• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photon subtraction-based continuousvariable measurement-device-independent quantum key distribution with discrete modulation over a fiber-to-water channel

    2022-03-23 02:20:56ChaoYuYinLiJianzhiDingYunMaoandYingGuo
    Communications in Theoretical Physics 2022年3期

    Chao Yu, Yin Li, Jianzhi Ding, Yun Mao,* and Ying Guo,3,*

    1 School of Computer Science and Engineering, Central South University, Changsha 410083, China

    2 School of Automation, Central South University, Changsha 410075, China

    3 School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876,China

    Abstract We propose a discrete-modulated continuous-variable measurement-device-independent quantum key distribution protocol over a fiber-to-water channel.Different from optical fibers,the underwater channel has more severe optical attenuation because of optical absorption and scattering,which reduces the maximum communication distance.To enhance the performance of the protocol, the photon subtraction operation is implemented at the modulator side.We carry out a performance simulation in two different kinds of seawater channel, and the result shows that the scheme with photon subtraction has a longer secure communication distance under certain conditions.

    Keywords: measurement-device-independent, discrete modulation, fiber-to-water channel,continuous variable, quantum key distribution

    1.Introduction

    Quantum key distribution (QKD) [1, 2] is one of the most important applications and rapidly developing technologies of quantum encryption.Whilst it is distinct from classic communication,the safety of QKD is built on the physical properties of photons and it can achieve unconditional security [3–5].Generally, there are two types of QKD, discrete-variable QKD(DVQKD) and continuous-variable QKD (CVQKD) [6, 7].Thanks to its simplicity in experiments and higher performance over short distances,CVQKD has become a research hotspot in recent years.In the Gaussian-modulated CVQKD (GMCVQKD),the information follows Gaussian distribution so that it is more susceptible to noise than binary data, which limits the maximum communication distance[8,9].To solve this problem,discrete-modulated CVQKD(DM-CVQKD)was proposed[10].In the DM-CVQKD, secret key data is binary, and it is modulated on two orthogonal components of the optical field [11],which shows better robustness to noise and better performance at long distances compared with GM-CVQKD.

    In the one-way CVQKD scheme,there is an assumption that the hardware of QKD such as the detector is ideal, and most studies rely on this assumption.However,such a perfect device is difficult to achieve in reality,and this has led to numerous attacks on vulnerabilities caused by device imperfections,which include LO fluctuation attacks, wavelength attacks, detector saturation attack[12–14],etc.To solve the security loopholes caused by the imperfection of the measurement device,the continuous variable measurement-device-independent (MDI) quantum key distribution (CV-MDI-QKD) has been proposed [15–18].In the CVMDI-QKD protocol, there are three parties involved in the key distribution including the legitimate communication parties Alice,Bob and an additional untrusted third party, Charlie.Unlike traditional one-way QKD with only one sender, there are two signal senders,Alice and Bob in CV-MDI-QKD.In this protocol,Alice and Bob both send signals to Charlie,and Charlie performs Bell-State Measurement on the quantum signals that passed through the quantum channels [19].Bob manipulates his quantum state according to the measurement result of Charlie,and then Alice and Bob receive a string of correlated data.

    However, what is unfortunate is that the CV-MDI-QKD protocol has a shorter secure transmission distance compared with the traditional one-way CVQKD protocol [20].Photon subtraction (PS) is one of the non Gaussian operations that have been proven to enhance the entanglement degree of quantum state and thereby improve the security distance[20–23].This operation can be implemented with prior art and it has been applied in the experiment [24].In order to extend the maximum communication distance, we apply the PS operation after signal modulation at Alice’s side.

    In the existing research,optical fiber is the primary channel of a CVQKD scheme.Nevertheless, underwater CVQKD has been widely concerned in recent years for its extensive application prospect, especially in the military field [25].However,due to the attenuation and absorption of light, the maximum safe distance of quantum signal transmission in seawater is much shorter than that in optical fiber.Fortunately,underwater CVQKD still has important application scenarios.We consider that in some cases, a CV-MDI-QKD scheme may work in different channels.Optical fibers have much less impact on quantum signals than atmospheres.However, for one-way CVQKD,it is difficult to inject the quantum signal in the optical fiber directly into water,so we chose to use the MDI scheme to make Charlie a mediator to connect fiber and water channels.In this paper, we analyze the different channel medium of Alice and Bob to Charlie in a CV-MDI-QKD scheme.We also assessed the factors of seawater that affect the maximum distance and applied the PS operation to enhance the performance of the underwater CVQKD scheme.

    This paper is structured as follows: In section 2, we discuss the CV-MDI-QKD scheme with PS.In section 3, we analyze the influence factors of seawater channel.In section 4, we show the performance of the proposed scheme with simulation.Finally,we draw the conclusion in section 5.

    2.DM CV-MDI-QKD with photon subtraction

    In this section,we first introduce the discrete modulation CVMID-QKD protocol, including the prepare-and-measurement(PM)scheme and the entanglement-based(EB)scheme which is equivalent to the PM version in security.Afterwards we interpret the PS operation and its application in the discrete modulation CV-MDI-QKD.

    2.1.Discrete modulation CV-MDI-QKD

    The PM scheme of the discrete modulation CV-MDI-QKD is illustrated in figure 1.In the PM scheme, Alice and Bob prepare two coherent states A and B independently and send them to an untrusted third party named Charlie.Then Charlie measures the two states and the results are C and D.Afterwards, Charlie makes public the results and Bob manipulates his coherent state according to the published results to make it associated with Alice.Finally, Alice and Bob perform the post-processing steps to get the security key.The EB of our scheme is shown in figure 2.Here, we suppose that the channel between Alice and Charlie is called CAC, and is called CBCbetween Bob and Charlie.The length of channel CACand CBCis represented by LACand LBCrespectively,and the transmittance of CACand CBCis TAand TBrespectively.To simplify the proof of security, we concentrate on the EB scheme and describe its process in detail.

    Figure 1.The PM scheme of discrete modulation CV-MDI-QKD.DM is the discrete modulation; Hom is the homodyne detection; BS is beamsplitter.

    Figure 2.The EB scheme of PS-based discrete modulation CV-MDI-QKD.PNRD is the photon number resolving detector; D(β) is the displacement operation; Het is the heterodyne detection; Hom is the homodyne detection.

    whereρB1represents the density matrix of mode B1and β=g(XC+iPD)where g is the gain of the displacement operation [26].After the displacement operation, mode A1andB1′ are entangled, and the secret key data of Alice and Bob are interrelated.

    (vi) Alice and Bob perform the post-processing steps to share the secret key, which include data reconciliation,parameter estimation and privacy amplification.

    After the above steps, Alice and Bob complete a key distribution process.However, due to the characteristics of the MDI protocol, the security transmission distance of key distribution is generally shorter than that of a one-way CVQKD protocol [27, 28].So in the following section, we use PS to increase the security transmission distance.

    2.2.PS-based discrete modulation CV-MDI-QKD

    Figure 3.The light intensity distribution after transmitting in (a) pure sea water and (b) clean ocean water.The transmission distance is 2 meters and the power of source is 10 mW.

    where

    and the detailed calculation is shown in [31].The asymptotical secret key rate of PS-based scheme against collective attacks is expressed as

    where χA=1/TA-1+εAand χB=1/TB-1+εB.To minimize the excess noise εth, we set the value of g to

    and then εthcan be expressed as

    Details for the calculation of the secret key rate can be found in appendix A.After the PS operation,modeinstead of A2will be sent to Charlie through the quantum channel, and the follow-up progress is the same as the original discrete modulation CV-MDI-QKD.

    3.Underwater channel

    In the most studies on QKD, researchers analyze the CVQKD system in the fiber quantum channel.To explore the performance of our protocol, we first need to analyze the underwater channel.

    Now we examine the influence of the seawater channel on the transmitted signal pulses.Due to the presence of water molecules, dissolved and suspended impurities (such as dissolved organic matter and chlorophyll molecules)in seawater[33],the transmission of light in the seawater channels is very difficult, resulting in the transmission distance being several orders of magnitude lower than the former.At the same time,the characteristics of seawater channels are also influenced by temperature and salinity.In figure 3, we show the light intensity distribution after transmitting in seawater [34–36],where the transmission distance is 2 meters and the power of the source is 10 mW.We have determined that after passing through the seawater channel, the light intensity is weakened and relatively serious scattering occurs.Since the transmission distance is short, we suppose that the channel is in the identical composition of seawater and hence it becomes a linear channel [25, 37–39].Therefore, the transmittance ofseawater channel can be expressed as

    Table 1.Attenuation coefficient of seawater at 520 nm wavelength.

    whereD is the depth,λ is the wavelength of light and c is the total attenuation coefficient.There are two main factors that affect the light transmission in seawater: absorption and scattering.Absorption refers to the energy loss of light caused by the interaction between photons and particles in seawater,which leads to the reduction of light intensity.Scattering means the change of movement direction of photons when they interact with other particles.Consequently, the total attenuation coefficient can be written as [38]:

    where a(λ) denotes the absorption coefficient and b(λ)denotes the scattering coefficient.The influence of temperature, salinity and chlorophyll concentration on the attenuation coefficient is shown in appendix A.

    However, in practical terms, the model becomes more complex and even difficult to estimate, considering the effect of solutes, suspended solids, background light and others on the attenuation coefficient.Fortunately, some researchers have come up with valid parameters through underwater experiments, and we can use these data directly, which also makes our results more practical.Because the attenuation of light at different wavelengths is various, we choose the least attenuated blue-green light (520 nm) for communication purposes.The attenuation coefficient and corresponding sea water types are shown in table 1 [40].

    4.Performance analysis

    In this section, we discuss the performance of the proposed scheme in the asymptotic cases.Generally, four-state and eight-state modulation protocols are most often used in discrete modulation CVQKD.To simplify the analysis, for the PS operation we only consider its implementation in the fourstate modulation scheme in the following.

    The modulation variance VMhas a significant impact on performance.In figure 4, we show the relation between VMand the secret key rate.The solid lines represent the eightstate protocol and the dash lines represent the four-state protocol.The black, red and blue lines represent LAC=0 m,LAC=10 m and LAC=20 m in figure 4(a) and LAC=0 m,LAC=5 m and LAC=10 m in figure 4(b) respectively.In order to make the security analysis method in Gauss-modulated CVQKD still applicable, the variance needs to be set in a small range (Vm≤0.5) [10].At the same time, to facilitate the comparison with the original discrete modulation CVMDI-QKD scheme,we set the constant variance with it in the following simulation.

    The asymptotic secret key rate as a function of LACin different seawater channel is illustrated in figure 5.Compared with the original discrete modulation CV-MDI-QKD scheme,the one-photon subtracted (1-PS) scheme has higher secret key rate in the long distance when LBC=0 m,10 m and 20 m,although its performance is lower when the communication distance is short due to the low success rate of PS.Besides,the success rate of PS operation decreases with the rise of subtracted photon number m [21], resulting in that the secret key rate of m-PS (m >1) scheme always lower than onephoton subtraction scheme.Therefore, we only discuss the one-photon subtraction scheme in the following.

    According to [41], the impact of underwater turbulence on CVQKD system can be reflected in the transmittance.When the communication distance is long, in other words,when T is low,the PS-based scheme has a higher performance than the original scheme.That is, even in the presence of underwater turbulence, our PS-based CV-MDI-QKD scheme is still helpful for performance.However, we find from figure 6 that although the PS-based scheme has a longer secure transmission distance when the LBCwas short, the performance of PS-based scheme would be lower than the original four-state scheme when LBCis greater than a certain value.The reason for this phenomenon may be that the total channel noise increases with the increase of LBC, and the variance of the quantum state may decrease after PS.

    5.Conclusion

    We have suggested a method to enhance the performance of a fiber-to-water discrete modulation CV-MDI-QKD scheme by utilizing a PS operation and simulating it in two different fiber-to-water channels,and the PS operation was described in detail.We assessed the factors that affect the underwater light transmission and used the optimal parameters in the simulation.The influence of modulation variance is also considered,and for comparison we chose the same variance, which is VM=0.5, in the original and proposed protocol.The simulation results show that the proposed scheme has a longer transmission distance when LBCis short, but lower performance than the original protocol in the long LBCcase.The transmission distance of the underwater channel is several orders of magnitude shorter than that of the optical fiber channel.However,it is still of great value in the construction of underwater communication networks.

    Appendix A.Calculation of asymptotic secret key rate

    In this section,we discuss the properties of the quantum states transmitted in the PS-based discrete modulation CV-MDIQKD scheme and the calculation method of the secret key rate in the asymptotic scenario.We suppose that Alice employs heterodyne detection while Bob employs heterodyne detection, and the postprocessing uses reverse reconciliation.The EPR state |ψ〉 prepared by Alice and Bob in the traditional DM-CVQKD can be written as

    Figure 4.The secret key rate as a function of modulation variance VM in (a) pure sea water and (b) clean ocean water.The solid lines represent the eight-state protocol and the dash lines represent the four-state protocol.The parameters are as follows: εA=εB=0.001 and LBC=0 m.

    Figure 5.The secret key rate as a function of LAC in(a)pure sea water and(b)clean ocean water.The solid lines represent the PS-based fourstate CV-MDI-QKD protocol,the dash lines represent eight-state CV-MDI-QKD protocol and the dot lines represent the original four-state protocol.The color of lines black, red and blue represents LBC=0 m, LBC=10 m and LBC=20 m respectively.

    where d=4 for four-state protocol and d=8 for eight-state protocol.Here,

    and

    where r=0, 1, …, d-1.For four-state protocol, λris given as

    and for eight-state protocol, λris given as

    Figure 6.The secret key rate as a function of LAC and LBC in (a) pure sea water and (b) clean ocean water.The respectively.The smooth surfaces and the grid surfaces represent the original four-state CV-MDI-QKD and the corresponding PS-based scheme respectively.

    After the transmission of quantum channel and the detection of Charlie,the co-variance matrix of statecan be represented as

    where X,Y and Zdare given in equation(6)–(8).The Shannon mutual information between Bob and Alice is calculated by

    and the Holevo bound S(E:B) is

    whereG(x) = (x+ 1) log2(x+ 1) -xlog2x,which denotes the Von Neumann entropy.Here, γ1,2,3are the symplectic eigenvalues derived from covariance matrix and they are calculated by

    where A=a2+b2-2c2and B=ab-c2.Then, we can calculate the secret key rate by equation (9).

    Appendix B.Description of partial influencing factors of seawater channel

    In this section we describe the effects of temperature,salinity and chlorophyll concentration on the marine channel.Assuming that the current channel is pure seawater, considering the influence of temperature and salinity, the absorption coefficient can be calculated as [42]:

    where Θ is the temperature,Θris a reference temperature,S is salinity and ΨΘ,ΨSis the linear temperature slope and salinity slope respectively (See [42] for detailed calculation).According to [43], the scattering coefficient can be further expressed as

    Here, bd(λ, Θ, S) and bc(λ, Θ, S) can be calculated by

    where k is the Boltzmann constant,NAis the Avogadro number,ρ is the density, n is the refractive index in vacuum, βΘis the isothermal compressibility, δ is the depolarization ratio of the solution,and awand Mware the activity and molecular weight of water in the solution respectively, which are detailed in [43].

    The effect of chlorophyll on attenuation coefficient can be expressed as [37]:

    where aw(λ)is the absorption coefficient of pure water, ac(λ)is a nondimensional, statistically derived chlorophyll-specific absorption coefficient.

    亚洲精华国产精华精| 99国产精品一区二区蜜桃av| 日韩大码丰满熟妇| 法律面前人人平等表现在哪些方面| 亚洲精品av麻豆狂野| 曰老女人黄片| 亚洲专区中文字幕在线| 美女免费视频网站| 激情视频va一区二区三区| 两性夫妻黄色片| 国产精品av久久久久免费| 欧美激情极品国产一区二区三区| 久久久久久大精品| 大陆偷拍与自拍| 亚洲中文av在线| 最近最新中文字幕大全免费视频| 一边摸一边抽搐一进一小说| 男人的好看免费观看在线视频 | 少妇熟女aⅴ在线视频| 一边摸一边做爽爽视频免费| 久久欧美精品欧美久久欧美| 一二三四社区在线视频社区8| 日本 欧美在线| 91麻豆av在线| 国产精品乱码一区二三区的特点 | 成人国语在线视频| 国产免费男女视频| 国产在线观看jvid| 国产精品久久久久久人妻精品电影| 国产97色在线日韩免费| 在线十欧美十亚洲十日本专区| 神马国产精品三级电影在线观看 | 国产精品免费一区二区三区在线| 欧美成人一区二区免费高清观看 | 欧美日韩中文字幕国产精品一区二区三区 | 男女之事视频高清在线观看| 色综合欧美亚洲国产小说| 成人永久免费在线观看视频| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品久久久久5区| av片东京热男人的天堂| 天天一区二区日本电影三级 | av欧美777| 国产午夜精品久久久久久| 国产色视频综合| 中文字幕最新亚洲高清| 欧美成人午夜精品| 老汉色av国产亚洲站长工具| 18禁黄网站禁片午夜丰满| 国产成人免费无遮挡视频| 色哟哟哟哟哟哟| 一区二区日韩欧美中文字幕| 亚洲精品美女久久久久99蜜臀| 精品乱码久久久久久99久播| 午夜福利,免费看| 亚洲视频免费观看视频| 老汉色av国产亚洲站长工具| 嫩草影院精品99| 日本 欧美在线| 一进一出抽搐动态| 国产成人啪精品午夜网站| 中文字幕久久专区| 天天一区二区日本电影三级 | 男人操女人黄网站| 精品久久蜜臀av无| 一级毛片女人18水好多| 在线十欧美十亚洲十日本专区| 欧美一区二区精品小视频在线| 国产一区二区三区综合在线观看| 国产97色在线日韩免费| 一级a爱视频在线免费观看| 欧美黑人精品巨大| 欧美在线一区亚洲| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区mp4| 婷婷六月久久综合丁香| 国产精品久久久久久人妻精品电影| 久久九九热精品免费| 国产精品一区二区在线不卡| 麻豆一二三区av精品| 欧美亚洲日本最大视频资源| 一个人免费在线观看的高清视频| 91麻豆av在线| 动漫黄色视频在线观看| 黑丝袜美女国产一区| aaaaa片日本免费| 香蕉久久夜色| 日韩欧美一区视频在线观看| 久久九九热精品免费| 国内精品久久久久精免费| 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿诱惑在线| 日本三级黄在线观看| 亚洲人成网站在线播放欧美日韩| 国产一区二区激情短视频| 精品国产一区二区久久| 欧美激情久久久久久爽电影 | 久久人妻av系列| 老司机午夜福利在线观看视频| 亚洲国产毛片av蜜桃av| 在线永久观看黄色视频| 午夜a级毛片| 欧美激情极品国产一区二区三区| 久久久久久大精品| 欧美激情极品国产一区二区三区| 国产视频一区二区在线看| 精品久久久久久久久久免费视频| 人妻久久中文字幕网| 99精品久久久久人妻精品| 中出人妻视频一区二区| 国产激情欧美一区二区| 色播在线永久视频| 久久婷婷成人综合色麻豆| 免费少妇av软件| 97人妻精品一区二区三区麻豆 | 亚洲 欧美 日韩 在线 免费| 国产又色又爽无遮挡免费看| 亚洲熟妇中文字幕五十中出| 国产一区二区在线av高清观看| 男女之事视频高清在线观看| 日本一区二区免费在线视频| 欧美大码av| 免费无遮挡裸体视频| 日韩欧美国产一区二区入口| 99热只有精品国产| 99国产精品一区二区蜜桃av| 免费不卡黄色视频| 亚洲精品av麻豆狂野| 女同久久另类99精品国产91| 午夜福利18| 女生性感内裤真人,穿戴方法视频| 91国产中文字幕| 亚洲精品国产一区二区精华液| 在线观看免费视频日本深夜| 变态另类丝袜制服| 亚洲欧美精品综合久久99| 侵犯人妻中文字幕一二三四区| 亚洲av成人av| 色综合欧美亚洲国产小说| 国产视频一区二区在线看| 久久久水蜜桃国产精品网| 国产精品秋霞免费鲁丝片| 欧美性长视频在线观看| 日韩欧美三级三区| 女人被狂操c到高潮| 一二三四在线观看免费中文在| 99热只有精品国产| 老司机午夜福利在线观看视频| 又紧又爽又黄一区二区| 亚洲熟妇熟女久久| 欧美另类亚洲清纯唯美| 伊人久久大香线蕉亚洲五| 搡老妇女老女人老熟妇| 精品国产乱子伦一区二区三区| 国产精品影院久久| 国产成人影院久久av| 脱女人内裤的视频| 国产真人三级小视频在线观看| 国产成人影院久久av| 99国产精品99久久久久| 国产av一区二区精品久久| 成人手机av| 色播在线永久视频| 精品一品国产午夜福利视频| 国产麻豆成人av免费视频| 女人精品久久久久毛片| 999久久久精品免费观看国产| 久久久久久国产a免费观看| www国产在线视频色| 日韩中文字幕欧美一区二区| 人人妻人人爽人人添夜夜欢视频| 夜夜爽天天搞| 悠悠久久av| 亚洲电影在线观看av| 好男人电影高清在线观看| 日本精品一区二区三区蜜桃| 麻豆av在线久日| 国产精品久久电影中文字幕| 欧美国产精品va在线观看不卡| 日本五十路高清| 国产亚洲欧美在线一区二区| av福利片在线| 看免费av毛片| 麻豆久久精品国产亚洲av| 黄片小视频在线播放| 又大又爽又粗| 亚洲天堂国产精品一区在线| 国产精品99久久99久久久不卡| 中文字幕人成人乱码亚洲影| 91国产中文字幕| 香蕉久久夜色| 免费在线观看完整版高清| 亚洲人成伊人成综合网2020| 久久精品亚洲精品国产色婷小说| 日本五十路高清| 亚洲第一青青草原| 午夜激情av网站| 国产亚洲精品第一综合不卡| 两个人免费观看高清视频| 午夜免费激情av| 精品欧美一区二区三区在线| 成人18禁在线播放| 亚洲午夜理论影院| 又黄又粗又硬又大视频| 天天躁夜夜躁狠狠躁躁| 一个人免费在线观看的高清视频| 久久久久久亚洲精品国产蜜桃av| 久久精品亚洲精品国产色婷小说| 男女午夜视频在线观看| 国产精品精品国产色婷婷| av网站免费在线观看视频| 最近最新中文字幕大全电影3 | www国产在线视频色| 午夜免费鲁丝| 少妇 在线观看| 午夜免费观看网址| 视频在线观看一区二区三区| svipshipincom国产片| 777久久人妻少妇嫩草av网站| 一区二区日韩欧美中文字幕| 老鸭窝网址在线观看| 法律面前人人平等表现在哪些方面| 九色亚洲精品在线播放| 婷婷六月久久综合丁香| 午夜福利在线观看吧| 91大片在线观看| 老汉色∧v一级毛片| 午夜福利,免费看| www国产在线视频色| 妹子高潮喷水视频| 视频在线观看一区二区三区| 国产精品国产高清国产av| 欧美激情极品国产一区二区三区| 午夜老司机福利片| 一本综合久久免费| 免费久久久久久久精品成人欧美视频| 夜夜躁狠狠躁天天躁| 久久精品国产综合久久久| 精品一区二区三区视频在线观看免费| 精品国产一区二区三区四区第35| 美女高潮到喷水免费观看| 国产av又大| 免费观看精品视频网站| 999久久久国产精品视频| 亚洲中文av在线| 久久久精品国产亚洲av高清涩受| 国产熟女xx| 亚洲欧美日韩无卡精品| 人成视频在线观看免费观看| www.精华液| 少妇 在线观看| 99国产精品免费福利视频| 精品无人区乱码1区二区| 久久精品国产综合久久久| 亚洲国产看品久久| 亚洲一区高清亚洲精品| 此物有八面人人有两片| 欧美人与性动交α欧美精品济南到| 曰老女人黄片| 欧美成人性av电影在线观看| 亚洲一区二区三区不卡视频| 亚洲中文av在线| 制服人妻中文乱码| 免费少妇av软件| 99久久国产精品久久久| 女人被躁到高潮嗷嗷叫费观| 一本久久中文字幕| 777久久人妻少妇嫩草av网站| 国产精品精品国产色婷婷| 一级毛片女人18水好多| 美女高潮喷水抽搐中文字幕| svipshipincom国产片| 亚洲美女黄片视频| 日本撒尿小便嘘嘘汇集6| 久久精品91蜜桃| 大型av网站在线播放| 久久久久久久久中文| 亚洲av美国av| 国产高清videossex| 天天躁狠狠躁夜夜躁狠狠躁| 国产熟女午夜一区二区三区| 国产亚洲精品综合一区在线观看 | 在线观看免费午夜福利视频| 国产激情欧美一区二区| 午夜免费成人在线视频| 久久性视频一级片| 精品少妇一区二区三区视频日本电影| av超薄肉色丝袜交足视频| 香蕉久久夜色| 黄色视频,在线免费观看| 啦啦啦韩国在线观看视频| av视频免费观看在线观看| 亚洲免费av在线视频| 国产高清视频在线播放一区| 久9热在线精品视频| 一边摸一边做爽爽视频免费| 18美女黄网站色大片免费观看| 久久精品亚洲熟妇少妇任你| 国内毛片毛片毛片毛片毛片| 国产亚洲精品av在线| 国产欧美日韩精品亚洲av| 国内久久婷婷六月综合欲色啪| 搡老岳熟女国产| 老司机午夜十八禁免费视频| 久久欧美精品欧美久久欧美| 亚洲人成电影免费在线| av片东京热男人的天堂| 欧美亚洲日本最大视频资源| 好男人在线观看高清免费视频 | 一区二区三区国产精品乱码| 午夜成年电影在线免费观看| 黑人巨大精品欧美一区二区mp4| 精品国产美女av久久久久小说| 两性夫妻黄色片| 少妇 在线观看| 男女下面插进去视频免费观看| 久久 成人 亚洲| 午夜福利,免费看| 亚洲第一电影网av| av视频免费观看在线观看| 成人三级做爰电影| avwww免费| 亚洲成国产人片在线观看| 午夜免费成人在线视频| 桃色一区二区三区在线观看| 亚洲自拍偷在线| 热99re8久久精品国产| 999精品在线视频| 这个男人来自地球电影免费观看| 女同久久另类99精品国产91| 亚洲人成电影观看| 午夜两性在线视频| 两性夫妻黄色片| 亚洲国产高清在线一区二区三 | a级毛片在线看网站| 不卡av一区二区三区| 亚洲狠狠婷婷综合久久图片| 99久久99久久久精品蜜桃| 亚洲熟妇熟女久久| 精品国内亚洲2022精品成人| 长腿黑丝高跟| 欧美最黄视频在线播放免费| 变态另类丝袜制服| 真人做人爱边吃奶动态| 久久精品人人爽人人爽视色| 午夜日韩欧美国产| 免费高清在线观看日韩| 国产精品亚洲美女久久久| 国产精品自产拍在线观看55亚洲| 在线观看舔阴道视频| 亚洲精品国产精品久久久不卡| 精品国产乱子伦一区二区三区| 久久久国产欧美日韩av| 在线观看免费日韩欧美大片| 999精品在线视频| 日韩av在线大香蕉| 中文字幕av电影在线播放| 精品乱码久久久久久99久播| 国内精品久久久久精免费| 亚洲成av片中文字幕在线观看| 欧美大码av| 国产91精品成人一区二区三区| 级片在线观看| 亚洲第一青青草原| 免费在线观看日本一区| videosex国产| 国产熟女xx| 免费看美女性在线毛片视频| 9191精品国产免费久久| 久久中文字幕一级| 两性午夜刺激爽爽歪歪视频在线观看 | 成人特级黄色片久久久久久久| 69av精品久久久久久| 免费在线观看视频国产中文字幕亚洲| 51午夜福利影视在线观看| 国产免费男女视频| 人成视频在线观看免费观看| 国产亚洲av高清不卡| 一边摸一边抽搐一进一小说| 妹子高潮喷水视频| 国产极品粉嫩免费观看在线| 女人高潮潮喷娇喘18禁视频| 亚洲成国产人片在线观看| 美女大奶头视频| 成熟少妇高潮喷水视频| 色综合亚洲欧美另类图片| 亚洲欧洲精品一区二区精品久久久| 午夜福利一区二区在线看| 久久久久精品国产欧美久久久| 国产私拍福利视频在线观看| 高潮久久久久久久久久久不卡| АⅤ资源中文在线天堂| 午夜日韩欧美国产| 一夜夜www| 757午夜福利合集在线观看| 亚洲精品中文字幕一二三四区| 亚洲最大成人中文| 一级片免费观看大全| 757午夜福利合集在线观看| 免费搜索国产男女视频| 女同久久另类99精品国产91| 国产色视频综合| 99久久久亚洲精品蜜臀av| 国产国语露脸激情在线看| 日韩精品青青久久久久久| 亚洲成a人片在线一区二区| 亚洲欧美日韩无卡精品| 国产精品 欧美亚洲| 18禁国产床啪视频网站| 国产激情欧美一区二区| 国产av精品麻豆| 亚洲va日本ⅴa欧美va伊人久久| 亚洲七黄色美女视频| 欧美不卡视频在线免费观看 | 国产成人精品无人区| 曰老女人黄片| 给我免费播放毛片高清在线观看| 成人国产一区最新在线观看| 可以免费在线观看a视频的电影网站| 久久狼人影院| 9色porny在线观看| 美女高潮到喷水免费观看| 91在线观看av| 色播亚洲综合网| 精品少妇一区二区三区视频日本电影| ponron亚洲| 亚洲国产欧美一区二区综合| 激情视频va一区二区三区| 大香蕉久久成人网| 免费在线观看影片大全网站| 99久久精品国产亚洲精品| 日韩成人在线观看一区二区三区| 久久伊人香网站| 欧美激情 高清一区二区三区| 看免费av毛片| 久久人妻福利社区极品人妻图片| 手机成人av网站| www.www免费av| 亚洲国产欧美日韩在线播放| x7x7x7水蜜桃| av欧美777| 九色国产91popny在线| 一二三四社区在线视频社区8| 丝袜美足系列| 亚洲精品中文字幕一二三四区| 一二三四在线观看免费中文在| 欧美乱妇无乱码| 嫩草影视91久久| 亚洲成国产人片在线观看| 婷婷六月久久综合丁香| 国产99久久九九免费精品| 亚洲性夜色夜夜综合| 国产精品乱码一区二三区的特点 | 男人舔女人的私密视频| 亚洲一区高清亚洲精品| 精品国产美女av久久久久小说| 日韩大尺度精品在线看网址 | 国语自产精品视频在线第100页| 日韩高清综合在线| 久久婷婷成人综合色麻豆| 免费在线观看亚洲国产| 欧美黑人精品巨大| 啦啦啦韩国在线观看视频| 丝袜美腿诱惑在线| 亚洲专区国产一区二区| 99精品久久久久人妻精品| 久久人人精品亚洲av| 日韩欧美在线二视频| 国产精品一区二区三区四区久久 | 亚洲欧美日韩另类电影网站| 99精品久久久久人妻精品| 亚洲美女黄片视频| 色尼玛亚洲综合影院| 亚洲精品美女久久av网站| 91九色精品人成在线观看| 电影成人av| 欧美日韩黄片免| 很黄的视频免费| 午夜福利18| 女警被强在线播放| 无遮挡黄片免费观看| 久久久久精品国产欧美久久久| 啦啦啦 在线观看视频| 国产1区2区3区精品| 国产一区二区激情短视频| 欧美最黄视频在线播放免费| 美女高潮喷水抽搐中文字幕| 亚洲精品国产一区二区精华液| av中文乱码字幕在线| 无人区码免费观看不卡| 不卡一级毛片| 国产亚洲av嫩草精品影院| 成人特级黄色片久久久久久久| 视频在线观看一区二区三区| 国产精品一区二区精品视频观看| 啪啪无遮挡十八禁网站| 欧美不卡视频在线免费观看 | 欧美+亚洲+日韩+国产| 人人妻人人澡人人看| 国产精品综合久久久久久久免费 | 色播在线永久视频| 国产精品爽爽va在线观看网站 | 国产人伦9x9x在线观看| 女生性感内裤真人,穿戴方法视频| 久久精品亚洲熟妇少妇任你| 香蕉国产在线看| 亚洲成人精品中文字幕电影| 黑人欧美特级aaaaaa片| 欧美激情高清一区二区三区| 在线观看免费视频日本深夜| 日韩一卡2卡3卡4卡2021年| 国产av一区二区精品久久| 久久 成人 亚洲| 俄罗斯特黄特色一大片| 亚洲五月色婷婷综合| 精品一区二区三区四区五区乱码| 国产av一区二区精品久久| 91精品国产国语对白视频| 人成视频在线观看免费观看| 午夜福利高清视频| 美女扒开内裤让男人捅视频| 国产一区二区三区综合在线观看| 女性被躁到高潮视频| 久久午夜亚洲精品久久| 搡老岳熟女国产| 精品第一国产精品| 亚洲av电影在线进入| 国产精品99久久99久久久不卡| 操出白浆在线播放| 在线观看一区二区三区| 免费一级毛片在线播放高清视频 | 妹子高潮喷水视频| 少妇的丰满在线观看| 欧美老熟妇乱子伦牲交| 在线观看舔阴道视频| a在线观看视频网站| 亚洲精品在线观看二区| 久久影院123| 亚洲国产精品sss在线观看| 丰满人妻熟妇乱又伦精品不卡| 成人免费观看视频高清| 黄色成人免费大全| 极品人妻少妇av视频| 亚洲激情在线av| 99久久99久久久精品蜜桃| 又大又爽又粗| 亚洲成人精品中文字幕电影| 亚洲在线自拍视频| 两个人视频免费观看高清| 色哟哟哟哟哟哟| 老司机福利观看| 女生性感内裤真人,穿戴方法视频| 亚洲色图av天堂| 黄色片一级片一级黄色片| 日本 av在线| 色播在线永久视频| 午夜免费激情av| 亚洲国产精品999在线| 50天的宝宝边吃奶边哭怎么回事| 高清黄色对白视频在线免费看| 悠悠久久av| 亚洲男人的天堂狠狠| 亚洲中文av在线| 一级黄色大片毛片| 极品人妻少妇av视频| 99热只有精品国产| 少妇熟女aⅴ在线视频| 在线观看免费午夜福利视频| 久久婷婷人人爽人人干人人爱 | 一级,二级,三级黄色视频| 波多野结衣高清无吗| 最新美女视频免费是黄的| 性色av乱码一区二区三区2| 麻豆久久精品国产亚洲av| 亚洲精品国产一区二区精华液| 久久久国产精品麻豆| 亚洲人成网站在线播放欧美日韩| 久久精品国产99精品国产亚洲性色 | 免费看十八禁软件| 村上凉子中文字幕在线| 啦啦啦观看免费观看视频高清 | 亚洲成人久久性| 亚洲av电影不卡..在线观看| 国产亚洲欧美在线一区二区| 国产亚洲精品久久久久久毛片| 久久精品国产99精品国产亚洲性色 | 69精品国产乱码久久久| 男女做爰动态图高潮gif福利片 | 亚洲精品粉嫩美女一区| 一级黄色大片毛片| 首页视频小说图片口味搜索| 日韩三级视频一区二区三区| 在线观看66精品国产| 欧美中文日本在线观看视频| 国产一区二区在线av高清观看| 亚洲欧美日韩另类电影网站| 精品久久蜜臀av无| 亚洲av日韩精品久久久久久密| 日韩中文字幕欧美一区二区| 午夜福利成人在线免费观看| 免费高清在线观看日韩| 不卡一级毛片| 欧美国产日韩亚洲一区| 免费观看人在逋| 午夜福利高清视频| 久久午夜综合久久蜜桃| 性色av乱码一区二区三区2| 精品电影一区二区在线| 国产日韩一区二区三区精品不卡| 最近最新中文字幕大全免费视频| 自线自在国产av| 黄色a级毛片大全视频| 亚洲国产欧美一区二区综合| 久久国产乱子伦精品免费另类| 欧美最黄视频在线播放免费|