61(1/2): 61-76.

      [25] LAFITTE H R, ISMAIL A, BENNETT J.Abiotic stress tolerance in rice for Asia: Progress and the future.Crop Science, 2004, 26: 1-17.

      [26] CHEN Q Y, LIU Z J, ZHOU J B, XU X P, ZHU Y J.Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize–wheat rotation on China's Loess Plateau.Science of The Total Environment, 2021, 775(25): 145930.

      [27] WANG L F, SHANGGUAN Z P.Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau.Scientific Reports, 2015, 5: 12225.

      [28] LI S X, WANG Z H, LI S Q, GAO Y J, TIAN X H.Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China.Agricultural Water Management, 2013, 116(2): 39-49.

      [29] ZHANG M M, ZHAO G X, LI Y Z, WANG Q, DANG P F, QIN X L, ZOU Y F, CHEN Y L, SIDDIQUE H M.Straw incorporation with ridge-furrow plastic film mulch alters soil fungal community and increases maize yield in a semiarid region of China.Applied Soil Ecology, 2021, 167: 104038.

      [30] MA Z Z, ZHANG X C, ZHENG B Y, YUE S C, ZHANG X C, ZHAI B N, WANG Z H, ZHENG W, LI Z Y, ZAMANIAN K, RAZAVI B S.Effects of plastic and straw mulching on soil microbial P limitations in maize fields: Dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometry.Geoderma, 2021, 388(15): 114928.

      [31] GUREVITCH J, KORICHEVA J, NAKAGAWA S, STEWART G.Meta-analysis and the science of research synthesis.Nature, 2018, 555(7695): 175-182.

      [32] SPINELI L M, PANDIS N.Fixed-effect versus random-effects model in meta-regression analysis.American Journal of Orthodontics and Dentofacial Orthopedics, 2020, 158(5): 770-772.

      [33] ZHANG Y Q, WANG J D, GONG S H, XU D, MO Y, ZHANG B Z.Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts.Agricultural Water Management, 2021, 249(1): 106809.

      [34] WANG H M, ZHENG J, FAN J L, ZHANG F C, HUANG C H.Grain yield and greenhouse gas emissions from maize and wheat fields under plastic film and straw mulching: A meta-analysis.Field Crops Research, 2021, 270: 108210.

      [35] HU Y J, MA P H, WU S F, SUN B H, FENG H, PAN X L, ZHANG B B, CHEN G J, DUAN C X, LEI Q, SIDDIQUE H M, LIU B Y.Spatial-temporal distribution of winter wheat (L.) roots and water use efficiency under ridge–furrow dual mulching.Agricultural Water Management, 2020, 240: 106301.

      [36] YU Y Y, TURNER N C, GONG Y H, LI F M, FANG C, GE L J, YE J S.Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients.European Journal of Agronomy, 2018, 99: 138-147.

      [37] QIN W, HU C S, OENEMA O.Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.Scientific Reports, 2015, 5: 16210.

      [38] GUPTA N, HUMPHREYS E, EBERBACH P L, SINGH B, YADAV S, KUKAL S S.Effects of tillage and mulch on soil evaporation in a dry seeded rice-wheat cropping system.Soil and Tillage Research, 2021, 209: 104976.

      [39] 毛安然, 趙護兵, 楊慧敏, 王濤, 陳秀文, 梁文娟.不同覆蓋時期和覆蓋方式對旱地冬小麥經(jīng)濟和環(huán)境效應(yīng)的影響.中國農(nóng)業(yè)科學(xué), 2021, 54(3): 608-618.

      MAO A R, ZHAO H B, YANG H M, WANG T, CHEN X W, LIANG W J..Scientia Agricultura Sinica, 2021, 54(3): 608-618.(in Chinese)

      [40] MO F, YU K L, CROWTHER T W, WANG J Y, ZHAO H, XIONG Y C, LIAO Y C.How plastic mulching affects net primary productivity, soil C fluxes and organic carbon balance in dry agroecosystems in China.Journal of Cleaner Production, 2020, 263: 121470.

      [41] LIU Y, SUI Y W, GU D D, WEN X X, CHEN Y, LI C J, LIAO Y C.Effects of conservation tillage on grain filling and hormonal changes in wheat under simulated rainfall conditions.Field Crops Research, 2013, 144: 43-51.

      [42] 張丹, 劉宏斌, 馬忠明, 唐文雪, 魏燾, 楊虎德, 李俊改, 王洪媛.殘膜對農(nóng)田土壤養(yǎng)分含量及微生物特征的影響.中國農(nóng)業(yè)科學(xué), 2017, 50(2): 310-319.

      ZHANG D, LIU H B, MA Z M, TANG W X, WEI T, YANG H D, LI J G, WANG H Y.Effect of residual plastic film on soil nutrient contents and microbial characteristics in the farmland.Scientia Agricultura Sinica, 2017, 50(2): 310-319.(in Chinese)

      [43] 張林森, 劉富庭, 張永旺, 李雪薇, 李丙智, 胥生榮, 谷潔, 韓明玉.不同覆蓋方式對黃土高原地區(qū)蘋果園土壤有機碳組分及微生物的影響.中國農(nóng)業(yè)科學(xué), 2013, 46(15): 3180-3190.

      ZHANG L S, LIU F T, ZHANG Y W, LI X W, LI B Z, XU S R, GU J, HAN M Y.Effects of different mulching on soil organic carbon fractions and soil microbial community of apple orchard in Loess Plateau.Scientia Agricultura Sinica, 2013, 46(15): 3180-3190.(in Chinese)

      [44] 高洪軍, 彭暢, 張秀芝, 李強, 朱平, 王立春.秸稈還田量對黑土區(qū)土壤及團聚體有機碳變化特征和固碳效率的影響.中國農(nóng)業(yè)科學(xué), 2020, 53(22): 4613-4622.

      GAO H J, PENG C, ZHANG X Z, LI Q, ZHU P, WANG L C.Effects of corn straw returning amounts on carbon sequestration efficiency and organic carbon change of soil and aggregate in the black soil area.Scientia Agricultura Sinica, 2020, 53(22): 4613-4622.(in Chinese)

      [45] YIN W, YU A Z, GUO Y, ET AL WANG Y F, ZHAO C, FAN Z L, HU F L, CHAI Q.Straw retention and plastic mulching enhance water use via synergistic regulation of water competition and compensation in wheat-maize intercropping systems.Field Crops Research, 2018, 229: 78-94.

      [46] LI Y Z, SONG D P, DANG P F, WEI L N, QIN X L, SIDDIQUE H M.Combined ditch buried straw return technology in a ridge–furrow plastic film mulch system: Implications for crop yield and soil organic matter dynamics.Soil and Tillage Research, 2020, 199: 104596.

      [47] LI Q, LI H B, ZHANG L, ZHANG S Q, GHEN Y L.Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis.Field Crops Research, 2018, 221: 50-60.

      [48] WANG N J, DING D Y, MALONE R W, CHEN H X, WEI Y S, ZHANG T B, LUO X Q, LI C, CHU X S, FENG H.When does plastic-film mulching yield more for dryland maize in the Loess Plateau of China? A meta-analysis.Agricultural Water Management, 2020, 240: 106290.

      [49] HU Y J, MA P H, ZHANG B B, HILL R L, WU S F, DONG Q G, CHEN G J.Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China.Agricultural Water Management, 2019, 219: 59-71.

      [50] DAI Z J, HU J S, FAN J, FU W, WANG H, HAO M D.No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N.Agriculture Ecosystems & Environment, 2021, 309: 107288.

      [51] LI N, ZHOU C J, SUN X, JING J Y, TIAN X X, WANG L Q.Effects of ridge tillage and mulching on water availability, grain yield, and water use efficiency in rain-fed winter wheat under different rainfall and nitrogen conditions.Soil and Tillage Research, 2018, 179: 86-95.

      [52] LUO C L, ZHANG X F, DUAN H X, MBURU D M, KAVAGI L, NASEER M, DAI R Z, NYENDE, A B, BATOOL A, XIONG Y C.Allometric relationship and yield formation in response to planting density under ridge-furrow plastic mulching in rainfed wheat.Field Crops Research, 2020, 251: 107785.

      [53] STEINMETZ Z, WOLLMANN C, SCHAEFER M, BUCHMANN C, DAVID J, TR?GER J, MU?OZ K, FR?R O, SCHAUMANN G E.Plastic mulching in agriculture.Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 2016, 550: 690-705.

      [54] ZHANG H Y, HOBBIE E A, FENG P Y, ZHOU Z X, NIU L A, DUAN W K, HAO J M, HU K L.Responses of soil organic carbon and crop yields to 33-year mineral fertilizer and straw additions under different tillage systems.Soil and Tillage Research, 2021, 209(1): 104943.

      increasing Effects of wheat yield under mulching cultivation in Northern of China: A Meta-analysis

      Qin Yuqing, CHENG HongBo, Chai Yuwei, Ma Jiantao, Li Rui, Li Yawei, CHANG Lei, Chai Shouxi*

      Key Laboratory of Crop Science in Arid Environment of Gansu Province/College of Agriculture, Gansu Agricultural University, Lanzhou 730070

      【Objective】The aim of this study was to identify the impact of straw mulching and plastic film mulching on wheat production in Northern China, so as to explore the suitable promotion areas of two mulching systems.【Method】In this study, a total of 165 literature was retrieved and screened in recent 40 years, which were put into the framework of Meta-analysis, and were carried out through different forms of overall effect analysis (such as change rate and response ratio) for theoretical research.Generally, by adopting random effect model, the changes of wheat agronomic indexes and farmland moisture conditions under different mulching patterns were analyzed.Then, the response rules of mulching yield increasing effect to various environmental conditions (altitude, precipitation, temperature, and sunshine) and field management measures (mulching period, planting density, tillage, and fertilization) were revealed by subgroup analysis, while the function fitting, weight analysis and statistical test were carried out.The correlation between the variables involved in this study was quantitatively analyzed by Pearson correlation coefficient method.【Result】Compared with the open field cultivation, the straw and plastic film mulching significantly increased wheat yield by 19.53% (95%=0.55%-38.52%) and 24.91% (95%=3.18%-46.64%), which also inhibited field evapotranspiration.Furthermore, it was found that there were some differences in contribution rate of yield components to yield under different mulching patterns, which were: effective spike number > grain number per spike > 1000 grain weight (straw mulching); effective spike number > 1 000 grain weight > grain number per spike (plastic film mulching).The increase of grain number per spike under straw mulching was higher, that about 5.7% (95%= -4.10%-15.50%); while increase of effective spike number and 1000 grain weight under film mulching was more significant, which were 25.2% (95%= 14.11%-36.29%) and 6.4% (95%= 1.50%-11.30%), respectively.In addition to the advantages of promoting production, the biomass and water use efficiency of film mulching were also 18.17% and 14.39% higher than that of straw mulching, respectively.Specifically, the yield increase rate of plastic film mulching was 0.89%-23.34% higher than that of straw mulching in most meteorological subregions.Meanwhile, with the declined of terrain height, the yield increasing effect of plastic film showed the growth trend, compared with non-mulching treatments, and the yield increase rate could reach 34.26% in low altitude area (< 800m).However, the yield increasing advantage of plastic film mulching over straw mulching was declined gradually with the increase of mulching years.In the more than 8 years of mulching experiments, the overall yield increasing rate of straw mulching was higher.The yield of straw mulching was also affected by fertilization and tillage measures, especially in the three treatments of no tillage, no fertilization and applying phosphate fertilizer, the yield increase rates were 32.68%, 25.94% and 21.71%, respectively.According to statistical test, among the three subgroups of altitude, average annual sunshine hours and planting density, their inter group heterogeneity Q test statistics were larger, indicated that the variation degree of each effect quantity in these groups was higher.Finally, it was found that under the conditions of straw and plastic film mulching, the factors with the highest correlation to yield were effective spike number (= 0.808) and water use efficiency (= 0.718), while the most primary factors affecting the soil water content in two mulching systems were evapotranspiration (= -0.859) and water use efficiency (= 0.856), respectively.【Conclusion】In conclusion, these two mulching patterns possessed obvious effect on yield increase, while plastic film mulching had more advantages in low altitude, relative drought and cold regions; The straw mulching was more suitable for long-term conservation tillage system, so as to achieve the coordinated development of production and ecology.Therefore, the key to the success of wheat mulching technology in northern China is to choose scientific mulching methods according to local and time conditions.

      straw mulching; plastic film mulching; wheat; yield; meta-analysis

      2021-06-02;

      2021-11-05

      國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-3-2-47)、國家自然科學(xué)基金(31760362)

      秦羽青,E-mail:3279533406@qq.com。通信作者柴守璽,E-mail:sxchai@126.com

      (責(zé)任編輯 楊鑫浩)

      猜你喜歡
      增產(chǎn)率穗數(shù)覆膜
      不同高低畦種植模式對冬小麥干物質(zhì)積累和產(chǎn)量的影響
      播期和密度對揚麥25產(chǎn)量及產(chǎn)量構(gòu)成因子的影響
      蘋果秋覆膜 樹體營養(yǎng)好
      雜交晚粳稻通優(yōu)粳1號產(chǎn)量及構(gòu)成因子分析
      高產(chǎn)小麥構(gòu)成要素的解析與掌握
      有機肥在辣椒上的應(yīng)用效果試驗
      復(fù)合微生物肥料在水稻生產(chǎn)上的應(yīng)用效果分析
      水稻施用秸稈腐熟劑效果研究
      “復(fù)合微生物肥料”在水稻上的肥效試驗報告
      基于SLS覆膜砂的無模鑄型快速制造
      辰溪县| 清流县| 台江县| 措勤县| 北票市| 祁门县| 宁远县| 尼玛县| 河津市| 铁岭市| 穆棱市| 南昌县| 连山| 遵义市| 黄石市| 新河县| 大邑县| 宝山区| 定陶县| 宜宾县| 云浮市| 吴旗县| 保山市| 信宜市| 九江县| 五家渠市| 德钦县| 麻城市| 新晃| 东海县| 曲沃县| 岑巩县| 孝义市| 广宁县| 依安县| 亚东县| 盐边县| 彭阳县| 常宁市| 阿合奇县| 瑞金市|