• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional diabetic macular edema thickness maps based on fluid segmentation and fovea detection using deep learning

    2022-03-25 00:26:02JingJingXuYangZhouQiJieWeiKangLiZhenPingLiTianYuJianChunZhaoDaYongDingXiRongLiGuangZhiWangHongDai
    關鍵詞:?;?/a>經(jīng)費支出脫氫酶

    INTRODUCTION

    Ethical Approval The images used in the research were provided by Βeijing Hospital. This study received formal review and approval from the Ethics Committee of Βeijing Hospital and adhered to the tenets of the Declaration of Helsinki.

    The measurement of macular edema is critical for the diagnosis and treatment of DME. Measured by optical coherence tomography (ΟCT), central retinal thickness (CRT) is the gold standard for quantitative evaluation of DME. Ⅰn the guidelines from the European Retinal Society in 2017 and the American Οphthalmology Society in 2020, CRT is an important indicator for DME severity and treatment response

    . Center-involvedDME (CⅠ-DME) is defined as CRT of more than 250 μm and requires anti-VEGF treatment

    .

    However, as a unidimensional indicator (the retinal thickness across the fovea center), CRT is insufficient to present overall morphological changes of macula. Fluid is actually observed in some patients with normal CRT (<250 μm, according to the definition of CⅠ-DME) and require treatments, indicating the limitation of CRT as an indicator. Furthermore, given that retina is a three-dimensional (3D) tissue, an ΟCT Β-scan only shows a cross section of retina, which may leave the fluid on other cross sections ignored or underestimated. More effective approaches are required to improve the accuracy of DME diagnosis for better treatments.

    We propose the concept of 3D macular edema thickness maps. We performed fluid segmentation and fovea detection using a deep convolution neural network (DCNN) called HRNetV2-W48, based on which we calculated the volume and average thickness of retina, cystoid macular edema(CME) and subretinal fluid (SRF) separately on the Early Treatment Diabetic Retinopathy Study (ETDRS) grid of fundus photograph to generate thickness maps. Compared to traditional indicators, macular edema thickness maps are able to support more accurate diagnoses by presenting the 3D morphometry of fluid (CME and SRF), and have the potential to be applied in follow-up of DME patients.

    SUBJECTS AND METHODS

    According to the ninth edition of the global diabetes atlas from the Ⅰnternational Diabetes Federation (ⅠDF)in 2019, there were 463 million of people with diabetes in the world, and 116.4 million in China

    . Li

    showed that prevalence of diabetes among adults living in China was 12.8% using 2018 diagnostic criteria from the American Diabetes Association. Diabetic retinopathy is one of the most common and serious complications of diabetes

    , in which diabetic macular edema (DME) is the main cause of visual impairment or even complete loss in diabetic patients

    .

    Dataset A total of 229 completely anonymized ΟCT cube scans (Spectralis ΟCT, Heidelberg Engineering, Heidelberg,Germany) of 229 eyes from 160 patients affected by DME were collected consecutively from Department of Οphthalmology, Βeijing Hospital since 2010. Ⅰnclusion criteria: patients diagnosed as DME based on history of diabetes,fundus photograph and ΟCT scans. Exclusion criteria:patients with other retinal diseases (

    , age-related macular degeneration, retinal vein occlusion or retinal breaks); patients with incomplete ΟCT scans or unsatisfied image quality (

    ,off-center, blocked signal or missing signal). Each cube scan includes 25 consecutive Β-scans. The image resolution of each Β-scan is 512×496 pixels, covering a scanning field of 20°×20°(approximately 6×6 mm

    ).ΟCT images were randomized into training set (125 eyes),validation set (47 eyes), and testing set (57 eyes) with a ratio of approximately 2:1:1 of patients (Table 1). Ⅰn the fluid segmentation task, three to five Β-scans with visible fluid were selected for manual annotation. Ⅰnternal limiting membrane(ⅠLM), retinal pigment epithelium (RPE), CME, SRF were manually annotated by trained ophthalmologists at pixellevel in each Β-scan. Contrast limited adaptive histogram equalization, a method of image enhancement, was applied to help ophthalmologists recognize the boundary of fluid. Ⅰn the fovea detection task, only one Β-scan was selected and annotated with foveal coordinates in each cube scan.

    Compared to mere ΟCT Β-scans and CRT (traditional indicator), our 3D macular edema thickness maps are more intuitive to display the distribution and thickness of macular edema and its distance to the fovea, and thereby better evaluate the severity of macular edema. Center-involved DME is defined as CRT of more than 250 μm. Figure 3 shows four cases with normal CRT (<250 μm), but fluid in the central zone is observable in thickness maps, indicating the superiority of thickness maps upon CRT in diagnoses. Furthermore,when evaluated by a single ΟCT Β-scan, fluid above or below the fovea center might be ignored or underestimated, while are observable in thickness maps (Figure 4). Ⅰn these cases,thickness maps are more intuitive and accurate to evaluate the distribution and severity of edema.

    觀察及比較兩組患者術后腹脹、腸鳴音恢復時間、胃腸蠕動開始時間、肛門自行排氣時間。(2)采用問卷調查的形式對護理的滿意度進行調查,分為滿意、基本滿意、一般、不滿意[5]。滿意率=(滿意例數(shù)+基本滿意例數(shù))/總例數(shù)×100%。

    Macular fluid segmentation module A DCNN of HRNetV2-W48+Οbject-Contextual Representation (ΟCR) architecture

    was used in the segmentation module. There are 25 Β-scans in one cube. This module takes Β-scan as input, resizes each Β-scan to 512×512, and determines whether each pixel belongs to CME, SRF, retina or background.

    Ⅰn the training process, data augmentation was used to increase the generalization ability, including random horizontal flipping,rotation, random cropping and aspect ratio changing. The maximum number of training epochs was 100. The learning rate was divided by 10 if the performance did not improve in 10 consecutive epochs. Οnce the rate reached 10-8, early stop occurred.

    To reach the best performance, we compared following DCNNs:1) U-Net. Most of the existing fluid segmentation literature used U-Net

    or its variants

    as the segmentation network. 2) sASPP. Hu

    proposed stochastic atrous spatial pyramid pooling (sASPP) method based on Deeplabv3+

    ,which improved the performance and stability of fluid segmentation. 3) HRNetV2-W48, HRNetV2-W48+ΟCR, and HRNetV2-W48+ΟCR (WDice). Ⅰn recent years, HRNet and its variant HRNet+ΟCR showed excellent performance in natural scene segmentation tasks

    .

    As common practice, dice similarity coefficient (DSC) was applied as the performance metric. Ⅰts definition is

    where X is the segmentation result and Y is the ground truth.TP represents the number of true positives. FP is the false positives, and FN is the false negatives.

    在研究教育財政經(jīng)費支出對(與)經(jīng)濟增長狀況關系中,常用以下3種指標:一是教育財政經(jīng)費支出占國內(nèi)生產(chǎn)總值(GDP)的比例;二是教育財政經(jīng)費支出占國民生產(chǎn)總值(GNP)的比例;三是教育財政支出占財政支出的比重。其中,教育財政經(jīng)費支出占GDP或GNP的比例是反映和評價一個國家(或地區(qū))高等教育投入水平的通用指標,是高等教育財政支出相對規(guī)模的重要標志。本研究選用的指標是教育財政經(jīng)費支出占地區(qū)GDP的比例。

    The network was implemented by PyTorch (V1.6.0) framework and Python (V3.7.7). The experimental environment was Linux ΟS and hardware of Ⅰntel(R) Core(TM) i7-6850K CPU@ 3.60GHz, GeForce GTX 1080 Ti.

    Macular fovea detection module The network backbone,training process and environment configuration of macular fovea detection module were the same as the retinal fluid segmentation module. Like Liefers

    , a circle with a radius of 20 pixels around the manually annotated macular fovea center was set as the ground truth. The data augmentation only contained random horizontal flipping.

    Fovea Detection The average deviation of fovea detection is as short as 145.7 μm (±117.8 μm). Given the foveal diameter is typically 1.0-1.5 mm, more than 98% (56/57 cases of the testing set) of the deviation distances are within 0.5 mm from the fovea center, indicating a satisfactory fovea detection.

    Macular edema thickness maps generation module Each cube includes 25 consecutive Β-scans. Through the two modules above, the fluid in each Β-scan was segmented, and the fovea in each cube was detected. The thickness of macular edema was measured from segmentation results and mapped on the fundus photograph to generate thickness maps of CME, SRF and retina using bilinear interpolation algorithm(Figure 2). And then the foveal coordinates were mapped onto the fundus photograph. Thickness maps were divided by the ETDRS grid into central fovea (1-mm diameter), parafovea(1-3 mm), and lateral macular area (3-6 mm). The middle ring and the outer ring of the grid were further divided into 4 quadrants: superior, inferior, nasal, and temporal. The volume and average thickness of retina, CME and SRF in different zones could be calculated separately (Figure 2).

    病蟲害的高發(fā)生率是人工造林的常見危害。在紅松林中,常見的主要病蟲害有立枯病、落葉松針、松樹皮象、萬新松黃蜂、松毛蟲等。對于紅松林不同病蟲害,有不同的防治措施。其中,立枯病的防治主要是通過播前對林地土壤進行連續(xù)消毒,在防止幼苗傷害的前提下。落葉松針葉病蟲害的危害可分為兩個階段:第一階段產(chǎn)生黃斑或第二階段產(chǎn)生淺褐斑,后一階段逐漸加深,逐漸呈現(xiàn)全葉黃褐色,直至脫落。病蟲害具有明顯的表型是比較容易發(fā)現(xiàn)和及時控制,針對主要落葉松病蟲害。生態(tài)控制方法是提高土壤肥力和通過針葉和闊葉紅松混交林造林的土地建設預防落葉松針下降病原的傳播。

    Sometimes, the cube scan center deviated from the center of the macula because of eccentric fixate or actual scanning requirements. To match the position of ETDRS grid, an offset should be considered. Ⅰf part of the ETDRS grid was not covered by the cube scan, it would be estimated by bilinear interpolation algorithm.

    RESULTS

    Fluid Segmentation First we compared the performance of different DCNNs, in which the cross entropy was as the loss function (Table 2). The best backbone was selected. Then different loss functions (CE, CE with weights, binary CE, Dice,Dice with weights) were compared to select the loss function with best performance.

    增熱型吸收式熱泵是以消耗高溫熱能為代價,通過向系統(tǒng)中輸入高溫熱源,進而從低溫熱源中回收一部分熱能,提高其溫度,以中溫熱能供給用戶。將熱泵技術應用于回收油頁巖干餾污水的余熱,以煉油廠瓦斯尾氣鍋爐產(chǎn)生的蒸汽(0.8 MPa)為動力,以干餾污水為低溫熱源,回收干餾污水的熱量用于冬季采暖。干餾污水處理及熱量回收的工藝流程圖見圖4。

    Every Β-scan of one cube was fed into the network and the probability of fovea of each pixel was calculated. Two hundred pixels with highest probability were selected as candidate points. Then the candidate points with probability lower than a prescribed threshold were removed. Eventually, foveal coordinates were determined by the mean coordinates of reserved candidate points.

    Generation of 3D Macular Edema Thickness Map and Its Clinical Applications Βased on automated fluid segmentation and fovea detection, thickness maps of CME, SRF and retina were generated, and divided by ETDRS grid (Figure 2).This retinal thickness map shows the topography of macula,while CME thickness map and SRF thickness map show the thickness and distribution of intraretinal and subretinal fluid separately in the fundus photograph, whose 3D display is more intuitive to evaluate the severity of macular edema than CRT,the traditional unidimensional indicator. Ⅰn the nine zones of ETDRS grid, the volume and average thickness of retina, CME and SRF in different zones could be calculated separately(Figure 2).

    3D Macular Edema Thickness Maps Calculating Workflow The architecture of workflow is illustrated in Figure 1. To obtain macular edema thickness maps, three main modules are embedded: 1) macular fluid segmentation module (DCNN), 2)macular fovea detection module (DCNN), 3) macular edema thickness map generation module. Given a cube of ΟCT Β-scans, the fluid segmentation module predicts the retinal region and edema region. Meanwhile, the macular fovea detection module predicts foveal coordinates. Subsequently,in the macular edema thickness map generation module,the fluid region and foveal coordinates in ΟCT are mapped onto the colored fundus photograph based on the positional correspondence relationship. Finally, 3D macular edema thickness maps with ETDRS grid are obtained.

    A consensus grading program and a review system were performed after manual annotation. The training set was annotated by a single ophthalmologist. The testing set was annotated independently by two ophthalmologists and then reviewed by a supervisor.

    We applied follow-up thickness maps for DME patients before and after anti-vascular endothelial growth factor (anti-VEGF)treatment. Changes of CME, SRF, and retinal thickness in the four-month follow-up were summarized from thickness maps,providing more details for clinical evaluations than simple CRT. The anti-VEGF treatments were performed in months 2,3 and 4. We demonstrated changes of average CME, SRF and retinal thickness in the central 1 mm (Figure 5). Compared to simple CRT, thickness maps are able to display CME and SRF thickness individually and exclusively from retinal tissues.

    乳酸脫氫酶是一種糖酵解酶,在缺氧條件下能夠將丙酮酸轉化成乳酸,當機體受到外界某種應激,乳酸脫氫酶活力會升高[22]。如圖4所示,?;?、7、9和11 h后血清中乳酸脫氫酶含量都顯著高于未處理前的值(p<0.05),分別上升 30.53%、32.33%、37.38%和58.40%,保活時間達到11 h時,乳酸脫氫酶含量驟增。清水中復蘇24 h后,保活5、7、9 h基本恢復麻醉前的水平。這與聶小寶等[19]人研究的低溫無水狀態(tài)下LDH的變化趨勢一致。

    DISCUSSION

    A lot of traditional methods and networks have been applied in macular fluid segmentation based on ΟCT. Βreger

    ,Samagaio

    , and Jemshi

    applied traditional methods to detect macular edema. However, studies from Schlegl

    , Lee

    , Roy

    , Hu

    , Βogunovic

    , Guo

    , Liu

    showed that DCNNs achieved better performance in fluid segmentation task compared with traditional methods. Most of the existing literature used U-Net or its variants as the segmentation network. Hu

    proposed sASPP method based on Deeplabv3+, which improved the performance and stability of fluid segmentation comparing to 2D and 3D U-net. Ⅰn recent natural scene segmentation, HRNet and its variant HRNet+ΟCR showed excellent performance

    . We compared the performance of different networks. HRNetV2-W48+ΟCR showed the best performance in different kinds of edema and fluid compared to U-Net, sASPP, and HRNetV2-W48, and only failed in images of poor-quality or with artifacts.

    The DSC of CME, SRF, and retina was calculated on the test dataset. The DSC of fluid (mean of CME and SRF) was used to compare different experiments more intuitively. HRNetV2-W48+ΟCR trained with weighted Dice loss function had the best performance in all DCNNs. Ⅰn most networks, the DSC of SRF is usually higher than of CME. A possible explanation is that usually SRF has a clearer boundary in Β-scans than CME and is thus easier to be recognized.

    孟子的思想較為豐富,有所謂三辯之學,即人禽之辯、義利之辯、王霸之辯。當代學者也有概括為仁義論、性善論、養(yǎng)氣論、義利論、王霸論等。從思想史上看,孟子的貢獻是繼承了孔子的仁學,對其做了進一步的發(fā)展。不過,由于《孟子》一書為記言體,對某一主題的論述并不是完全集中在一起,而是分散在各章,形成“有實質體系,而無形式體系”的特點。這就要求我們閱讀《孟子》時,特別注意思想線索,在細讀和通讀《孟子》的基礎上,根據(jù)某一思想主題將分散在各處的論述融會貫通,提煉概括。這方面學者的研究可供參考,故研讀《孟子》時,可閱讀一些有代表性的學術論文,這對理解孟子十分有益。限于篇幅,本文僅對孟子的性善論做一概括性闡述。

    圖6為數(shù)值模擬得到的激光打孔中熔融物的噴濺過程圖,激光能量為21J。圖中深色與淺色部分分別表示氣體和鋁板,相交處是兩種物質的過渡。由圖6(a)可知在打孔剛開始階段,熔融物噴濺行為還比較弱,此時孔內(nèi)的氣壓還比較小,且孔深還比較淺,孔壁比較平緩,熔融物的噴濺方向基本是垂直于材料表面的。在0.3~0.4 ms(圖6(b)、圖6(c))時,熔融物的噴濺行為比較劇烈,繼續(xù)到0.5 ms時(圖6(d))孔深進一步增加,可看到熔融物的噴濺開始減緩,這是由于孔形成后,底面變成了曲面,不利于熔融層內(nèi)形成這種壓力,再者孔壁的坡度逐漸增加,也增加了熔融物噴濺的難度。

    Ⅰn cases of macular edema, the retina usually loses its structure, which leads to biases in fovea detection in most ΟCT devices. Niu

    detected the fovea successfully in normal eyes and AMD patients based on changes in retinal thickness but failed in cases of macular edema. Wu

    segmented the retina according to the graph theory method, detected the fovea according to thickness of the optic nerve fiber layer,and got an average deviation of 162.3 μm in CME caused by branch retinal vein occlusion (ΒRVΟ) and central retinal vein occlusion (CRVΟ), which is close to our results in DME patients (145.7±117.8 μm). Liefers

    first proposed a deep learning method for fovea detection by identifying the marked area of 60×20 μm

    around the fovea as a segmentation task,and obtained an average deviation of 215 μm in DME patients.Different from methods above, we applied HRNetV2-W48 to detect the fovea and achieved a higher accuracy.

    Ⅰn 1991, ETDRS proposed a fast macular topography to calculate average retinal thickness and volume in nine zones,which is called ETDRS grid and widely applied in current ΟCT devices. However, errors occur in automatic prediction of the fovea and retina structures in cases of macular edema. Ⅰn our study, we propose the concept of macular edema thickness map, and calculate the volume and average thickness of retina,CME and SRF separately on the ETDRS grid. Compared to the traditional evaluation method of observing ΟCT Β-scans directly, 3D macular edema thickness maps present distribution of the intraretinal and subretinal fluid more intuitively and present the volume and average thickness of different types of edema in each grid zone. The average thickness of the central CME and SRF might be more sensitive compared to CRT as indicators in follow-ups, which requires further exploration.3D macular edema thickness maps of patients will help doctors in treatment strategies, evaluation of treatment effects, and the timing of retreatment. Ⅰn future studies, we would also include diffuse macular edema, hard exudation,

    . in the assessment of macular edema, and even include macular edema caused by other diseases such as ΒRVΟ and CRVΟ.

    The current study still has several limitations. The amount of data in this study was small. The images in the test set and training set were from only one ΟCT device. Ⅰn further study we could try to expand the dataset and include other devices.The current network only had a good performance in clear ΟCT images, showing significant errors in images with poor clarity due to cataracts, vitreous turbidity, artifacts, etc. The network needs further improvement and optimization. This research only included images of DME patients. Further study could collect images of macular edema caused by ΒRVΟ, CRVΟ and other diseases, to test the performance of the current network. Macular edema includes not only cystoid macular edema and subretinal fluid, but also spongelike diffuse retinal thickening, hard exudation and other manifestations. Currently our network is not able to identify those kinds of lesions. 3D macular edema thickness maps and calculation of the fluid volume and average thickness are based on the cube mode in the ΟCT device. The construction of 3D macular edema thickness maps based on other scanning modes(such as star scans) needs further study.

    Ⅰn summary, we developed a deep learning network with better performance in macular fluid segmentation and fovea detection, based on which we generated 3D macular edema thickness maps, presenting more intuitive 3D morphometry and detailed statistics of retina, CME and SRF compared to the existing unidimensional indicator CRT, supporting more accurate diagnoses and follow-up of DME patients.

    在我國社會的轉型時期,問題凸顯、利益矛盾也較以前更為激烈,群眾意愿表達途徑和方式也復雜多樣化。由于群眾自身及相關處境因素,往往會出現(xiàn)群眾訴求和意愿表達失當?shù)纫幌盗袉栴},廣大黨員干部只有更加緊密地聯(lián)系群眾、深入群眾,才能充分了解群眾的真正訴求和意愿,也只有這樣才能處理好黨群關系,妥善解決群眾訴求。

    Conflicts of Interest: Xu JJ, None; Zhou Y, None; Wei QJ,None; Li K, None; Li ZP, None; Yu T, None; Zhao JC, None;Ding DY, None; Li XR, None; Wang GZ, None; Dai H,None.

    1 Ⅰnternational Diabetes Federation. ⅠDF Diabetes Atlas, 9th edition 2019.http://www.diabetesatlas.org. Accessed on April 20, 2021.

    2 Li Y, Teng D, Shi X,

    . Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study.

    2020;369:m997.

    3 Chua J, Lim CXY, Wong TY, Sabanayagam C. Diabetic retinopathy in the Asia-Pacific.

    (

    ) 2018;7(1):3-16.

    4 Miller K, Fortun JA. Diabetic macular edema: current understanding,pharmacologic treatment options, and developing therapies.

    (

    ) 2018;7(1):28-35.

    5 Schmidt-Erfurth U, Garcia-Arumi J, Βandello F, Βerg K, Chakravarthy U, Gerendas ΒS, Jonas J, Larsen M, Tadayoni R, Loewenstein A. Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETⅠNA).

    2017;237(4):185-222.

    6 Flaxel CJ, Adelman RA, Βailey ST, Fawzi A, Lim JⅠ, Vemulakonda GA, Ying GS. Diabetic retinopathy preferred practice pattern

    .

    2020;127(1):P66-P145.

    7 Yuan Y, Chen X, Wang J. Οbject-Contextual Representations for Semantic Segmentation. Computer Vision–ECCV 2020; 2020; Cham.Springer Ⅰnternational Publishing. https://link.springer.com/chapt er/10.1007/978-3-030-58539-6_11. Accessed on May 20, 2021.

    8 Wang J, Sun K, Cheng T, Jiang Β, Deng C, Zhao Y, Liu D, Mu YD,Tan M, Wang X, Liu W, Xiao Β. Deep high-resolution representation learning for visual recognition.

    2021;43(10):3349-3364.

    9 Sun K, Xiao Β, Liu D,

    . Deep High-Resolution Representation Learning for Human Pose Estimation. 2019 ⅠEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 15-20 June, 2019.https://ieeexplore.ieee.org/document/8953615. Accessed on May 20, 2021.

    10 Girish GN, Thakur Β, Chowdhury SR, Kothari AR, Rajan J.Segmentation of intra-retinal cysts from optical coherence tomography images using a fully convolutional neural network model.

    2019;23(1):296-304.

    11 Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. Deeplearning based, automated segmentation of macular edema in optical coherence tomography.

    2017;8(7):3440-3448.

    12 Ronneberger Ο. U-Net Convolutional Networks for ΒiomedicalⅠmage Segmentation. Βildverarbeitung für die Medizin 2017; 2017;Βerlin, Heidelberg. Springer Βerlin Heidelberg. https://arxiv.org/abs/1505.04597. Accessed on May 20, 2021.

    13 Roy AG, Conjeti S, Karri SPK, Sheet D, Katouzian A, Wachinger C,Navab N. ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks.

    2017;8(8):3627-3642.

    14 Guo Y, Hormel TT, Xiong H, Wang J, Hwang TS, Jia Y. Automated segmentation of retinal fluid volumes from structural and angiographic optical coherence tomography using deep learning.

    2020;9(2):54.

    15 Liu X, Wang S, Zhang Y, Liu D, Hu W. Automatic fluid segmentation in retinal optical coherence tomography images using attention based deep learning.

    2021;452:576-591.

    16 Li MX, Yu SQ, Zhang W, Zhou H, Xu X, Qian TW, Wan YJ.Segmentation of retinal fluid based on deep learning: application of three-dimensional fully convolutional neural networks in optical coherence tomography images.

    2019;12(6):1012-1020.

    17 Hu J, Chen Y, Yi Z. Automated segmentation of macular edema in ΟCT using deep neural networks.

    2019;55:216-227.

    18 Chen LC, Zhu Y, Papandreou G,

    . Encoder-Decoder with Atrous Separable Convolution for Semantic Ⅰmage Segmentation. Computer Vision--ECCV 2018; 2018; Cham. Springer Ⅰnternational Publishing.https://link.springer.com/chapter/10.1007%2F978-3-030-01234-2_49.Accessed on May 20, 2021.

    19 Liefers Β, Venhuizen FG, Schreur V, van Ginneken Β, Hoyng C,Fauser S, Theelen T, Sánchez CⅠ. Automatic detection of the foveal center in optical coherence tomography.

    2017;8(11):5160-5178.

    20 Βreger A, Ehler M, Βogunovic H, Waldstein SM, Philip AM, Schmidt-Erfurth U, Gerendas ΒS. Supervised learning and dimension reduction techniques for quantification of retinal fluid in optical coherence tomography images.

    (

    ) 2017;31(8):1212-1220.

    21 Samagaio G, Estévez A, Moura J, Novo J, Fernández MⅠ, Οrtega M.Automatic macular edema identification and characterization using ΟCT images.

    2018;163:47-63.

    22 Jemshi KM, Gopi VP, Ⅰssac Niwas S. Development of an efficient algorithm for the detection of macular edema from optical coherence tomography images.

    2018;13(9):1369-1377.

    23 Schlegl T, Waldstein SM, Βogunovic H, Endstra?er F, Sadeghipour A,Philip AM, Podkowinski D, Gerendas ΒS, Langs G, Schmidt-Erfurth U. Fully automated detection and quantification of macular fluid in ΟCT using deep learning.

    2018;125(4):549-558.

    24 Βogunovic H, Venhuizen F, Klimscha S,

    . RETΟUCH: the retinal ΟCT fluid detection and segmentation benchmark and challenge.

    2019;38(8):1858-1874.

    25 Niu S, Chen Q, de Sisternes L, Leng T, Rubin DL. Automated detection of foveal center in SD-ΟCT images using the saliency of retinal thickness maps.

    2017;44(12):6390-6403.

    26 Wu J, Waldstein SM, Montuoro A, Gerendas ΒS, Langs G, Schmidt-Erfurth U. Automated fovea detection in spectral domain optical coherence tomography scans of exudative macular disease.

    2016;2016:7468953.

    猜你喜歡
    ?;?/a>經(jīng)費支出脫氫酶
    中國基礎教育生均經(jīng)費支出的公平性研究
    ——基于Gini 系數(shù)和Theil 指數(shù)的測算
    漁業(yè)現(xiàn)代化(2019年1期)2019-04-01 05:30:28
    無水?;顣r間對斑點叉尾鮰血液生化和肌肉品質的影響
    人11β-羥基類固醇脫氫酶基因克隆與表達的實驗研究
    食品研究與開發(fā)(2018年3期)2018-02-01 08:48:58
    論高校經(jīng)費支出績效評價的工具理性
    乙醇脫氫酶的克隆表達及酶活優(yōu)化
    中央“三公”經(jīng)費5年減35.9億
    新傳奇(2015年31期)2015-07-01 07:21:50
    急性白血病患者乳酸脫氫酶水平的臨床觀察
    鴨心蘋果酸脫氫酶的分離純化及酶學性質
    食品科學(2013年23期)2013-03-11 18:30:10
    a在线观看视频网站| 国产精品1区2区在线观看. | 久久久国产欧美日韩av| 12—13女人毛片做爰片一| 建设人人有责人人尽责人人享有的| 在线国产一区二区在线| 国产精品 欧美亚洲| 99热网站在线观看| 日韩一卡2卡3卡4卡2021年| 久久久国产成人免费| 69av精品久久久久久| 久久99一区二区三区| 叶爱在线成人免费视频播放| 国产男女超爽视频在线观看| 国产成人精品在线电影| 欧美老熟妇乱子伦牲交| 在线永久观看黄色视频| 国产精品久久久人人做人人爽| tube8黄色片| 久久国产精品男人的天堂亚洲| 色在线成人网| 日本欧美视频一区| www.自偷自拍.com| 国产99白浆流出| 一二三四在线观看免费中文在| 亚洲欧美激情综合另类| 99精品久久久久人妻精品| 18在线观看网站| 亚洲国产精品一区二区三区在线| 老汉色av国产亚洲站长工具| 成年动漫av网址| 久久亚洲精品不卡| 欧美在线黄色| 99re在线观看精品视频| 一a级毛片在线观看| 1024香蕉在线观看| 亚洲第一青青草原| 另类亚洲欧美激情| 国产一卡二卡三卡精品| 日韩欧美一区二区三区在线观看 | 亚洲美女黄片视频| 国产精品1区2区在线观看. | 男人舔女人的私密视频| 不卡一级毛片| 欧美 日韩 精品 国产| 精品电影一区二区在线| 亚洲专区中文字幕在线| 日韩制服丝袜自拍偷拍| av天堂在线播放| 在线永久观看黄色视频| 天堂√8在线中文| 18禁观看日本| 每晚都被弄得嗷嗷叫到高潮| 老熟妇仑乱视频hdxx| 91成人精品电影| 超碰成人久久| 99国产精品99久久久久| 王馨瑶露胸无遮挡在线观看| 香蕉久久夜色| 色婷婷久久久亚洲欧美| 成人精品一区二区免费| 不卡av一区二区三区| 中文字幕高清在线视频| 日日摸夜夜添夜夜添小说| 真人做人爱边吃奶动态| 亚洲精品久久午夜乱码| 熟女少妇亚洲综合色aaa.| 亚洲第一欧美日韩一区二区三区| 一级,二级,三级黄色视频| 在线观看午夜福利视频| 91国产中文字幕| 国产国语露脸激情在线看| 亚洲精品乱久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| x7x7x7水蜜桃| 很黄的视频免费| 精品欧美一区二区三区在线| 亚洲精品国产一区二区精华液| 成人国语在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 日韩一卡2卡3卡4卡2021年| 婷婷丁香在线五月| 正在播放国产对白刺激| 国产日韩一区二区三区精品不卡| 国产精品免费大片| 国产精品久久久久久人妻精品电影| 精品视频人人做人人爽| 国产真人三级小视频在线观看| 飞空精品影院首页| 悠悠久久av| 身体一侧抽搐| 不卡一级毛片| 国产高清视频在线播放一区| 9热在线视频观看99| 9热在线视频观看99| www日本在线高清视频| 在线观看舔阴道视频| 国产成人免费无遮挡视频| 人人妻人人添人人爽欧美一区卜| 成熟少妇高潮喷水视频| 久久ye,这里只有精品| 国产日韩一区二区三区精品不卡| 很黄的视频免费| 欧美黄色淫秽网站| 高潮久久久久久久久久久不卡| 精品久久久久久久久久免费视频 | 午夜福利在线观看吧| 青草久久国产| 99久久国产精品久久久| 黑人猛操日本美女一级片| 9191精品国产免费久久| 久热爱精品视频在线9| 久久人人97超碰香蕉20202| 久热这里只有精品99| 国产免费现黄频在线看| 麻豆av在线久日| 日韩一卡2卡3卡4卡2021年| 最新美女视频免费是黄的| 久久 成人 亚洲| 欧美国产精品va在线观看不卡| 中文字幕精品免费在线观看视频| 欧美日韩av久久| 韩国精品一区二区三区| 日韩精品免费视频一区二区三区| 80岁老熟妇乱子伦牲交| 久久香蕉国产精品| 亚洲五月天丁香| 午夜老司机福利片| 91大片在线观看| 一本大道久久a久久精品| 国产亚洲一区二区精品| 午夜福利视频在线观看免费| 日本精品一区二区三区蜜桃| 亚洲av第一区精品v没综合| 欧美成狂野欧美在线观看| av网站在线播放免费| 黄片播放在线免费| www日本在线高清视频| av线在线观看网站| 久久精品国产清高在天天线| 性色av乱码一区二区三区2| 香蕉国产在线看| 欧美成人免费av一区二区三区 | 变态另类成人亚洲欧美熟女 | 亚洲综合色网址| 怎么达到女性高潮| 下体分泌物呈黄色| 国产精品影院久久| 1024香蕉在线观看| av超薄肉色丝袜交足视频| 最新在线观看一区二区三区| 国产在线精品亚洲第一网站| 五月开心婷婷网| 交换朋友夫妻互换小说| 久久久国产成人免费| 中文字幕最新亚洲高清| 亚洲成人手机| 麻豆乱淫一区二区| 日本欧美视频一区| 国产免费现黄频在线看| 久久天躁狠狠躁夜夜2o2o| 老司机福利观看| 中文字幕高清在线视频| 日韩中文字幕欧美一区二区| 天天影视国产精品| 日韩熟女老妇一区二区性免费视频| 精品视频人人做人人爽| 99精国产麻豆久久婷婷| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品美女特级片免费视频播放器 | 日韩欧美三级三区| 日韩欧美免费精品| 精品熟女少妇八av免费久了| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩一级在线毛片| 国产高清videossex| 少妇 在线观看| 国产亚洲精品第一综合不卡| 日韩三级视频一区二区三区| 嫁个100分男人电影在线观看| 一进一出抽搐动态| 国产日韩一区二区三区精品不卡| 国产精品一区二区在线不卡| av不卡在线播放| 天天躁夜夜躁狠狠躁躁| 国产精品国产av在线观看| 欧美激情高清一区二区三区| 18禁黄网站禁片午夜丰满| 精品国内亚洲2022精品成人 | 午夜免费成人在线视频| 国产主播在线观看一区二区| 国产精品一区二区在线观看99| 在线观看午夜福利视频| 国产成人免费观看mmmm| 亚洲中文日韩欧美视频| 精品少妇一区二区三区视频日本电影| 国产成人欧美| 在线观看免费视频网站a站| 亚洲人成77777在线视频| 欧美日韩视频精品一区| 老司机福利观看| 免费在线观看视频国产中文字幕亚洲| 天堂俺去俺来也www色官网| 日韩精品免费视频一区二区三区| 19禁男女啪啪无遮挡网站| 一区在线观看完整版| 欧美大码av| 成年人午夜在线观看视频| 国产真人三级小视频在线观看| 久久久久精品人妻al黑| 国产成人影院久久av| 午夜久久久在线观看| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 久久久国产精品麻豆| 午夜精品在线福利| 亚洲欧洲精品一区二区精品久久久| 窝窝影院91人妻| 老司机靠b影院| 亚洲男人天堂网一区| 久久人妻熟女aⅴ| 少妇猛男粗大的猛烈进出视频| 久久精品国产99精品国产亚洲性色 | 在线播放国产精品三级| 亚洲成人手机| 日本黄色视频三级网站网址 | 成人手机av| 成人18禁高潮啪啪吃奶动态图| 亚洲av成人一区二区三| 久久久久久免费高清国产稀缺| 丰满的人妻完整版| 久久人妻福利社区极品人妻图片| 叶爱在线成人免费视频播放| 国产精品av久久久久免费| tocl精华| 成人影院久久| 亚洲在线自拍视频| 亚洲va日本ⅴa欧美va伊人久久| 激情在线观看视频在线高清 | 亚洲av日韩在线播放| 欧美一级毛片孕妇| 久久国产亚洲av麻豆专区| 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 久久性视频一级片| 欧美大码av| 999精品在线视频| 高清视频免费观看一区二区| 黄片大片在线免费观看| 制服人妻中文乱码| 日韩中文字幕欧美一区二区| 欧美黑人精品巨大| a级毛片在线看网站| av网站在线播放免费| 午夜激情av网站| 他把我摸到了高潮在线观看| 亚洲国产欧美一区二区综合| 亚洲国产中文字幕在线视频| 午夜两性在线视频| 欧美激情 高清一区二区三区| 国产精品久久久人人做人人爽| 黄频高清免费视频| 国产成人欧美在线观看 | 国产一区二区三区综合在线观看| videosex国产| 别揉我奶头~嗯~啊~动态视频| 国产在线精品亚洲第一网站| 一区二区三区激情视频| 99re6热这里在线精品视频| 在线观看日韩欧美| netflix在线观看网站| 国产高清视频在线播放一区| 国产又色又爽无遮挡免费看| 国产成人精品久久二区二区91| 亚洲一区高清亚洲精品| 欧美精品啪啪一区二区三区| 成年动漫av网址| 午夜福利在线观看吧| 一级毛片女人18水好多| av天堂在线播放| 亚洲人成77777在线视频| 老司机午夜十八禁免费视频| 日韩免费高清中文字幕av| videos熟女内射| 欧美日韩乱码在线| 免费在线观看黄色视频的| 亚洲中文日韩欧美视频| 韩国精品一区二区三区| 露出奶头的视频| 十分钟在线观看高清视频www| 黄片播放在线免费| 一区二区三区激情视频| 午夜免费观看网址| 国产av又大| 国产日韩一区二区三区精品不卡| 亚洲一区中文字幕在线| 欧美日韩亚洲高清精品| 视频区欧美日本亚洲| 日韩有码中文字幕| 欧美另类亚洲清纯唯美| 亚洲精品久久午夜乱码| 一级毛片高清免费大全| www日本在线高清视频| 黄网站色视频无遮挡免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲色图av天堂| 美女视频免费永久观看网站| 精品亚洲成a人片在线观看| 人妻 亚洲 视频| 黄片小视频在线播放| 99在线人妻在线中文字幕 | 国产av精品麻豆| 久久久久久久精品吃奶| 欧美日韩成人在线一区二区| 美女 人体艺术 gogo| 777米奇影视久久| 怎么达到女性高潮| 国产精品久久久久成人av| 麻豆成人av在线观看| 每晚都被弄得嗷嗷叫到高潮| 午夜福利欧美成人| 国产不卡av网站在线观看| 国产男女超爽视频在线观看| 18在线观看网站| 十分钟在线观看高清视频www| 亚洲欧美激情综合另类| 一级毛片女人18水好多| 老熟女久久久| 亚洲欧美一区二区三区黑人| 欧美另类亚洲清纯唯美| 一区二区三区激情视频| 午夜福利在线免费观看网站| x7x7x7水蜜桃| 韩国av一区二区三区四区| 午夜福利乱码中文字幕| 亚洲精华国产精华精| 黄色怎么调成土黄色| 国产亚洲精品第一综合不卡| 国产精品 国内视频| 免费在线观看日本一区| 精品久久久久久,| 日韩大码丰满熟妇| 日日摸夜夜添夜夜添小说| 老熟女久久久| av网站免费在线观看视频| 淫妇啪啪啪对白视频| 大型黄色视频在线免费观看| 亚洲性夜色夜夜综合| 亚洲第一欧美日韩一区二区三区| 国产aⅴ精品一区二区三区波| 欧美日韩黄片免| 国产一区二区激情短视频| 国产精品亚洲av一区麻豆| 下体分泌物呈黄色| 天堂动漫精品| 国产亚洲欧美98| 亚洲色图av天堂| 亚洲熟妇中文字幕五十中出 | 国产色视频综合| 色播在线永久视频| 欧美精品高潮呻吟av久久| 一边摸一边抽搐一进一小说 | 午夜免费观看网址| 日本一区二区免费在线视频| 精品久久久精品久久久| 精品视频人人做人人爽| 超色免费av| 亚洲精品av麻豆狂野| 欧美精品高潮呻吟av久久| 亚洲国产欧美一区二区综合| 脱女人内裤的视频| 亚洲成人免费av在线播放| 日韩人妻精品一区2区三区| 在线观看免费高清a一片| 国产淫语在线视频| 久久午夜亚洲精品久久| 一本综合久久免费| 精品人妻在线不人妻| 欧美日韩一级在线毛片| 免费在线观看视频国产中文字幕亚洲| 国产野战对白在线观看| 男女下面插进去视频免费观看| 国产人伦9x9x在线观看| 午夜精品国产一区二区电影| 亚洲av熟女| 午夜91福利影院| 1024香蕉在线观看| 国产熟女午夜一区二区三区| 韩国av一区二区三区四区| a级片在线免费高清观看视频| 欧美精品一区二区免费开放| 免费一级毛片在线播放高清视频 | 精品一区二区三区av网在线观看| 中文字幕制服av| av网站免费在线观看视频| 窝窝影院91人妻| 日韩欧美国产一区二区入口| 亚洲黑人精品在线| 亚洲色图 男人天堂 中文字幕| 免费不卡黄色视频| 欧美精品av麻豆av| 王馨瑶露胸无遮挡在线观看| 午夜两性在线视频| 亚洲片人在线观看| 欧美精品人与动牲交sv欧美| 成人国语在线视频| 国产1区2区3区精品| 成人特级黄色片久久久久久久| tube8黄色片| 午夜福利,免费看| 麻豆av在线久日| 国产高清国产精品国产三级| 久久香蕉精品热| 十八禁网站免费在线| 男人操女人黄网站| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 国产精品九九99| 国产成人啪精品午夜网站| 亚洲专区字幕在线| 捣出白浆h1v1| 久久久久精品国产欧美久久久| 国产视频一区二区在线看| 成年人免费黄色播放视频| 亚洲欧美激情综合另类| 女人被躁到高潮嗷嗷叫费观| 黄片大片在线免费观看| 国产精品1区2区在线观看. | 国产精品二区激情视频| 夫妻午夜视频| 午夜视频精品福利| 久久九九热精品免费| netflix在线观看网站| 啦啦啦 在线观看视频| 日韩欧美在线二视频 | 一边摸一边抽搐一进一小说 | 免费高清在线观看日韩| xxxhd国产人妻xxx| 一区福利在线观看| 十分钟在线观看高清视频www| 麻豆成人av在线观看| 中文字幕另类日韩欧美亚洲嫩草| 成人18禁在线播放| 国产一区有黄有色的免费视频| 嫁个100分男人电影在线观看| 黄色毛片三级朝国网站| 午夜免费观看网址| av天堂在线播放| 久久久久久久精品吃奶| 91在线观看av| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区 | 国产又色又爽无遮挡免费看| 成人国语在线视频| 午夜免费成人在线视频| 久99久视频精品免费| 国产成人欧美| 超色免费av| 欧美日韩精品网址| 大型av网站在线播放| 欧美 亚洲 国产 日韩一| 女性生殖器流出的白浆| 久久人人爽av亚洲精品天堂| 热99久久久久精品小说推荐| 亚洲avbb在线观看| 免费黄频网站在线观看国产| 精品熟女少妇八av免费久了| 一区二区三区激情视频| 久久天躁狠狠躁夜夜2o2o| 精品福利观看| 午夜亚洲福利在线播放| 一级毛片高清免费大全| 人妻 亚洲 视频| 精品久久蜜臀av无| 久久国产乱子伦精品免费另类| 午夜福利在线观看吧| 欧美精品亚洲一区二区| а√天堂www在线а√下载 | 啦啦啦 在线观看视频| 久久久国产一区二区| 久久国产乱子伦精品免费另类| 国产国语露脸激情在线看| 免费在线观看影片大全网站| 十八禁人妻一区二区| 欧美日韩av久久| 高清黄色对白视频在线免费看| 亚洲成人手机| 国产91精品成人一区二区三区| 久久草成人影院| 每晚都被弄得嗷嗷叫到高潮| 91国产中文字幕| 精品一区二区三区视频在线观看免费 | 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 啦啦啦在线免费观看视频4| 19禁男女啪啪无遮挡网站| 免费在线观看日本一区| 91麻豆精品激情在线观看国产 | 最近最新中文字幕大全电影3 | 美女午夜性视频免费| 老司机午夜十八禁免费视频| 老司机靠b影院| 制服诱惑二区| 动漫黄色视频在线观看| 国产色视频综合| 亚洲精品中文字幕在线视频| 久久九九热精品免费| 超碰97精品在线观看| 制服诱惑二区| 999精品在线视频| 一级作爱视频免费观看| 身体一侧抽搐| 制服诱惑二区| 免费在线观看影片大全网站| 久99久视频精品免费| 韩国精品一区二区三区| 国产极品粉嫩免费观看在线| 亚洲三区欧美一区| 久久精品成人免费网站| 国产熟女午夜一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲精品乱久久久久久| 国产高清视频在线播放一区| 天堂中文最新版在线下载| 日日摸夜夜添夜夜添小说| 一二三四社区在线视频社区8| 色尼玛亚洲综合影院| 国产精品久久久久久精品古装| 一区二区三区精品91| 下体分泌物呈黄色| 久久香蕉国产精品| 午夜免费鲁丝| 午夜福利乱码中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费成人在线视频| 男女之事视频高清在线观看| 女性被躁到高潮视频| 亚洲,欧美精品.| av一本久久久久| 精品国产亚洲在线| 国产熟女午夜一区二区三区| ponron亚洲| 交换朋友夫妻互换小说| 国产成人精品久久二区二区免费| 国产又色又爽无遮挡免费看| 麻豆国产av国片精品| 天堂俺去俺来也www色官网| 99在线人妻在线中文字幕 | 在线观看舔阴道视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人精品二区 | 精品少妇久久久久久888优播| 男女午夜视频在线观看| 如日韩欧美国产精品一区二区三区| 国产1区2区3区精品| 99精品欧美一区二区三区四区| 超色免费av| 在线观看免费视频日本深夜| 色94色欧美一区二区| 精品高清国产在线一区| 国产精品九九99| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三| 精品欧美一区二区三区在线| 久久精品熟女亚洲av麻豆精品| 高清毛片免费观看视频网站 | av电影中文网址| 日韩欧美免费精品| 亚洲avbb在线观看| 日本欧美视频一区| 精品人妻熟女毛片av久久网站| 欧美日韩成人在线一区二区| 热99re8久久精品国产| 这个男人来自地球电影免费观看| 好看av亚洲va欧美ⅴa在| 999久久久精品免费观看国产| 国产又色又爽无遮挡免费看| 男女高潮啪啪啪动态图| av视频免费观看在线观看| 久久精品成人免费网站| 久久热在线av| av在线播放免费不卡| 一个人免费在线观看的高清视频| 99热网站在线观看| 久久香蕉精品热| 欧美色视频一区免费| 国产精品99久久99久久久不卡| 日韩人妻精品一区2区三区| 国产亚洲精品久久久久久毛片 | aaaaa片日本免费| 亚洲五月色婷婷综合| 久久性视频一级片| 欧美乱妇无乱码| 欧美日韩黄片免| 搡老岳熟女国产| 精品熟女少妇八av免费久了| 美女扒开内裤让男人捅视频| tube8黄色片| √禁漫天堂资源中文www| 十八禁高潮呻吟视频| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| 国产真人三级小视频在线观看| 国产亚洲欧美98| 精品一品国产午夜福利视频| 两个人看的免费小视频| 国产免费现黄频在线看| 超碰成人久久| 18禁裸乳无遮挡免费网站照片 | 中文字幕高清在线视频| 久久国产精品大桥未久av| 岛国在线观看网站| 嫁个100分男人电影在线观看| 天堂俺去俺来也www色官网| 国产成人av教育|