• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comprehensive performance of a ball-milled La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al magnetocaloric composite

    2022-04-12 03:48:18JiaoHongHuang黃焦宏YingDeZhang張英德NaiKunSun孫乃坤YangZhang張揚(yáng)XinGuoZhao趙新國(guó)andZhiDongZhang張志東
    Chinese Physics B 2022年4期
    關(guān)鍵詞:英德張揚(yáng)

    Jiao-Hong Huang(黃焦宏) Ying-De Zhang(張英德) Nai-Kun Sun(孫乃坤) Yang Zhang(張揚(yáng))Xin-Guo Zhao(趙新國(guó)) and Zhi-Dong Zhang(張志東)

    1State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization,Baotou Research Institute of Rare Earths,Baotou 014030,China

    2School of Science,Shenyang Ligong University,Shenyang 110159,China

    3Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    Keywords: ball milling,mechanical behavior,room-temperature magnetic refrigeration,La(Fe,Si)13

    1. Introduction

    La(Fe,Si)13-based hydrides have demonstrated a great potential for applications in room-temperature magnetic refrigeration by virtue of their large magnetic entropy change, abundant constituent elements and cascading of magnetic transition temperature across the near room-temperature range by Mn substitution or adjustment of the hydrogen content.[1,2]However, due to the hydrogen embrittlement effect, La(Fe,Si)13-based hydrides can only exist in powder form, which poses a challenge for shaping these materials into bulk magnetocaloric refrigerants for various regenerator configurations.Recently, a metal-bonding approach was employed for bulk formation of La(Fe,Si)13hydrides and this had the simultaneous effect of enhancing the mechanical and thermal conduction properties.[3-5]Compared with other metal bonders,such as Cu,Bi,In and Sn,metal Al possesses a better comprehensive performance with a unique combination of strength and corrosion resistance,non-toxicity and low cost,and high ductility and thermal conductivity.[6]In first-order transition of giant magnetocaloric materials, substitution or addition of B could reduce the lattice volume discontinuities at the transition temperature, thereby reducing the hysteresis loss[7]and improving mechanical stability.[8]

    In our previous works,[9,10]a series of La(Fe,Si)13bulk hydrides were prepared by sintering under high hydrogen pressure. Unfavorably, in these sintered hydrides, a large number of micropores were distributed in the main phase matrix,substantially reducing the compressive strength and thermal conductivity. Considering these aforementioned factors,in this work we employ metal Al as a bonder to produce La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al bulk composites. Hydrogenation and compactness shaping of the magnetocaloric composites were fulfilled in one step via a high-pressure sintering process. The comprehensive performance associated with application in magnetic refrigeration was systematically explored.

    2. Experiment

    The parent compounds of LaFe11.4Si1.56and La0.5Pr0.5Fe11.4Si1.6B0.2were prepared by melting starting materials with purity of≥99.9 wt.% using a mediumfrequency induction furnace, as described in detail in Ref. [11]. The ball milling method was employed to homogeneously mix the La(Fe,Si)13-based compounds with metal Al according to weight ratios of 60:1, 10:1, and 5:1; the resultant composites are referred to as 1.6 wt.% Al, 9 wt.%Al, and 16.7% wt.% Al samples, respectively. The materials were sealed in a hardened steel vial in a high-purity argon atmosphere and then ball milled for 30 min. The ball-milled powders were cold-pressed into thin plates (12.6-mm diameter, 1-mm thick) and sintered for 10 min at 290°C in a high-pressure H2atmosphere of 50 MPa for hydrogenation and compaction. Subsequent annealing was conducted at 200°C for 2 h to reduce interface defects.Importantly,a highpressure atmosphere was retained during the whole annealing and cooling process to suppress hydrogen desorption.

    X-ray diffraction (XRD) analysis was carried out using Cu-Kαradiation in a Rigaku D/Max-γA diffractometer. The microstructure and elemental composition of the composites were characterized by means of a FEI Quanta 200 F scanning electron microscope (SEM) equipped with an energydispersed x-ray(EDX)spectrometer. The compressive strainstress curve was measured with a universal testing machine.The magnetic properties were measured with a superconducting quantum interference device magnetometer using the reciprocating sample option as the measurement mode. The adiabatic temperature changes ΔTadwere directly measured using a self-made setup.[11]A laser flash thermal conductivity apparatus(LFA 457)was employed for measuring the thermal conductivityλalong the vertical direction of the sintered thin plates by directly measuring the thermal diffusivity,D,and indirectly deriving the specific capacityCpusing a representative Cu sample.

    3. Results and discussion

    For a good compactness effect, with the premise of ensuring stability of the 1:13 main phase, the sintering temperature should be as high as possible. To explore the optimum sintering temperature, we first sintered the ballmilled LaFe11.4Si1.56/Al composite at 500°C for 2 h. The XRD pattern shows a strong combined reflection peak of the Fe3Al0.5Si0.5phase andα-Fe at~45°and an intermetallic phase, Fe2Al5, is also formed. Notably, upon hydrogenation the reflections of the cubic NaZn13-type structure unexpectedly shift to higher angles, indicating substantial decomposition of the 1:13 main phase (Fig. 1(a)). After checking the phase constitutions of the sintered composites, the optimum sintering temperature and time were determined to be 290°C and 10 min,respectively.Selected XRD patterns of asprepared La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites are shown in Fig. 1(b). For the 1.6 wt.% Al sample, the reflection peak of pure Al is not detected,and with increase in the Al content to 9 wt.%and 16.7 wt.%,an apparent reflection peak of pure Al is observed. Small reflection peaks were identified to correspond toθ-Al2O3and FeAl9Si3, indicating that Al is easy to oxidize in the ball milling process.

    Figures 2(a)-2(c)illustrate the fracture and surface morphology of the 9 wt.%Al sample. An EDX study was carried out in eight typical areasA-Hfor analyzing the Al distribution and phase compositions. The grey areaAon the fracture surface has a small concentration of Al (2.5 at.%) and a predominant concentration of the 1:13 main phase. The elemental compositions in the dark areaBare mostly Al (28 at.%)and O(71 at.%)with small concentration of Fe(0.6 at.%)and Si (0.2 at.%), indicating that this kind of grey area predominantly consists of Al2O3. AreaC, corresponding to a single large La0.5Pr0.5Fe11.4Si1.6B0.2Hyparticle, has the smallest Al concentration of 1.5 at.% and areasDandEcontain an Al concentration of 10 at.%-15 at.%. The surface morphology in Fig. 2(c) clearly shows three typical areas, a white areaF, a grey areaGand a dark grey areaH. The Al concentrations for areasFandGare 15 at.% and 1 at.%, respectively. AreaHcontains 41 at.%O and 13 at.%Al,indicating that this kind of dark grey area on the surface is mainly composed of Al2O3.

    Fig.1. Selected XRD patterns of(a)LaFe11.4Si1.56 and LaFe11.4Si1.56Hy/Al(4 wt.%)composite and(b)La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites.

    From the expanded view of fracture morphology(Fig.2(b))and surface morphology(Fig.2(c)),we can clearly observe that the particles have a large size distribution ranging from submicron to~10 microns with a predominant number of particles having sizes of several microns; this can be ascribed to the ball milling process. In contrast, La(Fe,Si)13-based bulk hydrides prepared by other methods generally have much larger particle sizes of tens of microns.[12,13]Together,the results of XRD and EDX analyses indicate that upon ball milling, aluminum oxides fill up the gaps and pure Al, Fe-Al-Si alloys andα-Fe are distributed in the 1:13 main phase particles;these cannot be individually identified.

    Fig.2. SEM images of(a)and(b)fracture morphology and(c)surface morphology of La0.5Pr0.5Fe11.4Hy/Al(9 wt.%).

    The distribution of ductile Al bonder in the 1:13 phase matrix as well as the fact that the gaps are filled up with Al2O3should remarkably enhance the mechanical and thermal conduction properties. As shown in Fig. 3, the compressive strength of 42 MPa for the 1.6 wt.% Al-bonded composite is in a similar range of magnitude to the sintered(36 MPa-46 MPa)[9]and epoxy-resin-bonded La(Fe,Si)13hydrides (52 MPa).[13]Moreover, these bulk hydrides prepared by different methods all show a similar shape of the stressstrain curve associated with the mechanical behavior of brittle materials. As the Al content increases to 9 wt.%, the stress-strain diagram demonstrates typical characteristic of ductile materials, with a long yielding stage beginning at the yield strength of~44 MPa followed by a strain hardening process. This ductile mechanical behavior has not previously been observed in La(Fe,Si)13composites bonded by other ductile metals such as In,[4]Sn,[14]and Bi,[15]and is also absent in a LaFe11Co0.8Si1.2/10 wt.% Al composite prepared by the hot-pressing method.[6]The present 16.7 wt.% Al sample demonstrates an ultimate compressive strength of 388 MPa,much higher than the values for the hotpressed LaFe11Co0.8Si1.2/10 wt.% Al composite (186 MPa)and 20 wt.% Cu-bonded La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2(248 MPa).[12]Consolidated alumina powder bodies show particle size-dependent plastic to brittle transition due to the fact that, for a given applied pressure, larger forces exist between larger particles as a result of the smaller number of contacts per unit volume.[16]Smaller wood particle sizes correspond to a higher ultimate compression strength in woodbased composites, as the larger surface area for smaller particles could act as an adhesive factor in the composite system and lead to a more efficient stress transfer.[17]It has been observed in SiC particle-reinforced Al-Cu alloy composites that a small particle size of several microns and uniform distribution of the reinforcing phase corresponded to the highest yield strength and ultimate tensile strength.[18]According to these previous results, the high compressive strength and mechanical behavior of ductile materials in the present La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composite can be ascribed to the fact that the ball milling results in Al particles being distributed in the whole matrix as well as the small particle size of the composites.

    Fig. 3. Compressive stress-strain curves for La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites.

    Next, we evaluate the magnetocaloric properties of the Al-bonded composites. The thermomagnetic curves of the composites in a field of 0.01 T are shown in Fig. 4(a). The Curie temperature,TC,defined as the minimum of the dM/dTversusTcurves, is~320 K for the 1.6 wt.% Al sample and~324 K for the two samples with higher Al contents.The temperature dependence of ΔSm(T,B) calculated from the isothermal magnetization data (Figs. 4(b)-4(d)) using the Maxwell relationship is shown in Fig. 5(a). The maximum value of ΔSmof the La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites is reduced by approximately fivefold to~1.2 J/kg·K-1.5 J/kg·K for a magnetic field change of 1.5 T compared with(La,Pr)(Fe,Si)13-based hydrides.[19-21]This can be mainly ascribed to the small particle size[22]due to the ball milling process as well as the existence of non-magnetocaloric phases of Fe-Al-Si alloys and pure Al. The directly measured adiabatic temperature change ΔTadis represented in Fig.5(b). The peak value of ΔTadfor a field change of 1.5 T is 0.54 K at 322 K,0.48 K at 330 K and 0.45 K at 325 K for the 1.6 wt.% Al,9 wt.%Al,and 16.7 wt.%Al composites,respectively.

    Fig. 5. The temperature dependence of ΔSm (a) and ΔTad (b) for La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites.

    High thermal conductivity of magnetocaloric materials is desirable for application in a refrigerant device in order to afford efficient heat transfer to the heat exchange fluid.Hot-pressing or sintering cannot ensure uniform distribution of thermal conductive metal particles in La(Fe,Si)13hydride matrices, making theλvalues lower than expected, such as 2 W/K·m-3 W/K·m for the 4 wt.% Cu bonded,[3]5 W/K·m for the 15 wt.% silver-epoxy bonded[23]and 6.8 W/K·m for the 25 wt.%Sn bonded[14]composites.Figure 6 represents the thermal conductivity of La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites in the temperature range covering the phase transition temperature. Theλvalues in the paramagnetic state are generally a little higher than those in the ferromagnetic state. The room-temperatureλin the cross-plane direction of the sintered plates is 1.9 W/K·m, 3.7 W/K·m, and 11.1 W/K·m for the 1.6 wt.%,9 wt.%,and 16.7 wt.%Albonded composites,respectively,indicating that metal Al has a similar effect on thermal conductive improvement of La(Fe,Si)13hydrides to metal In.[4]A plastically deformed La(Fe,Si)13plate demonstrated significant anisotropic thermal conductivity in cross-plane and in-plane directions mainly due to the in-plane elongation ofα-Fe and the 1:13 phase grains caused by open-die forging.[24]The present composites prepared by ball milling and shortduration sintering do not exhibit an apparent anisotropic microstructure,so we expect no substantial directional difference inλfor the Al-bonded La-Fe-Si composites.

    Fig. 6. Thermal conductivity of La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites at temperatures across the phase transition temperature.

    4. Conclusion

    We have developed a novel route for the fabrication of La(Fe,Si)13hydride-based bulk materials via ballmilling mixing and sintering at high hydrogen pressure.Upon incorporating 9 wt.%-16.7 wt.% Al, the as-prepared La0.5Pr0.5Fe11.4Si1.6B0.2Hy/Al composites demonstrate the mechanical behavior of ductile materials with a yield strength of 44 MPa and ultimate strength of 269 MPa-388 MPa. The 16.7 wt.%Al-bonded composite has a high thermal conductivity of 11.1 W/K·m,which is comparable to the effect of metal In bonding. The ball milling process facilitates the homogeneous distribution of metal Al in the matrix, but simultaneously reduces the particle size even to the submicron range,leading to a substantial decrease in the magnetocaloric effect.

    Acknowledgments

    Project supported by the Open Research Project of State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization and the National Natural Science Foundation of China (Grant Nos. 51771197 and 52171187).

    猜你喜歡
    英德張揚(yáng)
    盧英德:百事可樂女王
    愛,無須張揚(yáng)
    小讀者(2021年2期)2021-03-29 05:03:48
    The Brief History of the Ancient Olympic Games
    魔高一丈 就要張揚(yáng) Ducati XDiavel
    車迷(2020年7期)2020-08-10 06:41:00
    凸顯理念,學(xué)也張揚(yáng)
    不與對(duì)手正面交鋒
    幸福(2019年11期)2019-05-13 09:44:34
    激戰(zhàn)長(zhǎng)空之英德怒戰(zhàn)
    對(duì)弗萊克斯納現(xiàn)代大學(xué)職能觀的理解——《現(xiàn)代大學(xué)論——美英德大學(xué)研究》讀后感
    低調(diào)而不張揚(yáng)的七都
    蘇州雜志(2016年6期)2016-02-28 16:32:18
    英德瓊影
    源流(2016年10期)2016-02-13 08:09:04
    av天堂中文字幕网| 亚洲av免费高清在线观看| 欧美区成人在线视频| 国产精品野战在线观看| 晚上一个人看的免费电影| 国产高清三级在线| 精品一区二区三区av网在线观看| 精品久久久久久久人妻蜜臀av| 精品久久久久久久久久免费视频| 国产片特级美女逼逼视频| 亚洲国产色片| 性色avwww在线观看| 高清日韩中文字幕在线| 美女免费视频网站| 国产精品福利在线免费观看| 看非洲黑人一级黄片| 99久久精品热视频| 久久精品国产亚洲av香蕉五月| 一区福利在线观看| 国产不卡一卡二| 日韩欧美三级三区| 一级毛片电影观看 | 搡老妇女老女人老熟妇| 欧美性猛交╳xxx乱大交人| 黄色视频,在线免费观看| 精品人妻视频免费看| 日韩欧美一区二区三区在线观看| 国产精品国产三级国产av玫瑰| 久久久久久国产a免费观看| 国产成人福利小说| 麻豆成人午夜福利视频| 天堂av国产一区二区熟女人妻| 身体一侧抽搐| 亚洲18禁久久av| 国产亚洲av嫩草精品影院| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩东京热| 12—13女人毛片做爰片一| 自拍偷自拍亚洲精品老妇| 香蕉av资源在线| 亚洲熟妇中文字幕五十中出| 18禁在线播放成人免费| 色综合站精品国产| 色哟哟·www| 成人特级av手机在线观看| 一级毛片久久久久久久久女| 一级毛片电影观看 | 男插女下体视频免费在线播放| 99riav亚洲国产免费| 简卡轻食公司| 久久久国产成人精品二区| 午夜久久久久精精品| 99久久精品一区二区三区| 小蜜桃在线观看免费完整版高清| 伊人久久精品亚洲午夜| av天堂中文字幕网| 国产午夜福利久久久久久| 国产精品久久久久久亚洲av鲁大| 久久热精品热| 夜夜看夜夜爽夜夜摸| 大型黄色视频在线免费观看| 自拍偷自拍亚洲精品老妇| 久久亚洲精品不卡| 久久人人爽人人爽人人片va| 噜噜噜噜噜久久久久久91| 久久韩国三级中文字幕| 欧美xxxx黑人xx丫x性爽| 能在线免费观看的黄片| 免费黄网站久久成人精品| 联通29元200g的流量卡| 波多野结衣巨乳人妻| 国产精品1区2区在线观看.| 日本-黄色视频高清免费观看| 此物有八面人人有两片| 国产蜜桃级精品一区二区三区| 日本免费a在线| 久久人人爽人人片av| 国产精品电影一区二区三区| 国产精品福利在线免费观看| 18禁在线无遮挡免费观看视频 | 美女黄网站色视频| 1024手机看黄色片| 亚洲成av人片在线播放无| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| 久久久色成人| 午夜久久久久精精品| 又爽又黄无遮挡网站| 国产毛片a区久久久久| 老司机午夜福利在线观看视频| 久久国内精品自在自线图片| 麻豆精品久久久久久蜜桃| 99热这里只有精品一区| 又黄又爽又刺激的免费视频.| 欧美激情国产日韩精品一区| 色5月婷婷丁香| 女同久久另类99精品国产91| 久久精品人妻少妇| 久久中文看片网| 91久久精品国产一区二区成人| 国产精华一区二区三区| 最新在线观看一区二区三区| aaaaa片日本免费| 最近最新中文字幕大全电影3| 精品国产三级普通话版| 成年女人永久免费观看视频| 给我免费播放毛片高清在线观看| aaaaa片日本免费| 成熟少妇高潮喷水视频| 99热这里只有是精品50| av在线亚洲专区| 亚洲欧美精品自产自拍| 嫩草影视91久久| 国产av在哪里看| 亚洲美女视频黄频| 91久久精品国产一区二区三区| 欧美激情在线99| 欧美成人a在线观看| 99久国产av精品| 国产精品乱码一区二三区的特点| 一级黄色大片毛片| 久久久久久伊人网av| 亚洲五月天丁香| 日本三级黄在线观看| 免费av观看视频| 精品不卡国产一区二区三区| 国产精品av视频在线免费观看| 六月丁香七月| 久久久久精品国产欧美久久久| 婷婷亚洲欧美| 国产熟女欧美一区二区| 丰满的人妻完整版| 丰满人妻一区二区三区视频av| 免费观看人在逋| 亚洲成人久久爱视频| 天堂网av新在线| 亚洲中文字幕日韩| 麻豆久久精品国产亚洲av| 亚洲精品在线观看二区| 亚洲av美国av| 黑人高潮一二区| 偷拍熟女少妇极品色| 卡戴珊不雅视频在线播放| 可以在线观看的亚洲视频| 久久久a久久爽久久v久久| 亚洲人成网站在线播放欧美日韩| 亚洲精品一区av在线观看| 村上凉子中文字幕在线| 日本-黄色视频高清免费观看| 2021天堂中文幕一二区在线观| 国产精品一及| 两个人视频免费观看高清| 一个人观看的视频www高清免费观看| 一级黄片播放器| 国产精品永久免费网站| 我的老师免费观看完整版| 亚洲av免费在线观看| 亚洲欧美日韩卡通动漫| 久久久久性生活片| 一本精品99久久精品77| av专区在线播放| 真人做人爱边吃奶动态| 黄色日韩在线| 亚洲精品在线观看二区| 免费av毛片视频| 久久精品国产清高在天天线| 露出奶头的视频| 18禁裸乳无遮挡免费网站照片| 韩国av在线不卡| 欧美另类亚洲清纯唯美| 中文字幕久久专区| 不卡一级毛片| 亚洲av成人av| 免费av不卡在线播放| 国产乱人视频| 亚洲av免费在线观看| 国产高清有码在线观看视频| 在线免费观看不下载黄p国产| 久久久久久久久久久丰满| 国产精品亚洲一级av第二区| 国产精品人妻久久久影院| 久久国内精品自在自线图片| 天堂影院成人在线观看| 免费av观看视频| 成人高潮视频无遮挡免费网站| 国产成人精品久久久久久| 少妇丰满av| 有码 亚洲区| 男插女下体视频免费在线播放| 精品久久久久久久久久久久久| АⅤ资源中文在线天堂| 国产高清视频在线观看网站| 最近手机中文字幕大全| 精品国产三级普通话版| 你懂的网址亚洲精品在线观看 | 狠狠狠狠99中文字幕| 免费看美女性在线毛片视频| 性插视频无遮挡在线免费观看| 国产麻豆成人av免费视频| 国产成人a区在线观看| 色5月婷婷丁香| 成人av一区二区三区在线看| 搡老岳熟女国产| 日本a在线网址| 久久久久久久亚洲中文字幕| 亚洲精品成人久久久久久| 春色校园在线视频观看| 搞女人的毛片| 久久久久久久午夜电影| 老师上课跳d突然被开到最大视频| 婷婷精品国产亚洲av在线| 夜夜爽天天搞| 色5月婷婷丁香| 97超视频在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人精品中文字幕电影| 国产麻豆成人av免费视频| 波野结衣二区三区在线| 亚洲七黄色美女视频| 成人综合一区亚洲| 免费看av在线观看网站| 久久久久国产精品人妻aⅴ院| 国产亚洲91精品色在线| 色尼玛亚洲综合影院| 嫩草影视91久久| 中国美女看黄片| 精品久久久久久久久久久久久| av.在线天堂| 菩萨蛮人人尽说江南好唐韦庄 | 欧美国产日韩亚洲一区| 国产成人freesex在线 | 欧美zozozo另类| 97超级碰碰碰精品色视频在线观看| 国产色婷婷99| 国产极品精品免费视频能看的| 亚洲精品色激情综合| 一个人免费在线观看电影| 欧美丝袜亚洲另类| 亚洲中文日韩欧美视频| 免费看a级黄色片| av在线天堂中文字幕| 少妇人妻精品综合一区二区 | 日韩av不卡免费在线播放| 六月丁香七月| 久久久久免费精品人妻一区二区| 久久久精品94久久精品| 成人美女网站在线观看视频| 国产不卡一卡二| 少妇人妻精品综合一区二区 | av天堂在线播放| 99riav亚洲国产免费| 搞女人的毛片| 欧美性感艳星| 波多野结衣巨乳人妻| 国产精品国产三级国产av玫瑰| 久久草成人影院| 天天躁夜夜躁狠狠久久av| 18禁在线无遮挡免费观看视频 | 日韩高清综合在线| 人妻制服诱惑在线中文字幕| 久久综合国产亚洲精品| 看黄色毛片网站| 亚州av有码| 亚洲欧美精品综合久久99| 日韩人妻高清精品专区| 亚洲欧美日韩高清专用| 国产亚洲精品久久久久久毛片| 日韩成人av中文字幕在线观看 | a级毛片a级免费在线| 丝袜喷水一区| 久久99热这里只有精品18| 成年免费大片在线观看| 99国产极品粉嫩在线观看| 午夜精品在线福利| 免费观看在线日韩| 国产成人影院久久av| 久久久久国产精品人妻aⅴ院| or卡值多少钱| 亚洲人成网站在线观看播放| 床上黄色一级片| 亚洲图色成人| 少妇被粗大猛烈的视频| 性欧美人与动物交配| 国产精品综合久久久久久久免费| 国内精品宾馆在线| 亚洲精品一卡2卡三卡4卡5卡| 免费看美女性在线毛片视频| 尾随美女入室| 激情 狠狠 欧美| 啦啦啦观看免费观看视频高清| 国产精品久久久久久精品电影| 国产v大片淫在线免费观看| 国产精品久久久久久亚洲av鲁大| 久久精品夜色国产| 亚洲精品亚洲一区二区| 国产精品美女特级片免费视频播放器| 寂寞人妻少妇视频99o| 国模一区二区三区四区视频| 婷婷精品国产亚洲av| 免费看美女性在线毛片视频| 国产色婷婷99| 看非洲黑人一级黄片| 亚洲欧美清纯卡通| 精品久久久久久久久久久久久| 中文亚洲av片在线观看爽| 亚洲av免费在线观看| 老司机影院成人| a级一级毛片免费在线观看| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| 亚洲天堂国产精品一区在线| 国内少妇人妻偷人精品xxx网站| av在线天堂中文字幕| 成人亚洲精品av一区二区| 国产精品99久久久久久久久| 男人舔女人下体高潮全视频| 久久天躁狠狠躁夜夜2o2o| 色尼玛亚洲综合影院| 三级国产精品欧美在线观看| 深爱激情五月婷婷| 搡老熟女国产l中国老女人| 哪里可以看免费的av片| 啦啦啦韩国在线观看视频| 国产私拍福利视频在线观看| 国产综合懂色| 国产精品免费一区二区三区在线| 中文字幕人妻熟人妻熟丝袜美| 成人国产麻豆网| 晚上一个人看的免费电影| 国产午夜精品久久久久久一区二区三区 | 日韩成人av中文字幕在线观看 | 国产精品人妻久久久影院| 麻豆乱淫一区二区| 国产午夜精品论理片| 午夜福利18| 亚洲精品久久国产高清桃花| 成人美女网站在线观看视频| 国产真实伦视频高清在线观看| 成人午夜高清在线视频| 中文字幕免费在线视频6| 婷婷亚洲欧美| 亚洲国产欧美人成| 亚洲人成网站在线播| 熟女电影av网| 99九九线精品视频在线观看视频| 久久人人爽人人片av| 亚洲精品一卡2卡三卡4卡5卡| 精品午夜福利在线看| 久久久久精品国产欧美久久久| 久久精品夜夜夜夜夜久久蜜豆| 中出人妻视频一区二区| 少妇丰满av| 成人亚洲精品av一区二区| 美女免费视频网站| 精品久久久久久成人av| 日韩精品有码人妻一区| 直男gayav资源| 九九久久精品国产亚洲av麻豆| 亚洲人成网站在线播| 国产不卡一卡二| 精品日产1卡2卡| 欧美日本亚洲视频在线播放| 亚洲精品456在线播放app| 国产真实伦视频高清在线观看| 成人鲁丝片一二三区免费| 欧美日本亚洲视频在线播放| 中出人妻视频一区二区| 热99在线观看视频| 天堂影院成人在线观看| 国产精品人妻久久久影院| 精品久久久久久久久久免费视频| 变态另类丝袜制服| 在线国产一区二区在线| 深爱激情五月婷婷| 人妻制服诱惑在线中文字幕| 夜夜爽天天搞| 你懂的网址亚洲精品在线观看 | 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 亚洲人成网站在线播| 精品国产三级普通话版| 国产综合懂色| 哪里可以看免费的av片| 日韩欧美在线乱码| 一个人免费在线观看电影| 两性午夜刺激爽爽歪歪视频在线观看| 日韩av在线大香蕉| 三级男女做爰猛烈吃奶摸视频| 97热精品久久久久久| 日本成人三级电影网站| 男插女下体视频免费在线播放| 精品熟女少妇av免费看| 亚洲欧美中文字幕日韩二区| 又粗又爽又猛毛片免费看| 麻豆乱淫一区二区| 美女免费视频网站| 久久精品国产鲁丝片午夜精品| 久久精品国产清高在天天线| 日韩大尺度精品在线看网址| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片| 午夜亚洲福利在线播放| 亚洲经典国产精华液单| 一本久久中文字幕| 三级国产精品欧美在线观看| 国产中年淑女户外野战色| 午夜福利在线在线| 老司机福利观看| 九九久久精品国产亚洲av麻豆| 中文在线观看免费www的网站| 丰满人妻一区二区三区视频av| 天堂网av新在线| 有码 亚洲区| 成人一区二区视频在线观看| 久久精品国产清高在天天线| 性色avwww在线观看| 国产免费男女视频| 国产精品三级大全| 直男gayav资源| 97碰自拍视频| 免费观看的影片在线观看| 一个人看的www免费观看视频| 日韩强制内射视频| 赤兔流量卡办理| 国产一区二区在线av高清观看| 成年免费大片在线观看| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清| 中文字幕久久专区| 久久99热这里只有精品18| 国产视频内射| 色哟哟哟哟哟哟| 在线天堂最新版资源| 国产精品国产三级国产av玫瑰| 欧美高清性xxxxhd video| 高清午夜精品一区二区三区 | 我要看日韩黄色一级片| 国产精品不卡视频一区二区| 激情 狠狠 欧美| 日日摸夜夜添夜夜添av毛片| 淫秽高清视频在线观看| 亚洲欧美日韩高清在线视频| 高清日韩中文字幕在线| 一本精品99久久精品77| 九九久久精品国产亚洲av麻豆| 在线看三级毛片| 我的老师免费观看完整版| 欧美一区二区亚洲| 看黄色毛片网站| 国产一区二区在线av高清观看| 欧美日韩综合久久久久久| 久久久久久久久久成人| 久久久精品欧美日韩精品| 成人美女网站在线观看视频| 日韩三级伦理在线观看| 啦啦啦啦在线视频资源| 日本五十路高清| 美女 人体艺术 gogo| 亚洲欧美日韩东京热| 国产成人91sexporn| 一级av片app| 国产三级在线视频| 热99re8久久精品国产| 12—13女人毛片做爰片一| 久久九九热精品免费| 在线天堂最新版资源| 国模一区二区三区四区视频| 看十八女毛片水多多多| 久久6这里有精品| 亚洲,欧美,日韩| 久久久精品94久久精品| 成人欧美大片| 国产成人福利小说| 日韩大尺度精品在线看网址| 在线免费观看的www视频| 天堂影院成人在线观看| 国产精品久久久久久精品电影| 亚洲不卡免费看| 国产高清激情床上av| 欧洲精品卡2卡3卡4卡5卡区| 在线观看一区二区三区| 色av中文字幕| 18禁黄网站禁片免费观看直播| 99热这里只有是精品在线观看| 国产男靠女视频免费网站| 久久99热6这里只有精品| 人人妻,人人澡人人爽秒播| 51国产日韩欧美| 又粗又爽又猛毛片免费看| 亚洲欧美日韩无卡精品| 一本一本综合久久| 久久久久久九九精品二区国产| 久99久视频精品免费| 精品一区二区三区人妻视频| 午夜免费激情av| 中文亚洲av片在线观看爽| 俺也久久电影网| 国产亚洲精品久久久久久毛片| 日韩高清综合在线| 国产熟女欧美一区二区| 午夜免费激情av| 精品熟女少妇av免费看| 国产亚洲精品久久久com| 熟女电影av网| 久久国内精品自在自线图片| 欧美三级亚洲精品| 亚洲av免费高清在线观看| 国内精品美女久久久久久| 欧美色视频一区免费| 身体一侧抽搐| 成人性生交大片免费视频hd| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 男人舔奶头视频| 久久久久性生活片| 村上凉子中文字幕在线| 蜜桃亚洲精品一区二区三区| 亚洲精品成人久久久久久| 午夜精品国产一区二区电影 | 精品一区二区三区av网在线观看| 欧美精品国产亚洲| 日韩大尺度精品在线看网址| 变态另类丝袜制服| 赤兔流量卡办理| 99九九线精品视频在线观看视频| 国产伦在线观看视频一区| 国产黄色小视频在线观看| 特级一级黄色大片| 岛国在线免费视频观看| 网址你懂的国产日韩在线| 久久久久国内视频| 午夜福利在线观看免费完整高清在 | 噜噜噜噜噜久久久久久91| 色5月婷婷丁香| 欧美zozozo另类| 欧美日韩综合久久久久久| 禁无遮挡网站| 久久鲁丝午夜福利片| 全区人妻精品视频| 午夜福利视频1000在线观看| 国产高清视频在线播放一区| 国产黄色视频一区二区在线观看 | 中文在线观看免费www的网站| 日本精品一区二区三区蜜桃| 欧美潮喷喷水| 中国国产av一级| 特级一级黄色大片| 99国产精品一区二区蜜桃av| 亚洲精品一卡2卡三卡4卡5卡| 久久天躁狠狠躁夜夜2o2o| 亚洲电影在线观看av| 午夜爱爱视频在线播放| 国产男靠女视频免费网站| 久久精品国产99精品国产亚洲性色| 草草在线视频免费看| 日韩欧美在线乱码| 亚洲精品国产av成人精品 | 观看免费一级毛片| 18禁在线播放成人免费| 国产一级毛片七仙女欲春2| 成年女人毛片免费观看观看9| 久久精品影院6| 看十八女毛片水多多多| 中文字幕精品亚洲无线码一区| www.色视频.com| 亚洲无线观看免费| 久久久色成人| 一区福利在线观看| 亚洲欧美成人精品一区二区| 禁无遮挡网站| 欧美bdsm另类| 欧美高清成人免费视频www| 最近手机中文字幕大全| 美女免费视频网站| 真人做人爱边吃奶动态| 国模一区二区三区四区视频| 亚洲成人精品中文字幕电影| 国产探花在线观看一区二区| 性插视频无遮挡在线免费观看| 婷婷精品国产亚洲av在线| 日本一本二区三区精品| 一区二区三区四区激情视频 | 中国国产av一级| 国产午夜福利久久久久久| 成人亚洲精品av一区二区| 亚洲精品国产成人久久av| 夜夜看夜夜爽夜夜摸| 特大巨黑吊av在线直播| 国产一区二区亚洲精品在线观看| av天堂中文字幕网| 成人二区视频| 女生性感内裤真人,穿戴方法视频| 三级男女做爰猛烈吃奶摸视频| 干丝袜人妻中文字幕| 亚洲av成人av| 免费av不卡在线播放| 性欧美人与动物交配| 色哟哟·www| 国产视频一区二区在线看| 国产v大片淫在线免费观看| 欧美一区二区国产精品久久精品| 在线天堂最新版资源| 亚洲av不卡在线观看| 久久久久久国产a免费观看| 熟女电影av网| 午夜福利成人在线免费观看| 成人特级av手机在线观看| 欧美三级亚洲精品| 蜜桃久久精品国产亚洲av| 18禁在线播放成人免费| 成人av一区二区三区在线看| 国产在视频线在精品| 亚洲七黄色美女视频| 99国产极品粉嫩在线观看| 青春草视频在线免费观看|