• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of layer sliding on the interfacial electronic properties of intercalated silicene/indium selenide van der Waals heterostructure

    2022-03-23 02:21:18MasoodYousafYounisAhmedJbaraJunaidIqbalKhanMurtazaandSaeed
    Communications in Theoretical Physics 2022年3期

    Masood Yousaf, M W Younis, Ahmed S Jbara, M Junaid Iqbal Khan,G Murtaza and M A Saeed

    1 Department of Physics,Division of Science and Technology,University of Education,Lahore,54770,Pakistan

    2 Department of Chemistry,University of Management and Technology,C-II,Johar Town,Lahore,54770,Pakistan

    3 Mathematics Department, College of Education for Pure Science, Al-Muthanna University, Samawah,66001, Iraq

    4 Laboratory of Theoretical and Experimental Physics, Department of Physics, Bahauddin Zakariya University, Multan, 60800, Pakistan

    5 Materials Modelling Lab, Department of Physics, Islamia College Peshawar, KP, Pakistan

    6 Department of Mathematics & Natural Sciences, Prince Mohammad Bin Fahd University, P.O.Box 1664, Alkhobar 31952, Saudi Arabia

    Abstract Methods capable of tuning the properties of van der Waals(vdW)layered materials in a controlled and reversible manner are highly desirable.Interfacial electronic properties of two-dimensional vdW heterostructure consisting of silicene and indium selenide(InSe)have been calculated using density functional theory-based computational code.Furthermore, in order to vary the aforementioned properties,silicene is slid over a InSe layer in the presence of Li intercalation.On intercalation of the heterostructure, the buckling parameter associated with the corrugation of silicene decreases from 0.44 ? to 0.36 ?, whereas the InSe structure remains unaffected.Potential energy scans reveal a significant increase in the sliding energy barrier for the case of intercalated heterostructure as compared with the unintercalated heterostructure.The sliding of the silicene encounters the maximum energy barrier of 0.14 eV.Anisotropic analysis shows the noteworthy differences between calculated in-plane and out-of-plane part of dielectric function.A variation of the planar average charge density difference,dipole charge transfer and dipole moment have been discussed to elucidate the usability spectrum of the heterostructure.The employed approach based on intercalation and layer sliding can be effectively utilized for obtaining next-generation multifunctional devices.

    Keywords: vdW heterostructure, intercalation, tuning of properties, layer sliding, interfacial electronic properties

    1.Introduction

    Since the isolation of graphene [1], numerous investigations[2–4] have focused on strategies for overcoming the intrinsic downside, which is the zero band gap of graphene.The aforementioned drawback along with its confined properties limits potential applications of graphene-based nanoelectronics, regardless of it having excellent charge carrier mobility [5].Recently, researchers have focused on heterostructures(HS)based on two-dimensional(2D)materials such as phosphorene [6, 7], silicene [8], permeable graphitic carbon nitrides[9,10],transition metal dichalcogenides(TMDC)[11, 12], post-transition metal chalcogenides (InSe) [13, 14]as they have non-zero band gap along with many other fascinating properties that are admirable for next generation nanodevices [15].

    Efforts are underway by researchers to develop van der Waals (vdW)-HS by utilizing various available 2D monolayers [16, 17].vdW-HS may offer fascinating tunable physical and chemical properties [18, 19].For example, an isolated GaAs monolayer, which has an indirect band gap,changes its band gap nature to direct band gap in graphene/GaAs HS [20].Both MoSSe/WSSe [21] and ZnO/BSe [22]vdW-HS have demonstrated the continuous separation of photogenerated electron-holes.The heterojunction between MoS2and WSe2layers present the possibility to form photoelectrodes having excellent photocurrent intensity and photo responsivity [23].MoS2/BP vdW-HS having type-II direct band gap has excellent carrier mobility (~20 × 103cm2V-1s-1), which is a superior advantage over TMDC based vdW-HS [24].

    Properties of vdW-HS can be further tuned by employing various strategies.For instance, by the application of an electric-field and biaxial strain on GaTe/CdS vdW-HS changes the band gap nature from indirect to direct and vice versa, respectively.Tunable electronic properties make GaTe/CdS vdW-HS a favorable contender for nanoelectronics and optoelectronics devices [25].The optoelectronic properties of graphene/WSe2vdW-HS can be tuned by the introduction of a variety of vacancies, making it suitable for optical nanodevices [26].The InN and graphene monolayers become electron and hole rich in graphene/InN vdW-HS,respectively, causing a transfer of electrons from graphene to InN, and absorption from the visible to near-infrared region.Under the effect of the electric field,graphene/InN HS is able to switch its character from n-type to p-type Schottky contact and to n-type Ohmic contact making it a suitable candidate for state-of-the-art integrated devices [27].

    In this work, we have cleverly modelled corrugated silicene/InSe vdW-HS to investigate the effect of lithium(Li)intercalation at the interface and layer sliding on the physical properties of vdW-HS.Intercalants can change Bader’s charge and electronic structure by transferring its charge to vdW-HS making it a studiable material for Li-ion batteries[28].Reversible intercalation of vdW-HS is also possible,which is of much importance for energy storage devices.Charge-transfer phenomena between participating layers of vdW-HS have been reported.For lithium intercalated graphene/MoS2vdW-HS,the MoS2monolayer attained 60%more charge from lithium than graphene [29].Intercalation can profoundly alter intrinsic properties and thus provides the opportunity to design the vdW-HS with high limits and astounding cycling performance for energy devices.In addition to Li intercalation,we slid one of the monolayers over the other and reported the variation of the structural and interfacial electronic properties of vdW-HS.The layer sliding technique is found to be a highly controllable method for tuning the properties of vdW-HS[30].This study investigates the idea that the excellent properties for cutting edge devices are achievable through a simultaneous intercalation and layer sliding strategy.

    2.Computational method

    All density functional theory (DFT) calculations are completed using Quantum ESPRESSO (QE) code [31], which utilizes pseudopotentials and plane wave basis sets.Perdew and Wang type functional [32] is selected to calculate exchange and correlation energy.We used norm-conserving type pseudopotentials (Si.pw-mt_fhi.UPF, In.pw-mt_fhi.UPF, Se.pw-mt_fhi.UPF and Li.pw-mt_fhi.UPF) [33], generated by Martins-Troullier method [34].High cut-off energies for the wave function(80 Ry)and charge density(320 Ry)are used.For the supercell,7 × 7 × 1 K points grid is integrated and vacuum spacing of greater than 10 ? is imposed (sufficient to eliminate any electronic interactions due to repetitive copies of supercell generated by QE periodic code).The minimum transition energy of each patch of sliding pathway is calculated by nudged elastic band(NEB) method [35, 36], which is also implemented in QE.

    3.Results and discussion

    3.1.Structural properties

    Firstly, we modelled a vdW-HS using a corrugated indium selenide(InSe)and silicene layer.The lattice constants of silicene and InSe layer are found to be 3.862 ? and 3.860 ?,respectively.The use of a selection of silicene and InSe monolayers to form the stable HS makes sense due to negligible lattice mismatch(0.07%).As a result,the corrugated vdW-HS is obtained by using 2 × 2 × 1 unit cell sized monolayers that can effectively retain intercalants despite having large vdW gap (2.923 ?).The upper and lower plane silicon(Si)atoms of buckled silicene from here on are represented as up-Si and down-Si,respectively.Secondly,to find out the most stable intercalated vdW-HS, Li is inserted at different possible sites between the two layers.Side[subfigures 1(a),(c),(e)and(g)]and top[subfigures 1(b),(d),(f)and(h)]views of various possible interfacial intercalation sites for Li have been identified as shown in the figure 1.After comparing the total energy for each intercalated HS having Li at a specific site, the most stable intercalation site is found i.e., Li atop of Se atom [subfigures 1(a)/(b)].Intercalation of silicene/InSe HS increased the vdW gap to 3.244 ?.Li stability is also checked by placing it atop of In atoms as shown in subfigures 1(c)/(d) but this particular configuration is higher in energy by 0.03 eV than the most stable configuration.Li is not stable under down-Si,so an unoptimized geometry is provided as shown in subfigures 1(e)/(f).In the case of Li insertion under up-Si, the buckling of silicene atoms is affected and adjusted to accommodate the guest Li atoms as shown in subfigures 1(g)/(h).The intercalated configuration 1(g)/(h) is greater in energy than the most stable intercalated HS 1(a)/(b) by 0.21 eV.Li intercalation decreases the buckling parameter (d) from 0.439 ? (for pristine silicene) to 0.364 ? (for silicene present in the intercalated HS),which is defined as the separation between the upper and lower planes containing Si atoms of silicene.The thickness of InSe(5.33 ?), which is defined as the distance between the top-most and bottom-most selenium(Se)atoms,is not affected at all by Li intercalation.

    Figure 1.Side(subfigures(a),(c),(e)and(g))and top(subfigures(b),(d),(f),(h))views of silicene/InSe vdW-HS with lithium as intercalant(red balls) at various possible interfacial sites.The subfigures (a)/(b), in which Li is atop of selenium atom, is the most stable intercalated heterostructure.Subfigure(i)shows relative changes in total energy upon sliding of silicene over InSe monolayer.The subfigures(a)/(b)and(l)/(m)show the side/top view of intercalated HS before and after sliding,respectively.Configuration obtained at halfway of sliding pathway is provided as subfigure (j)/(k).The red colour arrows in subfigures (k) and (m) show the direction of sliding.

    3.2.Energetics and layer sliding

    After obtaining the most stable configuration of silicene/InSe vdW-HS[subfigures 1(a)/(b)],silicene is slid over the InSe layer covering a length of 2.27 ?, which is the bond length between two adjacent silicon atoms of the corrugated silicene.The sliding is carried out in ten equal parts(one part = 2.27 ?/10).The total energy is collected at the end of each sliding portion of the pathway.The subfigure 1(i) shows the relative change in total energy upon sliding of silicene over InSe in the presence of intercalant.A side/top view of the intercalated HS as it appears at the beginning[subfigures 1(a)/(b)],halfway[subfigures 1(j)/(k)]and end point [subfigures 1(l)/(m)] of the sliding pathway are shown in figure 1.The red arrows marked in subfigures 1(k)and(m)show the sliding direction.There is a continuous increase of total energy from the beginning of the sliding until around 80%of the pathway, after that the energy retains a uniform trend.

    A variation of the vdW gap between the two monolayers upon sliding of silicene is also investigated,as shown in figure 2.The calculated vdW gap of most stable intercalated HS is 3.244 ?, which is significantly larger than the vdW gap(2.923 ?) belonging to unintercalated silicene/InSe HS.The vdW gap increases continuously as the sliding proceeds and reaches the maximum value (3.808 ?) at 80% of the sliding pathway.A nudged elastic band (NEB) method is employed to calculate the potential energy barrier (Eb) between two sequential divisions of sliding.Figure 3 provides the calculated Ebvalues indicated by upper case letters A,B,C,D,E,F,G,H,I and J relating to portion of the sliding pathway from 0%to 10%,10%to 20%, 20%to 30%,30%to 40%,40%to 50%, 50% to 60%, 60% to 70%, 70% to 80%, 80% to 90% and 90% to 100%, respectively.The silicene encounters the highest energy barrier (Eb= 144.14 meV) when it slides from 20% to 30% of the sliding pathway.The sliding becomes more difficult due to the hindrance caused by the presence of Li at the vdW gap as compared with the unintercalated system.

    Figure 2.Variation of vdW gap as a function of the percentage of the sliding pathway.

    Figure 3.Calculate potential energy barrier (Eb) appeared between two consecutive divisions of the sliding pathway.Sliding is carried out in ten equal parts (one part = 2.27 ?/10).Calculated Eb values have been shown indicated by upper case letters A,B,C,D,E,F,G,H,I and J relating to portion of the sliding pathway from 0%to 10%,10%to 20%,20%to 30%,30%to 40%,40%to 50%,50%to 60%,60% to 70%, 70% to 80%, 80% to 90% and 90% to 100%,respectively.

    3.3.Interfacial electronic properties

    A study of the interfacial electronic properties offers a significant platform for making functional electronic devices.Various interfacial electronic properties such as planar average charge density difference (Δρ), dipole charge transfer(ΔQ) and interface dipole moment (Δμ) are calculated for intercalated silicene/InSe vdW-HS.Calculated values relating to the aforementioned properties are plotted as a function of vertical length of the supercell collected at the initial,halfway and complete sliding pathway as shown in figure 4.Each subfigure of figure 4 has dotted red and blue vertical lines, which indicate the position of InSe and silicene at the interface of the HS,respectively.Δρ(z)for intercalated HS is calculated as

    where ρ(z)Li/silicene/InSe, ρ(z)silicene/InSeand ρ(z)Liare the planar average charge densities of intercalated vdW-HS,unintercalated vdW-HS, and Li, respectively.Δρ is provided along z-axis(equation (2)), whereas electron density depletion and accumulation is indicated by negative and positive values,respectively.The decrease/increase of the electron density is mainly caused as a result of the formation of heterostructure and intercalation.

    Before sliding, the most stable intercalated vdW-HS has noteworthy values of ρ(z) [subfigure 4(a)] near silicene due to Li intercalation.The midway [subfigure 4(b)] and full length[subfigure 4(c)]sliding of the silicene further increased ρ(z)near the silicene.Sliding increases the internal distance between the participating layers as indicated by the enlarged width between the marked vertical red and blue dotted lines as shown in subfigures 4(b) and (c).

    Figure 4.Calculated planar average charge density difference (Δρ), charge transfer (ΔQ) and interface dipole moment (μ) for intercalated heterostructure at initial[subfigures(a),(d),(g)],midway[(b),(e),(h)]and complete[(c),(f),(i)]coverage of the sliding pathway.Dotted red and blue vertical lines indicate the position of InSe and silicene at the interface, respectively.

    Furthermore, ΔQ and μ are calculated utilizing ρ(z)through the following equations.

    Interfacial electronic property ΔQ describes the direction of charge transference from InSe to silicene for negative values of ΔQ and vice versa.Before the layer sliding[subfigure 4(d)],Li transfers a reasonable amount of ΔQ to InSe.For both the halfway and complete coverage of the sliding pathway a minor decline in the positive values of ΔQ is seen near silicene as shown in subfigure 4(e) and subfigure 4(f), respectively.Interfacial electronic property μ(z) is determined by the integration (equation (4)) along the vertical length (z-axis) of the supercell.For initial [subfigure 4(g)], middle [subfigure 4(h)]and final [subfigure 4(i)] coverage of the sliding pathway,positive values of μ(z) are found near silicene possibly due to presence of Li.Plots for ΔQ and μ(z)show a similar trend with the later quantity having higher values.

    Figure 5 shows band structures of intercalated silicene/InSe vdW-HS along high-symmetry directions for unslided[subfigure 5(a)] and slided [subfigure 5(b)] configurations.The sliding of silicene over InSe monolayer in the presence of Li-intercalant results in the negligible changes in the overall shape of the band structure.There is no significant band gap at Fermi level (indicated by blue horizontal line) for both slided and unslided configurations.It is worth mentioning that very few valence bands are available near fermi level that can be tuned using existing techniques.

    Figure 5.Calculated band structures of intercalated silicene/InSe heterostructure before (a) and after (b)sliding of silicene over InSe layer.The Fermi level is set at 0 eV indicated by a horizontal blue line on the energy scale in band structure plots.

    Figure 6.Calculated in-plane (εx and εy) and out-of-plane (εz) components of the dielectric function.

    The dielectric function(DF)of intercalated silicene/InSe vdW-HS is examined with the help of complex DF[ε(ω) = ε1(ω) + iε2(ω)].The imaginary part [ε2(ω)] can be related to the polarization losses of the material under a symmetrical fields and can be determined as follow [37];Subfigures 6(a)–(c) describe the calculated in-plane (εxand εy) and out-of-plane (εz) dielectric functions (DFs) of Liintercalated vdW-HS at the initial, halfway and full coverage of the sliding pathway, respectively.It is clear from the figure 6 that there is a major difference between the DF along the planar and vertical direction.It is worth mentioning that as a result of the sliding, both in-plane and out-of-plane DFs associated with the intercalated vdW-HS deviates from the DFs of the starting configuration.Also,it is evident that both εxand εyare almost same in case of unslided[subfigure 6(a)]configuration and the trend is repeated for the case of the halfway and completely slided configuration.Sliding causes only minor variations in the resulting in-plane DFs in contrary to out-of-plane DFs.For in-plane DFs, significant absorption peaks are found at 1 eV and 4 eV.In case of out-of-plane DFs,noteworthy absorption region lies between 2 eV and 5 eV for configurations appearing at initial, halfway and full coverage of the sliding pathway.The response of the VdW-HS to external electromagnetic waves can be described with the help of plots (figure 6) that also forecasts electronic optical transitions (represented by peaks) between valence and conduction band giving rise to the absorption region.

    4.Conclusion

    Interfacial electronic properties of a two-dimensional intercalated silicene/InSe van der Waals heterostructure (vdWHS)have been calculated using density functional theory.The most stable intercalated vdW-HS is obtained by comparing energetics of various systems having different interfacial positions for Li.In order to tune the physical properties,silicene is slid over a InSe layer in regular intervals.The vdW gap increases as the sliding proceeds and reaches the maximum value of 3.81 ?.Potential energy scans along the direction of the slide reveals that sliding is required to overcome an order of higher energy due to Li atoms at the interface as compared with the unintercalated vdW-HS.The maximum energy barrier of 0.14 eV is found along the sliding pathway.Li intercalation increases average charge density difference near silicene reaching the maximum value on the completion of sliding.Electronic optical transitions representing the absorption region have been indicated by the inplane and out-of-plane dielectric function.As a result of the sliding, in-plane and out-of-plane components of the dielectric functions (DFs) associated with the intercalated vdW-HS deviates from the dielectric functions of the unslided configuration.The employed approach advocates that the physical properties of layered materials can be tuned effectively in a controlled manner through a combination of intercalation and layer sliding.

    国产亚洲午夜精品一区二区久久| 亚洲av中文字字幕乱码综合| 你懂的网址亚洲精品在线观看| 91aial.com中文字幕在线观看| 在线观看三级黄色| 亚洲精品国产av成人精品| 亚洲精品456在线播放app| 国产伦精品一区二区三区四那| 天堂中文最新版在线下载| 免费观看a级毛片全部| 麻豆国产97在线/欧美| av不卡在线播放| 精品亚洲乱码少妇综合久久| 日韩,欧美,国产一区二区三区| 1000部很黄的大片| 大片电影免费在线观看免费| 水蜜桃什么品种好| 国产在线男女| 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久精品电影小说 | 久久久欧美国产精品| 黄色日韩在线| av免费在线看不卡| 日本欧美国产在线视频| 亚洲第一av免费看| 免费观看在线日韩| 97超视频在线观看视频| 精品一区二区三区视频在线| 成人午夜精彩视频在线观看| 国产精品福利在线免费观看| 最近中文字幕高清免费大全6| 建设人人有责人人尽责人人享有的 | 寂寞人妻少妇视频99o| 色吧在线观看| 久久久色成人| 午夜免费观看性视频| 1000部很黄的大片| 多毛熟女@视频| 精品一区二区三区视频在线| 亚洲精华国产精华液的使用体验| 黄片无遮挡物在线观看| 啦啦啦中文免费视频观看日本| 免费看av在线观看网站| 亚洲精品国产av成人精品| 特大巨黑吊av在线直播| h日本视频在线播放| 日韩伦理黄色片| av在线播放精品| 蜜桃亚洲精品一区二区三区| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看| 精品久久久精品久久久| av黄色大香蕉| av在线蜜桃| 国产国拍精品亚洲av在线观看| av不卡在线播放| 日本欧美视频一区| freevideosex欧美| 中国国产av一级| 免费黄色在线免费观看| 欧美一级a爱片免费观看看| 日本免费在线观看一区| 亚洲国产欧美人成| 性色av一级| 日韩在线高清观看一区二区三区| 美女主播在线视频| 美女内射精品一级片tv| 国产成人精品一,二区| 天堂中文最新版在线下载| 在线观看三级黄色| 久久久久精品性色| 亚洲无线观看免费| 亚洲国产av新网站| 大香蕉97超碰在线| 人人妻人人看人人澡| 男女边摸边吃奶| 亚洲精品国产色婷婷电影| 亚洲欧美日韩另类电影网站 | 国产成人免费观看mmmm| 精品一区二区三区视频在线| 色5月婷婷丁香| 欧美精品一区二区免费开放| 99久久综合免费| 纯流量卡能插随身wifi吗| 国产精品一区二区三区四区免费观看| 国内揄拍国产精品人妻在线| 女性被躁到高潮视频| 夜夜爽夜夜爽视频| 日本与韩国留学比较| 色视频在线一区二区三区| 欧美 日韩 精品 国产| 黄色一级大片看看| 亚洲自偷自拍三级| 狂野欧美白嫩少妇大欣赏| 国产成人午夜福利电影在线观看| av国产免费在线观看| 美女福利国产在线 | 亚洲精品日韩av片在线观看| 在线观看免费高清a一片| 亚洲图色成人| 男女免费视频国产| 国产综合精华液| 香蕉精品网在线| 色综合色国产| 国产男人的电影天堂91| 水蜜桃什么品种好| 免费看光身美女| 久久精品久久久久久噜噜老黄| 嫩草影院入口| 成人一区二区视频在线观看| 亚洲精品日韩在线中文字幕| 国产精品久久久久久av不卡| 涩涩av久久男人的天堂| 亚洲精品日韩在线中文字幕| 亚洲成人手机| 少妇精品久久久久久久| 蜜臀久久99精品久久宅男| 色视频在线一区二区三区| 成年av动漫网址| 成人亚洲欧美一区二区av| 亚洲国产欧美在线一区| 亚洲成人一二三区av| 欧美激情极品国产一区二区三区 | 精品视频人人做人人爽| 日本与韩国留学比较| 国产av国产精品国产| 直男gayav资源| 午夜福利在线观看免费完整高清在| 午夜激情久久久久久久| 干丝袜人妻中文字幕| 久久久久国产网址| 成人国产av品久久久| 亚洲精品国产色婷婷电影| 婷婷色av中文字幕| 免费av不卡在线播放| 亚州av有码| 熟女人妻精品中文字幕| 看十八女毛片水多多多| 免费久久久久久久精品成人欧美视频 | av专区在线播放| 久久99精品国语久久久| 一级毛片我不卡| 中文字幕久久专区| 亚洲成人中文字幕在线播放| 国产精品熟女久久久久浪| 日韩欧美一区视频在线观看 | 天美传媒精品一区二区| 亚洲不卡免费看| 免费观看在线日韩| 日本av手机在线免费观看| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| 各种免费的搞黄视频| 国产精品99久久99久久久不卡 | 精品一品国产午夜福利视频| 成人黄色视频免费在线看| 精品久久久久久久末码| 国产又色又爽无遮挡免| 九九久久精品国产亚洲av麻豆| 亚洲四区av| 免费看不卡的av| 精华霜和精华液先用哪个| 一本久久精品| 十八禁网站网址无遮挡 | 春色校园在线视频观看| 麻豆成人av视频| 久久99热这里只有精品18| 国内精品宾馆在线| 日本黄色日本黄色录像| 99久久中文字幕三级久久日本| 成年人午夜在线观看视频| 中国美白少妇内射xxxbb| 最新中文字幕久久久久| 国产男女超爽视频在线观看| 精品一区在线观看国产| 新久久久久国产一级毛片| 精品人妻偷拍中文字幕| 亚洲高清免费不卡视频| 欧美高清成人免费视频www| 精品国产乱码久久久久久小说| 春色校园在线视频观看| 亚洲国产日韩一区二区| 国产男女内射视频| 欧美高清性xxxxhd video| 两个人的视频大全免费| 综合色丁香网| 在线观看免费视频网站a站| 91aial.com中文字幕在线观看| 成人无遮挡网站| 秋霞伦理黄片| 少妇丰满av| 热99国产精品久久久久久7| 熟女av电影| 99久久精品热视频| 99热全是精品| 色网站视频免费| 男女国产视频网站| 99热这里只有是精品50| 国产一区二区在线观看日韩| 我要看黄色一级片免费的| 18+在线观看网站| 国产 一区精品| 成人无遮挡网站| 免费看不卡的av| 久久久成人免费电影| 国产精品99久久99久久久不卡 | 91狼人影院| 我的女老师完整版在线观看| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 日日摸夜夜添夜夜爱| 成年女人在线观看亚洲视频| 日本vs欧美在线观看视频 | 国产淫语在线视频| 亚洲欧洲国产日韩| 美女高潮的动态| av.在线天堂| 综合色丁香网| 国产精品国产av在线观看| 欧美成人精品欧美一级黄| 免费大片黄手机在线观看| av国产免费在线观看| 精品少妇久久久久久888优播| 国产亚洲一区二区精品| 精品一区二区三卡| 亚洲人成网站高清观看| 天天躁夜夜躁狠狠久久av| 国产精品女同一区二区软件| 欧美极品一区二区三区四区| av天堂中文字幕网| 九色成人免费人妻av| 最近的中文字幕免费完整| 国产午夜精品一二区理论片| 只有这里有精品99| 久久青草综合色| 成年av动漫网址| 一个人看视频在线观看www免费| 日本欧美视频一区| 大话2 男鬼变身卡| 国产大屁股一区二区在线视频| 国产精品人妻久久久久久| 亚洲一区二区三区欧美精品| 亚洲精品国产色婷婷电影| 女的被弄到高潮叫床怎么办| 国产精品一区二区在线观看99| 久久人人爽人人爽人人片va| 国产视频内射| 国产欧美亚洲国产| 九九久久精品国产亚洲av麻豆| 日日摸夜夜添夜夜爱| 蜜桃亚洲精品一区二区三区| 三级经典国产精品| 最近最新中文字幕免费大全7| 嫩草影院新地址| 性色av一级| 中文字幕久久专区| 日韩三级伦理在线观看| 大片免费播放器 马上看| 国产成人a区在线观看| 欧美精品一区二区大全| 久久人人爽人人爽人人片va| 久久人人爽人人片av| 国产成人freesex在线| 亚洲第一区二区三区不卡| www.色视频.com| 国语对白做爰xxxⅹ性视频网站| 成人美女网站在线观看视频| 精品人妻偷拍中文字幕| 日本av手机在线免费观看| 在线观看人妻少妇| 汤姆久久久久久久影院中文字幕| 久久韩国三级中文字幕| 丝袜喷水一区| 精品人妻偷拍中文字幕| 偷拍熟女少妇极品色| 欧美成人午夜免费资源| 妹子高潮喷水视频| 欧美变态另类bdsm刘玥| 日产精品乱码卡一卡2卡三| 成人漫画全彩无遮挡| 久久久久性生活片| 国产成人午夜福利电影在线观看| 少妇被粗大猛烈的视频| 久久午夜福利片| 男女无遮挡免费网站观看| 这个男人来自地球电影免费观看 | 精品一区二区三区视频在线| 国产伦理片在线播放av一区| 只有这里有精品99| 毛片一级片免费看久久久久| 久久久久久久亚洲中文字幕| 欧美亚洲 丝袜 人妻 在线| 大片免费播放器 马上看| 赤兔流量卡办理| 少妇被粗大猛烈的视频| 国产 精品1| 午夜视频国产福利| 免费播放大片免费观看视频在线观看| 日韩 亚洲 欧美在线| 日韩,欧美,国产一区二区三区| 国产国拍精品亚洲av在线观看| 嘟嘟电影网在线观看| 在线天堂最新版资源| av一本久久久久| 干丝袜人妻中文字幕| .国产精品久久| 啦啦啦在线观看免费高清www| 大香蕉97超碰在线| 久久99热6这里只有精品| av不卡在线播放| a级一级毛片免费在线观看| 国产精品成人在线| 日韩免费高清中文字幕av| 亚洲人成网站在线观看播放| 亚洲真实伦在线观看| 欧美xxxx黑人xx丫x性爽| 一级爰片在线观看| 哪个播放器可以免费观看大片| 久久久久网色| 人妻制服诱惑在线中文字幕| 色吧在线观看| 亚洲欧美一区二区三区国产| 国产在线免费精品| 日韩三级伦理在线观看| 麻豆精品久久久久久蜜桃| 亚洲成色77777| a级毛片免费高清观看在线播放| 少妇 在线观看| 久久亚洲国产成人精品v| 美女主播在线视频| 欧美xxxx黑人xx丫x性爽| 欧美日本视频| www.色视频.com| 免费在线观看成人毛片| 黄色一级大片看看| 亚洲国产欧美在线一区| 国产美女午夜福利| 国产精品久久久久久精品古装| 特大巨黑吊av在线直播| 国产熟女欧美一区二区| 久久人人爽人人爽人人片va| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 99久久综合免费| 亚洲欧美成人精品一区二区| 在线观看一区二区三区| 狂野欧美白嫩少妇大欣赏| 黑丝袜美女国产一区| 97在线视频观看| 亚洲av综合色区一区| 精品国产露脸久久av麻豆| 精品久久久久久久久av| av黄色大香蕉| 亚洲欧美日韩无卡精品| 日韩 亚洲 欧美在线| 最近中文字幕2019免费版| 青春草亚洲视频在线观看| 黄色欧美视频在线观看| 久久精品国产自在天天线| 最近2019中文字幕mv第一页| 五月开心婷婷网| 亚洲精品色激情综合| 天堂俺去俺来也www色官网| 我的老师免费观看完整版| 大片免费播放器 马上看| 欧美激情国产日韩精品一区| 国产男女内射视频| 观看免费一级毛片| 男女下面进入的视频免费午夜| 久久国内精品自在自线图片| 国产精品人妻久久久久久| 国产精品秋霞免费鲁丝片| 精品人妻熟女av久视频| 国产精品.久久久| 亚洲欧洲日产国产| 久久久久久久国产电影| 日韩人妻高清精品专区| 久久久久人妻精品一区果冻| 日本欧美视频一区| 久久久久久久久大av| 欧美成人精品欧美一级黄| 在线观看av片永久免费下载| 春色校园在线视频观看| 女人久久www免费人成看片| av一本久久久久| 在线观看一区二区三区激情| 在线观看一区二区三区| 妹子高潮喷水视频| 在线观看av片永久免费下载| 久久久久网色| 99精国产麻豆久久婷婷| 黑人猛操日本美女一级片| 新久久久久国产一级毛片| 亚洲欧美精品专区久久| 能在线免费看毛片的网站| 欧美高清成人免费视频www| www.色视频.com| 麻豆乱淫一区二区| 欧美精品人与动牲交sv欧美| 性色avwww在线观看| 性高湖久久久久久久久免费观看| 深爱激情五月婷婷| 另类亚洲欧美激情| 欧美精品国产亚洲| 99热这里只有是精品50| 日日撸夜夜添| av线在线观看网站| av播播在线观看一区| 亚洲精品第二区| 国产永久视频网站| 亚洲欧美清纯卡通| 夫妻性生交免费视频一级片| 国产高清有码在线观看视频| 免费观看性生交大片5| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| av在线app专区| 男女下面进入的视频免费午夜| 婷婷色av中文字幕| 日产精品乱码卡一卡2卡三| 久久久久国产精品人妻一区二区| 国产高潮美女av| 18禁裸乳无遮挡免费网站照片| 黄色配什么色好看| 久久综合国产亚洲精品| 人妻一区二区av| 丰满迷人的少妇在线观看| 亚洲精华国产精华液的使用体验| 色哟哟·www| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 丝瓜视频免费看黄片| av在线观看视频网站免费| 麻豆成人午夜福利视频| 精品国产一区二区三区久久久樱花 | 国产精品偷伦视频观看了| 国产精品一区www在线观看| 天堂中文最新版在线下载| 少妇猛男粗大的猛烈进出视频| 80岁老熟妇乱子伦牲交| 黑人高潮一二区| 直男gayav资源| 久久精品久久久久久噜噜老黄| 女的被弄到高潮叫床怎么办| 深夜a级毛片| 欧美3d第一页| 欧美日韩在线观看h| 国产美女午夜福利| 欧美精品人与动牲交sv欧美| 在线免费十八禁| 在线看a的网站| 日本一二三区视频观看| 岛国毛片在线播放| 18禁在线播放成人免费| 欧美变态另类bdsm刘玥| 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 亚洲国产欧美人成| 成年女人在线观看亚洲视频| 亚洲精品乱久久久久久| 丝瓜视频免费看黄片| 久久精品人妻少妇| 麻豆成人午夜福利视频| 三级国产精品欧美在线观看| 我要看黄色一级片免费的| 精品酒店卫生间| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 久久久精品94久久精品| 亚洲丝袜综合中文字幕| 亚洲精品色激情综合| 观看免费一级毛片| 国产成人免费观看mmmm| 久久久久久人妻| 美女主播在线视频| 亚洲精品中文字幕在线视频 | 内射极品少妇av片p| 久久综合国产亚洲精品| 免费看不卡的av| 多毛熟女@视频| 在线观看免费视频网站a站| 又粗又硬又长又爽又黄的视频| 久久久久久久久久久丰满| 五月伊人婷婷丁香| 久久精品国产亚洲网站| 久久久午夜欧美精品| a 毛片基地| 制服丝袜香蕉在线| 午夜福利影视在线免费观看| 国产av码专区亚洲av| 亚洲婷婷狠狠爱综合网| 亚洲中文av在线| 啦啦啦视频在线资源免费观看| 亚洲无线观看免费| 亚洲国产精品一区三区| 欧美老熟妇乱子伦牲交| 伦理电影免费视频| 日韩电影二区| 丰满人妻一区二区三区视频av| 国产乱人偷精品视频| 26uuu在线亚洲综合色| 美女视频免费永久观看网站| 自拍偷自拍亚洲精品老妇| 18禁动态无遮挡网站| 1000部很黄的大片| 日韩免费高清中文字幕av| 精品酒店卫生间| 91精品伊人久久大香线蕉| 免费大片黄手机在线观看| 嫩草影院新地址| 不卡视频在线观看欧美| 午夜免费鲁丝| 欧美+日韩+精品| 青春草亚洲视频在线观看| 免费看不卡的av| 成人影院久久| 久久这里有精品视频免费| 国产成人精品婷婷| 免费少妇av软件| 大码成人一级视频| 日韩视频在线欧美| av又黄又爽大尺度在线免费看| 久久久a久久爽久久v久久| 五月玫瑰六月丁香| 老女人水多毛片| av又黄又爽大尺度在线免费看| 精品亚洲成国产av| 十分钟在线观看高清视频www | videossex国产| 亚洲经典国产精华液单| 男男h啪啪无遮挡| 少妇高潮的动态图| 久久6这里有精品| 伊人久久精品亚洲午夜| 啦啦啦中文免费视频观看日本| 人妻制服诱惑在线中文字幕| 91在线精品国自产拍蜜月| 久久鲁丝午夜福利片| 欧美zozozo另类| 看十八女毛片水多多多| 能在线免费看毛片的网站| 国产av码专区亚洲av| 亚洲国产精品成人久久小说| 久久久亚洲精品成人影院| 超碰97精品在线观看| 99久久精品热视频| 99热这里只有是精品50| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一区二区三区四区免费观看| 亚洲,一卡二卡三卡| 国产黄片美女视频| 能在线免费看毛片的网站| 日本免费在线观看一区| 一本一本综合久久| freevideosex欧美| 国产爽快片一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国产 一区 欧美 日韩| 国产男女内射视频| 国产毛片在线视频| 日日摸夜夜添夜夜爱| 全区人妻精品视频| 插阴视频在线观看视频| 寂寞人妻少妇视频99o| 在线免费观看不下载黄p国产| 国产精品福利在线免费观看| 91精品国产九色| 国内揄拍国产精品人妻在线| av线在线观看网站| av免费在线看不卡| 美女中出高潮动态图| a级毛片免费高清观看在线播放| 亚洲人成网站在线观看播放| 天堂8中文在线网| 亚洲色图av天堂| 欧美xxxx黑人xx丫x性爽| 制服丝袜香蕉在线| 午夜激情福利司机影院| 成人黄色视频免费在线看| 亚洲国产成人一精品久久久| 亚洲av男天堂| 成人综合一区亚洲| 97在线视频观看| 伦精品一区二区三区| 18禁在线无遮挡免费观看视频| 国产精品国产av在线观看| 91久久精品国产一区二区三区| 欧美老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 大香蕉久久网| 热99国产精品久久久久久7| 亚洲精品视频女| 欧美日韩亚洲高清精品| 成人国产av品久久久| 热re99久久精品国产66热6| av国产免费在线观看| 国产免费一区二区三区四区乱码| 99热6这里只有精品| 汤姆久久久久久久影院中文字幕| 亚洲精品456在线播放app| 一级毛片 在线播放| 赤兔流量卡办理| 亚洲,一卡二卡三卡| 1000部很黄的大片| 国产精品久久久久久精品古装| 国产精品秋霞免费鲁丝片| 美女中出高潮动态图| 国产精品一区二区在线不卡| 国产在线视频一区二区| 夜夜骑夜夜射夜夜干| 国产精品偷伦视频观看了| 尤物成人国产欧美一区二区三区| 国产亚洲午夜精品一区二区久久| 国产欧美亚洲国产|