• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonequilibrium effects of reactive flow based on gas kinetic theory*

    2022-03-23 02:21:16XianliSuandChuandongLin
    Communications in Theoretical Physics 2022年3期

    Xianli Su and Chuandong Lin

    Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082,China

    Abstract How to accurately probe chemically reactive flows with essential thermodynamic nonequilibrium effects is an open issue.Via the Chapman–Enskog analysis, the local nonequilibrium particle velocity distribution function is derived from the gas kinetic theory.It is demonstrated theoretically and numerically that the distribution function depends on the physical quantities and derivatives,and is independent of the chemical reactions directly as the chemical time scale is longer than the molecular relaxation time.Based on the simulation results of the discrete Boltzmann model, the departure between equilibrium and nonequilibrium distribution functions is obtained and analyzed around the detonation wave.In addition,it has been verified for the first time that the kinetic moments calculated by summations of the discrete distribution functions are close to those calculated by integrals of their original forms.

    Keywords: discrete Boltzmann method, reactive flow, detonation, nonequilibrium effect

    1.Introduction

    Chemical reactive flow is a complex physicochemical phenomenon which is ubiquitous in aerospace, energy and power fields,etc[1,2].It exhibits multiscale characteristics in temporal and spatial scales, incorporates various hydrodynamic and thermodynamic nonequilibrium effects [3].The nonequilibrium effects exert significant influences on fluid systems especially in extremely complex environments [3],such as the spacecraft reentry into the atmosphere [4], multicomponent reactive flow in porous media [5, 6], fuel cells[7, 8], phase separation [9], hydrodynamic instability [10],and detonation [11, 12].At present, how to accurately probe,predict and analyze chemical reactive flows with essential nonequilibrium effects is still an open issue.

    Actually, there are various classes of methodologies to retain the information of velocity distribution functions for fluid systems.For example, on the basis of the distribution function, Nagnibeda et al established the kinetic theory of transport processes and discussed the features of complex system strongly deviating from the thermal and chemical equilibrium [3].Besides, on the microscopic level, the distribution function can be obtained by using the direct simulation Monte Carlo [13, 14], or molecular dynamics [15, 16].As a kinetic mesoscopic methodology, the discrete Boltzmann method (DBM) is a special discretization of the Boltzmann equation in particle velocity space, and has been successfully developed to recover and probe the velocity distribution functions of nonequilibrium physical systems[11,17–20].

    In fact, the DBM is based on statistical physics and regarded as a variant of the traditional lattice Boltzmann method (LBM) [21–24].Compared to standard LBMs, the DBM can address more issues, in particular to simulate the compressible fluid systems with significant nonequilibrium effects [17, 20, 25–30].At present, there are two means to recover the velocity distribution functions.One relies on the analysis of the detailed nonequilibrium physical quantities to obtain the main features of the velocity distribution function in a qualitative way [11, 17, 18].The other is to recover the detailed velocity distribution function by means of macroscopic quantities and their spatio derivatives quantitatively,which can be derived by using the Chapman–Enskog expansion[19,20].The two methods are consistent with each other [20].

    In the rest of this paper,we firstly derive the nonequilibrium velocity distribution function of reactive fluid based on the Boltzmann equation in section 2.In section 3, we give a brief introduction of the DBM for compressible reactive flows.In section 4,we verify the consistency of theoretical and numerical results of the equilibrium or nonequilibrium manifestations of reactive flows.The nonequilibrium and equilibrium distribution functions as well as their differences are obtained and analyzed in section 5.Finally, section 6 concludes.

    2.Derivation of velocity distribution function of reactive fluid

    Now, let us introduce the popular Bhatanger–Gross–Krook(BGK) Boltzmann equation

    where τ denotes the relaxation time, t the time, f the velocity distribution function.The equilibrium distribution function[31, 32] is

    where D=2 denotes the dimensional translational degree of freedom, I stands for extra degrees of freedom due to vibration and/or rotation, and η represents the corresponding vibrational and/or rotational energies.Here n is the particle number density, u the hydrodynamic velocity, T the temperature, m=1 the particle mass, and ρ=nm the mass density.

    On the right-hand side of equation (1),R is the chemical term describing the change rate of the distribution function due to chemical reactions, i.e.

    To derive the explicit expression of the chemical term, the following qualifications are assumed [26]: tmr<tcr<tsys, where tmr, tcrand tsysrepresent the time scale of molecular relaxation,the time scale of chemical reaction and the characteristic time scale of the system, respectively.Under the condition tmr<tcr,equation (3) can be approximated by

    as feqis the function of ρ, u, and T, respectively.Furthermore,the assumption tcr<tsysleads to the following conclusion: the chemical reaction results in the change of temperature directly,as the density and flow velocity remain unchanged during the rapid reaction process.Consequently, equation (4) can be reduced to

    Substituting equation (2) into equation (5) gives

    where Q indicates the chemical heat release per unit mass of fuel,λ′ is the change rate of the mass fraction of chemical product.Additionally, a two-step reaction scheme is employed to mimic the essential dynamics of a chain-branching reaction of detonation in this paper [33].

    Via the Chapman–Enskog analysis, we derive the firstorder approximation formula of the velocity distribution function of reacting flows through the macroscopic quantities and their spatial and temporal derivatives

    in terms of

    and

    Note that the change rate of temperature consists of two parts,i.e.

    on the right-hand side of which the first term describes the part caused by the heat release of chemical reactions

    and the other two terms reflect the parts due to the spatial gradients of velocity and temperature.

    Therefore, equation (7) can be simplified as

    with

    It can be found from equations (11), (12), (14) and (15)that the temporal derivatives can be expressed by the spatial derivatives.Those formulas are obtained from the Chapman–Enskog expansion.In fact,there are two ways to calculate the simulation results ofor.One method is to calculate the temporal change rate directly.For example

    The other method is to use equation(11),(14)and(15)where the spatial derivatives can be computed by the finite difference scheme.The results given by the two methods are similar to each other.

    Moreover, it can be inferred from equation (13) that the chemical reaction term is eliminated,so it has no contribution to the velocity distribution function directly.This is due to the aforementioned assumption that the chemical time scale is longer than the molecular relaxation time.The case where the chemical time scale is close to or less than the molecular relaxation time is not considered in this work.

    3.Discrete Boltzmann method

    In this work, the BGK DBM is used to mimic and measure the nonequilibrium reactive flows [34].The discretization of the model in particle velocity space takes the form

    where fiandrepresent the discrete distribution function and its equilibrium counterpart, respectively.videnotes the discrete velocity with i=1,2,3,…,N,and N=16 is the total number of discrete velocities.Here a two-dimensional sixteen-velocity model is employed, see figure 1.

    Figure 1.Sketch for the discrete velocity model.

    Physically, the DBM is approximately equivalent to a continuous fluid model plus a coarse-grained model for discrete effects.Meanwhile,the DBM is roughly equivalent to a hydrodynamic model plus a coarse-grained model of thermodynamic nonequilibrium behaviors.For the sake of recovering the NS equations in the hydrodynamic limit, the discrete equilibrium distribution functionsare required to satisfy the following relationship

    Furthermore, one merit of the DBM is to capture nonequilibrium information described by the following (but not limited to) high-order kinetic moments

    where M2,M3,1, M3and M4,2are the kinetic moments of the distribution functions,anddenote the corresponding equilibrium counterparts, Δ2, Δ3,1, Δ3and Δ4,2are the differences between them.Here, Δ2represents the viscous stress tensor and disorganized momentum flux,Δ3,1and Δ3are relevant to the disorganized energy fluxes.Δ4,2is related to the flux of unnorganized energy flux.

    4.Verification and validation

    To verify the consistency of theoretical and numerical results of the nonequilibrium manifestations of reactive flows,firstly,we simulate a reaction process in a uniform resting system.The specific-heat ratio is γ=5/3, the chemical heat release Q=1, the space step Δx=Δy=5×10-5, the time step Δt=2×10-6, and the discrete velocities (va, vb, vc, vd, ηa,ηb, ηc, ηd)=(3.7, 3.2, 1.4, 1.4, 2.4, 0, 0, 0), respectively.In order to possess a high computational efficiency, only one mesh grid (Nx×Ny=1×1) is used, and the periodic boundary condition is adopted in each direction, because the physical field is uniformly distributed.It is found that all simulated nonequilibrium physical quantities (including Δ2,Δ3,1, Δ3, and Δ4,2) remain zero during the evolution.Therefore, in the process of the chemical reaction, the deviation of velocity distribution function f from its equilibrium counterpart feqis zero,i.e f=feq.Besides,all physical gradients are zero in the simulation process due to the uniform distribution of physical quantities.Consequently, it is numerically verified that the chemical reaction does not contribute to the nonequilibrium effects directly1It should be mentioned that the chemical reaction may change the physical gradients which make an impact on the nonequilibrium effects.In other words,the chemical reaction plays an indirect role in nonequilibrium effect of the reactive flows..This result is consistent with the aforementioned theory that the distribution function depends on the physical quantities and derivatives,and is independent of chemical reactions directly,see equation (13).

    For the purpose of further validation, the one-dimensional (1D) steady detonation is simulated.The initial configuration, obtained from the Hugoniot relation, takes the form

    where the subscript L indicates 0 ≤x ≤0.00555, and R indicates 0.00555 <x ≤0.555.The Mach number is 1.96.To ensure the resolution is high enough, the grid is chosen as Nx×Ny=11 100×1, other parameters are the same as before.Furthermore, the inflow and/or outflow boundary conditions are employed in the x direction, and the periodic boundary condition is adopted in the y direction.

    Figure 2 displays the kinetic moments of velocity distribution function (M2,xx, M2,xy, M2,yy, M3,1,x, M3,1,y), the equilibrium counterpartsand the nonequilibrium quantities (Δ2,xx, Δ2,xy, Δ2,yy, Δ3,1,x,Δ3,1,y) around the detonation front.Here Δ2,xxrepresents twice the disorganized energy in the x degree of freedom,and Δ2,yytwice the disorganized energy in the y degree of freedom.Δ3,1,xand Δ3,1,ydenote twice the disorganized energy fluxes in the x and y directions, respectively.The legends are in each plot, where the dashed line is located at the position x=0.50375.

    Next, let us verify that the kinetic moments calculated by the summations of the discrete distribution functions are close to those calculated by integrals of their original forms at the location x=0.50375.The kinetic moments calculated by the summations of the discrete distribution functions are (Δ2,xx, Δ2,xy,Δ2,yy, Δ3,1,x, Δ3,1,y) = (0.48449, 0, -0.35844, 2.891 23, 0),while the results of the corresponding integration counterparts are(Δ2,xx,Δ2,xy,Δ2,yy,Δ3,1,x,Δ3,1,y)=(0.56488,0,-0.27255,2.801 81, 0).The relative errors are (17%, 0%, 24%, 3%, 0%),which is roughly satisfactory.For the first time, this test demonstrates the accuracy of the nonequilibrium manifestations measured by the DBM, and validates the consistence of the DBM with its theoretical basis.

    Figure 2.The nonequilibrium and equilibrium kinetic moments, and the differences between them.Plots (a)–(d) show the independent variables of M2 (, M3,1 Δ2, and Δ3,1, respectively.

    5.Recovery of velocity distribution function around detonation wave

    To further perform a quantitative study of the nonequilibrium state around the detonation wave, figure 3(a) displays the velocity distribution function at the peak of Δ2,xx,which is on the vertical dashed line in figure 2.It is clear that the velocity distribution function has a peak in the two-dimensional velocity space.Actually, due to the nonequilibrium effects,the velocity distribution function deviates from its local equilibrium counterpart, i.e.the Maxwellian velocity distribution function.

    In order to have an intuitive study of the local velocity distribution function, figure 3(b) shows its contours in the velocity space, which is in line with figure 3(a).Clearly, the peak is asymmetric in the vxdirection and symmetric in the vydirection.The contour lines are close to each other near the peak (especially on the left side), and becomes sparse away from the peak(especially on the right side).That is to say,the gradient is sharp near the peak (especially on the left side),and smooth far from the peak (especially on the left side).

    To have a deep understanding of the deviation of the velocity distribution function from the equilibrium state,figure 3(c) depicts the difference between the nonequilibrium and equilibrium distribution functions in the two-dimensional velocity space.It is obvious that there are both positive and negative deviations around the detonation wave.Along the vxdirection, a high positive peak first appears, then decreases to form a valley, and then increases to a low positive peak.

    As can be seen in figure 3(d), the deviation is symmetric about vy=0, and asymmetric about vx=ux.The contour plot consists of three segments along the vxdirection.The leftmost segment is in the region of the first peak, where the contour lines are approximately elliptical.The middle part is in the low valley area that seems like a‘moon’ shape.And the rightmost one is in the low peak area, which likes a ‘cobblestone’.The contour lines between the high peak and the valley are closer to each other than those between the valley and low peak,because the gradients between the leftmost and middle parts are sharp than those between the middle and rightmost regions.

    Finally, let us investigate the one-dimensional distribution functions and the corresponding deviations from the equilibrium states.Figures 4(a) and (b) depict the velocity distribution functions in the vxand vydirections,respectively.The solid lines represent the velocity distribution functions f(vx)=∫∫fdvydη and f(vy)=∫∫fdvxdη, the dashed curves express the equilibrium counterparts feq(vx)=∫∫feqdvydη and feq(vy)=∫∫feqdvxdη, respectively.Figures 4(c) and (d) show fneq(vx)=f(vx)-feq(vx) and fneq(vy)=f(vy)-feq(vy) which indicate the departures of distribution functions from the equilibrium state in the vxand vydirections,respectively.The following points can be obtained.

    (I) In figures 4(a)–(b), there is a peak for each curve of f(vx),feq(vx),f(vy),and feq(vy).In figures 4(c)–(d),there are two peaks and a trough for fneq(vx), while a peak and two troughs for fneq(vy).Along the vxdirection,fneq(vx) forms a positive peak firstly, then decreases to form a valley, and then increases to a second positive peak.Because f(vx)is first greater than feq(vx),then less than feq(vx), and finally greater than feq(vx) again.Similarly, the relation f(vy)>feq(vy) or f(vy)<feq(vy)in figure 4(b) leads to the results fneq(vy)>0 or fneq(vy)<0 in figure 4(d).

    (II) f(vx) and fneq(vx) are asymmetric about the vertical dashed line located at vx=ux, while feq(vx) is symmetric.Physically, as the detonation evolves, the compressible effect plays a significant role in the front of the detonation wave,and the internal energy in the x degree of freedom increases faster than in other degrees of freedom, and there exists disorganized heat flux in the x direction.

    (III) In figures 4(b) and (d), each curve of f(vy), feq(vy) and fneq(vy) has a positive peak which is symmetric about vy=0.On the left and right parts of fneq(vy) are two identical troughs that are symmetrically distributed in figure 4(b).Because the periodic boundary condition is imposed on the y direction, the equilibrium and nonequilibrium velocity distributions for vy>0 and vy<0 are symmetrical.

    Figure 3.The velocity distribution function(a)and its corresponding contour(b),the deviation of the velocity distribution function from the equilibrium state (c) and its corresponding contour (d).

    Figure 4.One-dimensional nonequilibrium and equilibrium distribution functions in the vx (a) and vy (b) directions, and the differences between them in the vx (c) and vy (d) directions.

    (IV) The nonequilibrium manifestations in figures 2(a)–(d)are consistent with the deviations of distribution functions in figures 4(a)–(d).Specifically, the trend of fneq(vx) indicates that f(vx) is ‘fatter’ and ‘lower’ than feq(vx), which means the disorganized momentum flux Δ2,xx>0.The trend of fneq(vy) means that f(vy) is‘thinner’ and ‘higher’ than feq(vy), which indicates Δ2,yy<0.Meanwhile, the portion f(vx>ux) is ‘fatter’than the part f(vx<ux), which is named ‘positive skewness’ and indicates Δ3,1,x>0.And the symmetry of fneq(vy) means Δ3,1,y=0.

    6.Conclusions

    Via the Chapman–Enskog expansion,the velocity distribution function of compressible reactive flows is expressed by using the macroscopic quantities and their spatial derivatives.The equilibrium and nonequilibrium distribution functions in oneand two-dimensional velocity spaces are recovered quantitatively from the physical quantities of the DBM, which is an accurate and efficient gas kinetic method.The departure between the equilibrium and nonequilibrium distribution functions is in line with the nonequilibrium quantities measured by the DBM.Moreover, it is for the first time to verify that the kinetic moments measured by summations of the distribution function resemble those assessed by integrals of the original forms,which consists with the theoretical basis of the DBM.In addition, under the condition that the chemical time scale is longer than the molecular relaxation time, it is numerically and theoretically demonstrated that the chemical reaction imposes no direct impact on the thermodynamic nonequilibrium effects.

    高清视频免费观看一区二区| 女性被躁到高潮视频| 91精品国产九色| 免费人成在线观看视频色| 看十八女毛片水多多多| 人人妻人人澡人人看| 午夜免费鲁丝| 嘟嘟电影网在线观看| 国产又色又爽无遮挡免| 自拍偷自拍亚洲精品老妇| 欧美精品国产亚洲| 老司机影院成人| 丝袜喷水一区| 在线天堂最新版资源| 亚洲av成人精品一二三区| 搡老乐熟女国产| av女优亚洲男人天堂| 老女人水多毛片| 久久女婷五月综合色啪小说| 亚洲国产精品专区欧美| 国精品久久久久久国模美| 建设人人有责人人尽责人人享有的| 国产免费又黄又爽又色| 日韩欧美 国产精品| 我的女老师完整版在线观看| 中文乱码字字幕精品一区二区三区| 精品亚洲成国产av| 久久99一区二区三区| 十分钟在线观看高清视频www | 免费看不卡的av| 91久久精品电影网| 狂野欧美激情性xxxx在线观看| 男人爽女人下面视频在线观看| av在线老鸭窝| 国产成人精品久久久久久| 中国三级夫妇交换| 亚洲精品国产av成人精品| 又爽又黄a免费视频| 国产精品.久久久| 哪个播放器可以免费观看大片| 青青草视频在线视频观看| 三级国产精品片| 亚洲精华国产精华液的使用体验| 中文欧美无线码| 久久综合国产亚洲精品| 国产精品蜜桃在线观看| 久久国产精品大桥未久av | 日韩视频在线欧美| 亚洲欧美精品自产自拍| √禁漫天堂资源中文www| 人妻少妇偷人精品九色| 久久毛片免费看一区二区三区| 日韩av不卡免费在线播放| 免费不卡的大黄色大毛片视频在线观看| 99九九在线精品视频 | 男女边吃奶边做爰视频| 久久99热6这里只有精品| 国产又色又爽无遮挡免| 日韩中字成人| 欧美日韩国产mv在线观看视频| 熟妇人妻不卡中文字幕| 黑丝袜美女国产一区| 久久久久久久久大av| 日韩欧美精品免费久久| 国产色爽女视频免费观看| 99精国产麻豆久久婷婷| 极品人妻少妇av视频| 国产免费一区二区三区四区乱码| 精品亚洲成国产av| 永久网站在线| 成人特级av手机在线观看| 少妇 在线观看| kizo精华| 深夜a级毛片| 久久99热这里只频精品6学生| 免费看日本二区| 国产精品99久久久久久久久| 搡女人真爽免费视频火全软件| 18禁在线无遮挡免费观看视频| 乱人伦中国视频| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片| 午夜福利影视在线免费观看| 伊人久久国产一区二区| 美女脱内裤让男人舔精品视频| 色吧在线观看| 久久久久网色| 欧美老熟妇乱子伦牲交| 久久精品国产自在天天线| 午夜福利视频精品| 亚洲第一av免费看| 国产精品国产三级专区第一集| 夫妻午夜视频| 狂野欧美白嫩少妇大欣赏| 91精品一卡2卡3卡4卡| 国产精品国产三级专区第一集| 美女xxoo啪啪120秒动态图| 韩国av在线不卡| 内射极品少妇av片p| 日本午夜av视频| 男男h啪啪无遮挡| 伊人久久国产一区二区| 天堂中文最新版在线下载| 国产成人免费观看mmmm| 丰满少妇做爰视频| 青春草视频在线免费观看| 日韩熟女老妇一区二区性免费视频| a级毛片在线看网站| 搡女人真爽免费视频火全软件| 免费av中文字幕在线| 午夜福利影视在线免费观看| 亚洲av在线观看美女高潮| 久久鲁丝午夜福利片| 亚洲一区二区三区欧美精品| 丰满人妻一区二区三区视频av| 国产精品一区二区在线不卡| 午夜老司机福利剧场| 亚洲欧美中文字幕日韩二区| 欧美3d第一页| 极品少妇高潮喷水抽搐| 久久这里有精品视频免费| 国产在线视频一区二区| 国产成人精品久久久久久| 国产极品天堂在线| 亚洲欧洲国产日韩| 成人18禁高潮啪啪吃奶动态图 | 婷婷色综合大香蕉| 最近中文字幕高清免费大全6| 九九爱精品视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产男人的电影天堂91| 超碰97精品在线观看| av有码第一页| 日韩av免费高清视频| 秋霞在线观看毛片| 夫妻性生交免费视频一级片| 久久久国产一区二区| 国产中年淑女户外野战色| 欧美老熟妇乱子伦牲交| 日韩制服骚丝袜av| 秋霞在线观看毛片| 性高湖久久久久久久久免费观看| 亚洲一级一片aⅴ在线观看| 丝袜脚勾引网站| 国产成人一区二区在线| 一级毛片 在线播放| 亚洲欧美中文字幕日韩二区| 欧美人与善性xxx| 久久久久精品久久久久真实原创| 成年人午夜在线观看视频| 日韩在线高清观看一区二区三区| www.色视频.com| 中文字幕精品免费在线观看视频 | 涩涩av久久男人的天堂| 国内少妇人妻偷人精品xxx网站| 成人漫画全彩无遮挡| 成人国产麻豆网| 精品久久久精品久久久| 另类亚洲欧美激情| 日本vs欧美在线观看视频 | 日本午夜av视频| 午夜福利影视在线免费观看| 国产欧美日韩精品一区二区| 国产一区二区在线观看日韩| 麻豆成人午夜福利视频| 久久精品国产亚洲av涩爱| 又大又黄又爽视频免费| 国产淫片久久久久久久久| 日韩成人伦理影院| av又黄又爽大尺度在线免费看| 免费黄色在线免费观看| 少妇高潮的动态图| 欧美国产精品一级二级三级 | 亚洲一级一片aⅴ在线观看| 51国产日韩欧美| 国产在线视频一区二区| 精品久久国产蜜桃| 久热久热在线精品观看| 久久人妻熟女aⅴ| 国产高清国产精品国产三级| av线在线观看网站| 日日啪夜夜撸| 最近手机中文字幕大全| 欧美+日韩+精品| 搡女人真爽免费视频火全软件| 男人爽女人下面视频在线观看| 亚洲性久久影院| 日韩精品有码人妻一区| 女性被躁到高潮视频| 欧美人与善性xxx| 亚洲av.av天堂| 久久人人爽人人片av| 国产白丝娇喘喷水9色精品| 午夜激情久久久久久久| 九九爱精品视频在线观看| 成人毛片a级毛片在线播放| 久久久久久久精品精品| 在线观看免费视频网站a站| 午夜av观看不卡| 最后的刺客免费高清国语| 80岁老熟妇乱子伦牲交| 色吧在线观看| 中文字幕免费在线视频6| 两个人的视频大全免费| 精品少妇内射三级| 蜜桃在线观看..| 九九久久精品国产亚洲av麻豆| 简卡轻食公司| 人妻制服诱惑在线中文字幕| 男女国产视频网站| 久久国产精品男人的天堂亚洲 | 久久久久久久久久久久大奶| 久久97久久精品| 亚洲第一av免费看| 菩萨蛮人人尽说江南好唐韦庄| 成年人午夜在线观看视频| 日韩,欧美,国产一区二区三区| 亚州av有码| 男人狂女人下面高潮的视频| av网站免费在线观看视频| 人人妻人人添人人爽欧美一区卜| 国产淫语在线视频| 国产熟女午夜一区二区三区 | 亚洲丝袜综合中文字幕| 草草在线视频免费看| 精品人妻熟女av久视频| 你懂的网址亚洲精品在线观看| 丰满迷人的少妇在线观看| 中文在线观看免费www的网站| av在线观看视频网站免费| 能在线免费看毛片的网站| 亚洲国产精品999| 久久久久视频综合| 天堂俺去俺来也www色官网| 人体艺术视频欧美日本| 男女国产视频网站| 欧美一级a爱片免费观看看| 精品久久久久久久久亚洲| 曰老女人黄片| 女性生殖器流出的白浆| 国产综合精华液| 亚洲国产毛片av蜜桃av| 精品国产一区二区久久| 亚洲精品456在线播放app| 国产免费福利视频在线观看| 王馨瑶露胸无遮挡在线观看| 精品人妻熟女毛片av久久网站| 啦啦啦在线观看免费高清www| 另类精品久久| 一级,二级,三级黄色视频| 精品卡一卡二卡四卡免费| 在线播放无遮挡| 国产欧美另类精品又又久久亚洲欧美| 男人狂女人下面高潮的视频| 伊人亚洲综合成人网| 美女内射精品一级片tv| 日本黄色日本黄色录像| a级毛片免费高清观看在线播放| 国产在线一区二区三区精| 亚洲精品,欧美精品| 老司机亚洲免费影院| 伦理电影大哥的女人| 噜噜噜噜噜久久久久久91| 精品亚洲成国产av| 成人国产麻豆网| 国产精品国产三级国产专区5o| 午夜日本视频在线| av不卡在线播放| 国产成人精品福利久久| 观看美女的网站| 在线观看免费视频网站a站| 亚洲国产精品专区欧美| 自线自在国产av| 日韩一本色道免费dvd| 亚洲精品国产av成人精品| 久久鲁丝午夜福利片| 男女国产视频网站| 日韩欧美一区视频在线观看 | 日韩精品免费视频一区二区三区 | 99精国产麻豆久久婷婷| 男男h啪啪无遮挡| 色5月婷婷丁香| 亚洲国产欧美在线一区| 中文在线观看免费www的网站| 免费观看a级毛片全部| 97精品久久久久久久久久精品| 插逼视频在线观看| 美女福利国产在线| 欧美激情极品国产一区二区三区 | 久久久久久伊人网av| 晚上一个人看的免费电影| 最新的欧美精品一区二区| 亚洲精品日本国产第一区| 亚洲成色77777| 久久综合国产亚洲精品| 久久av网站| 精品久久久久久久久av| 日本91视频免费播放| 26uuu在线亚洲综合色| 欧美xxxx性猛交bbbb| av.在线天堂| 亚洲婷婷狠狠爱综合网| 成人亚洲精品一区在线观看| 午夜福利视频精品| 五月开心婷婷网| 久久午夜综合久久蜜桃| 97超碰精品成人国产| 2018国产大陆天天弄谢| 精品一区二区三卡| 午夜激情久久久久久久| 青春草视频在线免费观看| 一级毛片 在线播放| 熟妇人妻不卡中文字幕| 亚洲欧美成人综合另类久久久| 国产亚洲一区二区精品| 免费高清在线观看视频在线观看| 女性被躁到高潮视频| 国产熟女欧美一区二区| 一级毛片我不卡| 亚洲中文av在线| 人人澡人人妻人| 国产精品国产av在线观看| 啦啦啦在线观看免费高清www| 中文字幕人妻熟人妻熟丝袜美| 成人国产麻豆网| 香蕉精品网在线| 亚洲精品久久久久久婷婷小说| 曰老女人黄片| 亚洲欧美精品自产自拍| 国产精品嫩草影院av在线观看| 全区人妻精品视频| 日韩免费高清中文字幕av| .国产精品久久| 国产成人免费无遮挡视频| 亚洲在久久综合| 欧美性感艳星| 99re6热这里在线精品视频| 亚洲欧洲精品一区二区精品久久久 | 欧美性感艳星| 日韩在线高清观看一区二区三区| 在线观看国产h片| 久久久欧美国产精品| 免费久久久久久久精品成人欧美视频 | 午夜久久久在线观看| 欧美一级a爱片免费观看看| 日韩大片免费观看网站| 中文在线观看免费www的网站| 日本wwww免费看| 晚上一个人看的免费电影| 午夜av观看不卡| 久久精品久久久久久久性| av在线观看视频网站免费| 麻豆乱淫一区二区| av播播在线观看一区| 国产精品一二三区在线看| 日韩av在线免费看完整版不卡| 丝袜脚勾引网站| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 日韩av在线免费看完整版不卡| 日韩 亚洲 欧美在线| 我的老师免费观看完整版| 亚洲精品国产av成人精品| 国产熟女欧美一区二区| 2021少妇久久久久久久久久久| 国产精品久久久久久久电影| 国产亚洲精品久久久com| 免费观看在线日韩| 亚洲精品日本国产第一区| 大话2 男鬼变身卡| 简卡轻食公司| 这个男人来自地球电影免费观看 | 99久久精品一区二区三区| 一级片'在线观看视频| 国产免费又黄又爽又色| 一级片'在线观看视频| 欧美97在线视频| 国产男人的电影天堂91| 国产av一区二区精品久久| 欧美另类一区| 人妻一区二区av| 狂野欧美激情性xxxx在线观看| 久久久欧美国产精品| 久久午夜综合久久蜜桃| 十八禁网站网址无遮挡 | 天堂中文最新版在线下载| 免费观看的影片在线观看| 欧美区成人在线视频| 一级毛片我不卡| 色网站视频免费| 午夜老司机福利剧场| 全区人妻精品视频| 亚洲国产精品成人久久小说| 日日啪夜夜撸| 欧美成人精品欧美一级黄| av免费观看日本| 中文字幕亚洲精品专区| 久久精品久久久久久噜噜老黄| 内地一区二区视频在线| 色吧在线观看| 久久精品熟女亚洲av麻豆精品| 2018国产大陆天天弄谢| 97超碰精品成人国产| 天堂8中文在线网| 不卡视频在线观看欧美| 热re99久久国产66热| 成人亚洲欧美一区二区av| 人妻人人澡人人爽人人| 久久99一区二区三区| 熟女人妻精品中文字幕| 亚洲精品,欧美精品| 美女视频免费永久观看网站| 免费播放大片免费观看视频在线观看| 乱码一卡2卡4卡精品| 大码成人一级视频| 人妻 亚洲 视频| 国产高清国产精品国产三级| 久久鲁丝午夜福利片| 嫩草影院入口| 国产免费福利视频在线观看| 免费黄色在线免费观看| 国产熟女午夜一区二区三区 | h日本视频在线播放| 精品久久久精品久久久| 边亲边吃奶的免费视频| 国产亚洲一区二区精品| 日韩不卡一区二区三区视频在线| videos熟女内射| 亚洲自偷自拍三级| 久久久精品免费免费高清| 成人18禁高潮啪啪吃奶动态图 | 美女脱内裤让男人舔精品视频| 亚洲av免费高清在线观看| 天天躁夜夜躁狠狠久久av| 建设人人有责人人尽责人人享有的| 成人黄色视频免费在线看| 99热这里只有精品一区| 爱豆传媒免费全集在线观看| av专区在线播放| 99九九线精品视频在线观看视频| 成人免费观看视频高清| 日本欧美国产在线视频| 国产精品国产三级专区第一集| 91精品国产九色| 国产一区二区在线观看av| 久久久久久久亚洲中文字幕| 激情五月婷婷亚洲| 男人狂女人下面高潮的视频| 九九久久精品国产亚洲av麻豆| 丝袜喷水一区| 亚洲欧洲精品一区二区精品久久久 | 搡老乐熟女国产| 中国美白少妇内射xxxbb| 一区二区三区四区激情视频| 色网站视频免费| 久久久久网色| 国产一区二区三区av在线| 久久久久久人妻| 亚洲精品色激情综合| 午夜免费男女啪啪视频观看| 免费观看无遮挡的男女| 九九在线视频观看精品| 狂野欧美激情性bbbbbb| 婷婷色综合大香蕉| videos熟女内射| 精品久久国产蜜桃| 久久鲁丝午夜福利片| 最后的刺客免费高清国语| av网站免费在线观看视频| 热re99久久精品国产66热6| 搡女人真爽免费视频火全软件| 亚洲av成人精品一区久久| 一级毛片电影观看| 欧美激情极品国产一区二区三区 | 久久韩国三级中文字幕| 永久网站在线| 色视频www国产| 亚洲怡红院男人天堂| 亚洲第一av免费看| 久久人人爽av亚洲精品天堂| 成人亚洲欧美一区二区av| 欧美日韩av久久| 欧美日韩视频精品一区| 老女人水多毛片| 免费av中文字幕在线| 日本黄色日本黄色录像| 欧美 亚洲 国产 日韩一| 亚洲一区二区三区欧美精品| 熟妇人妻不卡中文字幕| 国产男女内射视频| 免费看光身美女| 一本久久精品| 亚洲精品自拍成人| 久久久久久久国产电影| 久久久国产一区二区| 亚洲久久久国产精品| 国产免费一区二区三区四区乱码| 国产永久视频网站| 中文字幕亚洲精品专区| 又粗又硬又长又爽又黄的视频| 日日摸夜夜添夜夜添av毛片| 欧美日韩国产mv在线观看视频| 日韩欧美 国产精品| 嘟嘟电影网在线观看| 免费不卡的大黄色大毛片视频在线观看| 另类亚洲欧美激情| 六月丁香七月| 日韩人妻高清精品专区| 内地一区二区视频在线| 多毛熟女@视频| 大香蕉久久网| av女优亚洲男人天堂| 哪个播放器可以免费观看大片| 国产高清三级在线| 国产精品女同一区二区软件| 99视频精品全部免费 在线| 最近的中文字幕免费完整| 日韩精品有码人妻一区| 国产欧美日韩精品一区二区| 日日摸夜夜添夜夜爱| 国产成人精品无人区| 美女视频免费永久观看网站| 精品午夜福利在线看| 国产精品99久久久久久久久| 欧美 亚洲 国产 日韩一| 亚洲欧美精品专区久久| 精品人妻一区二区三区麻豆| 在线观看国产h片| 最近中文字幕2019免费版| 一级黄片播放器| 精品久久久久久电影网| 赤兔流量卡办理| 六月丁香七月| 久久久午夜欧美精品| 97在线人人人人妻| 91久久精品国产一区二区三区| 五月开心婷婷网| 熟女人妻精品中文字幕| 少妇人妻 视频| 秋霞伦理黄片| 嫩草影院入口| 国产极品天堂在线| 久久久国产欧美日韩av| 亚洲情色 制服丝袜| 高清午夜精品一区二区三区| 色视频www国产| 亚州av有码| 国产探花极品一区二区| 老司机影院成人| 看非洲黑人一级黄片| 秋霞伦理黄片| 亚洲婷婷狠狠爱综合网| 日产精品乱码卡一卡2卡三| 丁香六月天网| 视频中文字幕在线观看| 午夜福利在线观看免费完整高清在| 一级av片app| 日韩中文字幕视频在线看片| 日韩,欧美,国产一区二区三区| 国产片特级美女逼逼视频| 日韩中字成人| 久久婷婷青草| 王馨瑶露胸无遮挡在线观看| 亚洲真实伦在线观看| 亚洲国产毛片av蜜桃av| 91在线精品国自产拍蜜月| 午夜福利网站1000一区二区三区| 99热这里只有精品一区| 亚洲欧洲精品一区二区精品久久久 | 另类亚洲欧美激情| 插阴视频在线观看视频| 亚洲精品日韩av片在线观看| 亚洲丝袜综合中文字幕| 美女内射精品一级片tv| 在线观看免费日韩欧美大片 | 国产女主播在线喷水免费视频网站| 热re99久久精品国产66热6| 啦啦啦在线观看免费高清www| 国产精品一区二区三区四区免费观看| 精品人妻熟女av久视频| 色婷婷av一区二区三区视频| 麻豆成人av视频| 男人爽女人下面视频在线观看| 26uuu在线亚洲综合色| 少妇被粗大的猛进出69影院 | 亚洲精品色激情综合| 欧美激情极品国产一区二区三区 | 我要看黄色一级片免费的| 国产熟女午夜一区二区三区 | 亚洲av中文av极速乱| 中文字幕人妻熟人妻熟丝袜美| 视频中文字幕在线观看| 男的添女的下面高潮视频| 伊人久久国产一区二区| 青青草视频在线视频观看| 天天操日日干夜夜撸| 亚洲图色成人| 成人18禁高潮啪啪吃奶动态图 | 亚洲真实伦在线观看| 欧美一级a爱片免费观看看| 91精品伊人久久大香线蕉| 只有这里有精品99| 男人添女人高潮全过程视频| 亚洲婷婷狠狠爱综合网| 91aial.com中文字幕在线观看| 男女无遮挡免费网站观看| 嫩草影院入口| 国产精品无大码| 久热这里只有精品99| 一本久久精品| 日韩伦理黄色片| 国产成人午夜福利电影在线观看| 国产亚洲精品久久久com| 日韩不卡一区二区三区视频在线| 亚洲无线观看免费|