• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of net carriers at the interconnection layer in tandem organic solar cells

    2022-03-12 07:44:54LiJiaChen陳麗佳GuoXiNiu牛國璽LianBinNiu牛連斌andQunLiangSong宋群梁
    Chinese Physics B 2022年3期

    Li-Jia Chen(陳麗佳) Guo-Xi Niu(牛國璽) Lian-Bin Niu(牛連斌) and Qun-Liang Song(宋群梁)

    1College of Physics and Electronic Engineering,Chongqing Normal University,Chongqing 401331,China

    2Institute for Clean Energy&Advanced Materials,School of Materials and Energy,Southwest University,Chongqing 400715,China

    Keywords: tandem organic solar cells,interconnection layer,carrier balance,carrier-exciton interaction

    1. Introduction

    Solar energy is one of the best available alternatives to reduce the usage of and finally replace fossil fuels.[1,2]Though the efficiency and lifetime are still low, in the past decade,organic solar cells (OPVs) and perovskite solar cells (PSCs)have emerged and are promising alternatives to inorganic solar cells because of their low processing cost, ease of processibility,roll-to-roll processiblity for large area devices and mechanical flexibility.[3-7]Various strategies have been applied to enhance the efficiency of OPVs including controlling morphology,[8]utilizing low band gap materials,[9]and designing novel structures.[10]One reason for the low efficiency is the narrow absorption spectrum of OPVs,[11,12]and another reason is the relative thin organic layer used in OPVs due to the short exciton diffusion length.[2,13]Tandem structure can resolve these problems by using different organic materials to cover a broader absorption spectrum and thicker active layer to absorb more light in the cells.[12,14,15]

    Besides the more light absorption,carrier balance and efficient carrier recombination at the interconnection are also very important for high performance tandem OPVs.[16]Unless the carrier balance is met, net carriers would appear at the interconnection to reduce the serial voltage output or even to quench excitons generated by light absorption.[17]Similar voltage loss and exciton quenching would occur if the recombination at the interconnection is not efficient even if the carrier balance is meet.[14,18]Efforts have been devoted to achieve the carrier balance through material choosing[16]and thickness optimization,[14,19]to realize efficient recombination by using nano-metal cluster,[20,21]a p-n junction,[14,16]or a doped functional material as interconnection layer.[22,23]Recently, we found that the free carrier can be generated through interfacial exciton recombination[24]or electron-exciton interaction.[25]Since carrier balance and efficient recombination at the interconnection layer are not always met in tandem devices, it is necessary to study effect of net carriers at the interconnection layer.

    In this work, a serial tandem device with structure of indium tin oxide (ITO)/molybdenum oxide (MoO3)/fullerene(C60)/copper phthalocyanine (CuPc)/C60/tris-8-hydroxyquinolinato aluminum (Alq3)/Al was fabricated to study the effect of net carriers at the first C60-CuPc interface. It is found that carrier balance is more important than efficient carrier recombination at the interconnection layer when the photocurrent is small. The net carriers piled up at the interconnection layer of a tandem cell would reduce the voltage and photocurrent output. Due to these net carriers, both enhancement and reduction of external quantum efficiency(EQE)are found in the same device under light bias.

    2.Experimental details

    The structure of the tandem cells studied is depicted in the inset of Fig.2. ITO coated glass having a sheet resistance about 15 Ω/square was cleaned by detergent Decon 90 before film deposition. The tandem OPV was fabricated in a high vacuum chamber with a base pressure of 5.0×10-6Pa. The deposition rate of organic materials was kept at~0.04 nm/s and monitored by a calibrated quartz oscillator. A 100 nm thick Al electrode was deposited on top of the organic active layers through a shadow mask that defines an active area of 9 mm2. The device was characterized in a nitrogen-purged glove box, which is connected to the device fabrication system.The EQE was calculated from theIscmeasured by SR830(Stanford Research Systems Inc.) lock-in amplifier. The white light bias is produced from a halogen tungsten lamp. The current density-voltage(J-V)characteristics were conducted by Keithley 2400(Keithley Instruments Inc.) under air mass 1.5 global(AM 1.5G)illumination of 100 mW/cm2(Newport solar simulator model 94043A).

    3. Results and discussion

    The structure of organic solar cells (OSCs) is shown in Fig. 1. The structures for subcells A and B are ITO/MoO3(5 nm)/C60 (40 nm)/Alq3(5 nm)/Al (100 nm), ITO/CuPc(25 nm)/C60 (50 nm)/Alq3(5 nm)/Al(100 nm), respectively. The structures of tandem devices C and D are ITO/MoO3(5 nm)/C60 (40 nm)/Alq3(2 nm)/Al (1 nm)/Ag(1 nm)/MoO3(3 nm)/CuPc (20 nm)/C60 (50 nm)/Alq3(5 nm)/Al and ITO/MoO3(5 nm)/C60 (40 nm)/CuPc(25 nm)/C60(50 nm)/Alq3(5 nm)/Al(100 nm),respectively.

    Fig.1. The structures of the four devices.

    Figure 1 shows theJ-Vcurves of the best four devices,in which devices A and B are the subcells used in tandem devices C and D.The open circuit voltage(Voc)and short circuit current (Isc) are 1.01 V, 1.33 mA/cm2and 0.45 V, 3.75 mA/cm2for devices A and B,respectively,consistent with the reported values.[26,27]A statistical analysis was performed on 10 OPVs for each device,and the corresponding results are summarized in Fig. 3. It reacts the same trend as suggested by the comparison of best devices. The best performance of four devices can be read out from Table 1 that theVocandIscare 1.05 V,0.58 mA/cm2and 1.15 V,0.56 mA/cm2,respectively,for tandem devices C and D.The performance difference between the two tandem devices is quite small and the only difference between C and D is the recombination interlayer(Alq3(2 nm)/Al(1 nm)/Ag (1 nm)/MoO3(3 nm)) used in device C. The possible reason is the small photocurrent obtained in these two devices and thus high efficient recombination interconnection layer is not necessary.

    Fig.2. The J-V characterization of devices A,B,C,and D.

    Fig. 3. Statistical analysis of the photovoltaic performance from 10 OPVs for devices A,B,C,and D.

    Fig.4. EQE spectrum and the integrated current density for devices C and D.

    The optical distribution and light absorption in devices C and D are quite similar. The external quantum efficiency(EQE)spectrum and its corresponding integral current density(JEQE) for devices C and D are observed in Fig. 4. The integral currents are 0.60 mA/cm2(device C) and 0.58 mA/cm2(device D),which are consistent with theJscresults extracted from theJ-Vcharacteristics as Table 1.

    Table 1. Best parameters of devices A,B,C and D.

    The optical calculation is subject to Bruggeman’s effective medium approximation.The calculation program from the website (numpy.scipy.org) is an open source program which is based on Python language. The optical constant and thickness of materials are compiled into the document,which is recognized by the software as the input document of the model.The material and thickness of each layer were input the corresponding documents to complete the data establishment of the device model, by using the refractive indexnand extinction coefficientkof substrate ITO from Ref. [28], of MoO3from Ref.[29],of CuPc from Ref.[30],of C60 from Ref.[31]and Alq3from Ref.[32]. Optical calculation by transfer matrix[33]shows that the small photocurrent is caused by the unbalanced carriers from the subcells. As shown in Fig. 5, the light with wavelength shorter than 550 nm is mainly absorbed by C60 while light with wavelength longer than 550 nm is mainly absorbed by CuPc.[34]The much larger number of photons absorbed by the back cell (indeed, theIscof device B is much larger than that of device A)indicates that net carriers(holes)might exist at the interconnection of the two subcells. The voltage reduction(~0.4 V)caused by these holes at the interconnection is the reason for the smaller voltage compared to the sum of the two subcells(~1.5 V).

    Figure 6 shows the EQE of devices C and D with and without light bias. Both EQEs and their corresponding phases measurements (as shown in Figs. 6(c) and 6(d)) are similar.The tandem cells show photoresponse in the whole wavelength range of 300-800 nm,which means both C60 and CuPc contribute to the photocurrent. However, the contribution from CuPc (550-800 nm) decreases under light bias, and the stronger the light bias is, the more decrease can be observed.Interestingly, the response in the UV range which can be assigned to the response of C60 is enhanced under light bias.The integration of EQE under 100% light bias by AM1.5G spectrum is equal to theIscmeasured. The large phase shift under light bias is an indicator of displacement current in the 550-800 nm range.[22]Thus,it can be concluded that the photocurrent mainly comes from the contribution of C60. The analysis of the physical processes happened in the tandem devices is much helpful for understanding the phenomena we observed. Due to the special structure chosen in this study,the photons absorbed by the back cell are much more than those absorbed by the front device, as shown in Fig. 5. Most excitons produced in the front cell are separated at the MoO3-C60 interface and most excitons generated in the back cell are dissociated at the second CuPc-C60 interface,which are similar to the subcells A and B,respectively.Electrons left in the front cell would recombine with holes coming from the back cell to make the tandem cell work properly. The recombination occurs at the interconnection(the first C60-CuPc interface,inset of Fig.1)between the front cell and the back cell, where excitons can also be dissociated,especially for device D without recombination layer. Holes and electrons would be collected by ITO and Al electrodes, respectively, as theJ-Vmeasurements show, and thus exciton dissociation at the first C60-CuPc interface would cause reverse flowing of carriers and generating displacement current as observed in Fig. 6. Both electrons left in the first C60 layer and holes generated from exciton dissociation at the second CuPc-C60 interface pile up at the first C60-CuPc interface with the help of built-in electric field in the device. The large energy barriers encountered by these carriers boost their recombination and at the same time these holes and electrons quench excitons in CuPc and in the first C60 layer,respectively. As shown in Fig.5,the back cells absorb more illumination than the subcells,which results to the more exciton at the back cells. At the free carriers at CuPc-C60 interface is more than at the MoO3-C60 interface,and the left carriers were combination. However,the left carriers can not be balanced. The net carriers would appear at the interconnection to reduce the serial voltage output or even to quench excitons generated by light absorption. The fourth but not last process happens at the first C60-CuPc interface is the carrier-exciton interaction to help the carriers to overcome the energy barrier.[25]In brief, four processes coexist at the interconnection between the front and back cells: exciton dissociation,carrier recombination,exciton quench,and carrier-exciton interaction. Unless the exciton-exciton interaction is considered, the exciton dissociation will not be affected by light bias, which is also the case for subcells. But other three processes can be modulated by light bias,resulting in the modulation of apparent EQE.Indeed light bias changes the apparent EQE of tandem device (as shown in Fig. 6) but has no effect on subcells(not shown here).

    Fig.6. The EQE of devices(a)C and(b)D with and without white light bias. The intensity of the light bias is changed by neutral density filter and its value is shown in the inset. The phase information of the EQE measurements of devices C and D is shown in(c)and(d),respectively.

    To further understand the effect of net carriers at the interconnection,C60 and CuPc are selectively excited by using 450 nm and 620 nm band pass filter,as shown in Fig.7(a).Figure 7(b)shows the EQE measurements under light bias compared with the one without light bias. Similar to the white light bias, both blue and red light biases modulate the apparent EQE with increase and decrease in range of 300-400 nm and 500-800 nm,respectively.The modulation is more prominent by selective exciting CuPc with red light bias. Red light bias selectively excites CuPc to produce excitons for dissociation at the second CuPc-C60 interface. Electrons are collected by the Al electrode while net holes are piled up at the first CuPc-C60 interface. These holes are waiting there to quench the excitons in CuPc produced by chopped monochromatic light(500-800 nm),decreasing the apparent EQE in this range. When the chopped monochromatic light(300-400 nm)excites C60, these holes would accelerate the recombination with the electrons coming from the first C60, increasing the apparent EQE accordingly. When changed to blue light bias which is stronger than red light bias for our study,it selectively excites both C60 layers to produce excitons for dissociation at MoO3-C60 and the second CuPc-C60 interfaces. The number of excitons in the second C60 layer is larger than that in the first C60 layer, as shown in Fig. 5. Thus most of holes(net carrier)in CuPc would recombine with the electrons(net carrier)from the first C60 layer. Similar processes would happen like red light bias since the left holes are piled up at the first CuPc-C60 interface. Due to the fewer holes(net carrier)at the first CuPc-C60 interface,the apparent EQE decrease in 500-800 nm and increase in 300-400 nm are less prominent than the case of red light bias.

    Fig. 7. (a) The absorption spectra of CuPc and C60; the transmission of blue and red band pass filters. The blue and red light biases used in this study are realized by put a band pass filter before a white light. (b)Apparent EQE modulation by light biases.

    4. Conclusion

    By intentionally choosing the device configuration, the carrier balance is broken to accumulate net carriers at the interconnection layer of a tandem cell. By carefully studying the effect of these net carriers by using light bias, the importance of carrier balance in tandem OPVs is identified. Exciton dissociation, carrier recombination, exciton quenching,and carrier-exciton interaction coexist at the interconnection of a tandem device. By using light bias technique, these processes are modulated,reflecting in the apparent EQE variation.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11774293, 1207432,and 61874016).

    五月玫瑰六月丁香| 久久人人精品亚洲av| 午夜精品在线福利| 久久精品国产亚洲av天美| 久久午夜福利片| 成人无遮挡网站| 亚洲va在线va天堂va国产| 精品欧美国产一区二区三| 狂野欧美白嫩少妇大欣赏| 最后的刺客免费高清国语| 亚洲狠狠婷婷综合久久图片| 亚洲美女视频黄频| 国内少妇人妻偷人精品xxx网站| 国产亚洲精品av在线| 真人做人爱边吃奶动态| 久久久久久久久中文| 亚洲精品456在线播放app | 成熟少妇高潮喷水视频| 国产v大片淫在线免费观看| av黄色大香蕉| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品综合久久99| 99热6这里只有精品| 天天躁日日操中文字幕| ponron亚洲| 热99re8久久精品国产| 成人午夜高清在线视频| 中亚洲国语对白在线视频| 一进一出好大好爽视频| a级毛片免费高清观看在线播放| 99久久久亚洲精品蜜臀av| 国内精品久久久久久久电影| 日日摸夜夜添夜夜添av毛片 | 久久精品91蜜桃| 三级国产精品欧美在线观看| 一个人看的www免费观看视频| 成年免费大片在线观看| 成人二区视频| 亚洲一区高清亚洲精品| 韩国av在线不卡| 给我免费播放毛片高清在线观看| 免费观看人在逋| 搡女人真爽免费视频火全软件 | 亚洲天堂国产精品一区在线| 在线看三级毛片| 亚洲七黄色美女视频| 长腿黑丝高跟| 国产高清激情床上av| 美女高潮喷水抽搐中文字幕| 麻豆国产97在线/欧美| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩卡通动漫| 性色avwww在线观看| av女优亚洲男人天堂| 韩国av在线不卡| 欧美高清性xxxxhd video| 乱码一卡2卡4卡精品| 成人精品一区二区免费| 老熟妇乱子伦视频在线观看| 日韩一本色道免费dvd| eeuss影院久久| 日本熟妇午夜| 69av精品久久久久久| 亚洲精品一区av在线观看| 成人三级黄色视频| 国产主播在线观看一区二区| 精品一区二区免费观看| 欧美bdsm另类| 久久精品国产自在天天线| 婷婷色综合大香蕉| 欧美一区二区精品小视频在线| 91午夜精品亚洲一区二区三区 | 国产伦人伦偷精品视频| 欧美xxxx黑人xx丫x性爽| 久9热在线精品视频| 国内精品久久久久久久电影| 成人亚洲精品av一区二区| 男女那种视频在线观看| 午夜免费男女啪啪视频观看 | 黄色日韩在线| 亚洲一区二区三区色噜噜| 神马国产精品三级电影在线观看| 亚州av有码| 国产成人影院久久av| 日本三级黄在线观看| 欧美激情久久久久久爽电影| 男女做爰动态图高潮gif福利片| 啪啪无遮挡十八禁网站| 亚洲国产精品久久男人天堂| 又紧又爽又黄一区二区| 亚洲av免费在线观看| 久久久久九九精品影院| 午夜精品一区二区三区免费看| 免费观看在线日韩| 国产精品三级大全| 亚洲欧美激情综合另类| 亚洲精华国产精华液的使用体验 | 欧美成人一区二区免费高清观看| 天天躁日日操中文字幕| 国产精品久久久久久av不卡| 国产精华一区二区三区| 国产69精品久久久久777片| 国产久久久一区二区三区| 一级黄色大片毛片| 18+在线观看网站| 亚洲精华国产精华液的使用体验 | 成人无遮挡网站| 午夜激情欧美在线| 亚洲精品乱码久久久v下载方式| 精品久久久噜噜| 少妇熟女aⅴ在线视频| 999久久久精品免费观看国产| 久久人人精品亚洲av| 亚洲一级一片aⅴ在线观看| 一级毛片久久久久久久久女| 久久九九热精品免费| 老司机福利观看| 中文字幕高清在线视频| 亚洲中文字幕一区二区三区有码在线看| 国产午夜福利久久久久久| 精品午夜福利在线看| 麻豆国产av国片精品| 可以在线观看毛片的网站| 两个人的视频大全免费| 精品乱码久久久久久99久播| 亚洲性夜色夜夜综合| 五月伊人婷婷丁香| 久久这里只有精品中国| 一个人免费在线观看电影| 亚洲性夜色夜夜综合| 变态另类丝袜制服| 少妇人妻一区二区三区视频| 国产一区二区三区av在线 | 女人被狂操c到高潮| 一本一本综合久久| 国产精品美女特级片免费视频播放器| 亚洲avbb在线观看| 亚洲精华国产精华液的使用体验 | 三级毛片av免费| 国产aⅴ精品一区二区三区波| 欧美人与善性xxx| 日本黄色视频三级网站网址| 97人妻精品一区二区三区麻豆| 国产亚洲91精品色在线| 99久久无色码亚洲精品果冻| 日本黄色片子视频| 国内精品久久久久精免费| 婷婷精品国产亚洲av| 无遮挡黄片免费观看| www.色视频.com| 亚洲av一区综合| 一卡2卡三卡四卡精品乱码亚洲| .国产精品久久| 丰满人妻一区二区三区视频av| 精品欧美国产一区二区三| 成人精品一区二区免费| 黄片wwwwww| 97热精品久久久久久| 亚洲人成网站高清观看| av在线观看视频网站免费| 成人午夜高清在线视频| 久久久精品大字幕| 日日啪夜夜撸| 欧美黑人巨大hd| 国产精品一区二区免费欧美| 亚洲中文字幕一区二区三区有码在线看| 国产精品日韩av在线免费观看| 国内精品久久久久久久电影| 亚洲精品一卡2卡三卡4卡5卡| 亚洲一级一片aⅴ在线观看| 午夜福利视频1000在线观看| 可以在线观看的亚洲视频| 美女被艹到高潮喷水动态| 久久久色成人| 久久草成人影院| 国产 一区 欧美 日韩| 午夜视频国产福利| 国产精品一区二区性色av| 成人国产一区最新在线观看| 干丝袜人妻中文字幕| 精品久久久久久久久久免费视频| 日韩,欧美,国产一区二区三区 | 嫩草影视91久久| 在线免费观看的www视频| 欧美在线一区亚洲| 久久精品国产亚洲网站| 亚洲欧美日韩高清在线视频| av天堂中文字幕网| 亚洲国产精品sss在线观看| 久久精品综合一区二区三区| 日本欧美国产在线视频| 国产精品伦人一区二区| 精品不卡国产一区二区三区| 男女边吃奶边做爰视频| 成人鲁丝片一二三区免费| 黄色日韩在线| 国产一区二区三区在线臀色熟女| 亚洲精品乱码久久久v下载方式| 精品一区二区三区人妻视频| 狠狠狠狠99中文字幕| 级片在线观看| 欧美日本亚洲视频在线播放| 欧美成人一区二区免费高清观看| 日韩欧美在线乱码| 丰满的人妻完整版| 久久久久性生活片| 在线天堂最新版资源| 亚洲av日韩精品久久久久久密| 亚洲av不卡在线观看| 国产极品精品免费视频能看的| 亚洲最大成人av| 亚洲人成网站在线播| 别揉我奶头 嗯啊视频| 999久久久精品免费观看国产| 听说在线观看完整版免费高清| 欧洲精品卡2卡3卡4卡5卡区| 又粗又爽又猛毛片免费看| 亚洲七黄色美女视频| 精品一区二区三区av网在线观看| 日韩欧美精品v在线| 午夜福利在线观看吧| 精品久久久久久久久久免费视频| 日本五十路高清| 欧美成人a在线观看| 日本一本二区三区精品| 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线| 国产亚洲精品综合一区在线观看| 色吧在线观看| 久久久国产成人精品二区| 国产老妇女一区| 噜噜噜噜噜久久久久久91| 内地一区二区视频在线| 人人妻,人人澡人人爽秒播| 久久亚洲真实| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 国产成人av教育| 亚洲av五月六月丁香网| 久久久久久大精品| 国产精品一区二区免费欧美| 黄片wwwwww| 午夜爱爱视频在线播放| 欧美日韩综合久久久久久 | 别揉我奶头 嗯啊视频| 男女啪啪激烈高潮av片| 中亚洲国语对白在线视频| 久久久久久久久中文| 丰满的人妻完整版| 91精品国产九色| 国产极品精品免费视频能看的| 我要搜黄色片| 大又大粗又爽又黄少妇毛片口| 黄片wwwwww| 国产美女午夜福利| 在线a可以看的网站| 久久久久久伊人网av| 色吧在线观看| av天堂中文字幕网| 国产极品精品免费视频能看的| 日本 av在线| 天美传媒精品一区二区| 一级黄片播放器| 赤兔流量卡办理| av在线观看视频网站免费| 嫩草影院精品99| 欧美中文日本在线观看视频| 欧美日本视频| 动漫黄色视频在线观看| 麻豆一二三区av精品| 男女啪啪激烈高潮av片| 一夜夜www| 尤物成人国产欧美一区二区三区| 亚洲电影在线观看av| 国产精品爽爽va在线观看网站| x7x7x7水蜜桃| 成人高潮视频无遮挡免费网站| 国产午夜精品久久久久久一区二区三区 | 国产69精品久久久久777片| 亚洲精华国产精华液的使用体验 | 欧美绝顶高潮抽搐喷水| 他把我摸到了高潮在线观看| 欧美xxxx性猛交bbbb| 欧美人与善性xxx| 高清日韩中文字幕在线| 午夜激情福利司机影院| 黄色配什么色好看| 国产91精品成人一区二区三区| 精品人妻熟女av久视频| 亚洲成av人片在线播放无| 在线观看一区二区三区| 97热精品久久久久久| 国产av麻豆久久久久久久| 亚洲精品亚洲一区二区| 日本a在线网址| 国内精品久久久久精免费| 人人妻,人人澡人人爽秒播| 国产精品女同一区二区软件 | 欧美激情久久久久久爽电影| 婷婷精品国产亚洲av在线| 香蕉av资源在线| 丝袜美腿在线中文| 超碰av人人做人人爽久久| 国产91精品成人一区二区三区| 国产亚洲av嫩草精品影院| 熟妇人妻久久中文字幕3abv| 亚洲真实伦在线观看| 亚洲五月天丁香| 国产探花在线观看一区二区| 12—13女人毛片做爰片一| 观看美女的网站| 如何舔出高潮| 亚洲欧美日韩东京热| 91狼人影院| 久久久久久久久大av| 最新在线观看一区二区三区| 精品福利观看| 国产成年人精品一区二区| 97超级碰碰碰精品色视频在线观看| 又黄又爽又刺激的免费视频.| 天天一区二区日本电影三级| 97人妻精品一区二区三区麻豆| 亚洲七黄色美女视频| 精品久久久久久久久久久久久| 精品一区二区三区视频在线观看免费| 久久久久久久午夜电影| 在线看三级毛片| 免费无遮挡裸体视频| 国产精品国产三级国产av玫瑰| 人妻少妇偷人精品九色| 韩国av一区二区三区四区| 一a级毛片在线观看| 国产精品久久视频播放| 免费在线观看日本一区| 欧美日本亚洲视频在线播放| 亚洲国产精品成人综合色| 久久国产精品人妻蜜桃| 97碰自拍视频| 丝袜美腿在线中文| 日日夜夜操网爽| 色在线成人网| 一区二区三区免费毛片| 久久久久久久午夜电影| 最近中文字幕高清免费大全6 | 中国美女看黄片| 校园春色视频在线观看| 欧美性猛交黑人性爽| 国产亚洲欧美98| 国产老妇女一区| 深夜精品福利| 我的女老师完整版在线观看| 久久婷婷人人爽人人干人人爱| 欧美黑人巨大hd| 精品人妻一区二区三区麻豆 | 久久精品国产亚洲av天美| 国产极品精品免费视频能看的| 欧美性猛交黑人性爽| 91精品国产九色| 日本黄色视频三级网站网址| 露出奶头的视频| 欧美高清性xxxxhd video| 成人av一区二区三区在线看| 一级毛片久久久久久久久女| 中文在线观看免费www的网站| 在线观看av片永久免费下载| av视频在线观看入口| 高清在线国产一区| 91午夜精品亚洲一区二区三区 | 成年版毛片免费区| 久久精品影院6| 国产单亲对白刺激| 亚洲精品成人久久久久久| 干丝袜人妻中文字幕| 人人妻人人澡欧美一区二区| 亚洲成a人片在线一区二区| 日日啪夜夜撸| 美女高潮的动态| 自拍偷自拍亚洲精品老妇| 国产成人av教育| 亚洲专区中文字幕在线| 午夜激情福利司机影院| 国产av在哪里看| 在线看三级毛片| 99国产极品粉嫩在线观看| 很黄的视频免费| 97碰自拍视频| 日本黄色片子视频| 亚洲精品成人久久久久久| 如何舔出高潮| 草草在线视频免费看| 性欧美人与动物交配| 国产一级毛片七仙女欲春2| 99久久中文字幕三级久久日本| 自拍偷自拍亚洲精品老妇| 久久久久久久午夜电影| 三级毛片av免费| 亚洲最大成人中文| 久久人人爽人人爽人人片va| 中出人妻视频一区二区| 一区二区三区激情视频| 亚洲av一区综合| 淫妇啪啪啪对白视频| 国内揄拍国产精品人妻在线| 国内精品久久久久久久电影| 中文亚洲av片在线观看爽| 18禁在线播放成人免费| 国产色婷婷99| 日本色播在线视频| 久久午夜亚洲精品久久| 亚洲,欧美,日韩| 日本精品一区二区三区蜜桃| 婷婷丁香在线五月| 一进一出抽搐gif免费好疼| 久久6这里有精品| 看片在线看免费视频| 久久这里只有精品中国| 午夜久久久久精精品| 久久久久久久久久黄片| 可以在线观看毛片的网站| 国国产精品蜜臀av免费| 日韩一区二区视频免费看| 亚洲无线在线观看| 搡老熟女国产l中国老女人| 少妇裸体淫交视频免费看高清| 国产探花极品一区二区| 亚洲精品影视一区二区三区av| .国产精品久久| 久久久久九九精品影院| 一进一出抽搐gif免费好疼| 狂野欧美白嫩少妇大欣赏| 99国产极品粉嫩在线观看| 久久久国产成人精品二区| eeuss影院久久| 亚洲国产精品久久男人天堂| 88av欧美| a级一级毛片免费在线观看| 久久中文看片网| 在线免费十八禁| 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站在线播| 变态另类成人亚洲欧美熟女| 亚洲精品国产成人久久av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av二区三区四区| a级毛片a级免费在线| 老师上课跳d突然被开到最大视频| av中文乱码字幕在线| 欧美色视频一区免费| 在线观看66精品国产| 我要搜黄色片| 99久久精品一区二区三区| 免费av毛片视频| 男人狂女人下面高潮的视频| 在线观看av片永久免费下载| 99久久精品国产国产毛片| 黄色一级大片看看| 18禁在线播放成人免费| 免费在线观看日本一区| 国产蜜桃级精品一区二区三区| 久久久精品大字幕| 床上黄色一级片| 日韩欧美在线乱码| 欧美激情在线99| 女同久久另类99精品国产91| 国产人妻一区二区三区在| 日本五十路高清| 精品午夜福利视频在线观看一区| 国产私拍福利视频在线观看| 国产精品野战在线观看| 天美传媒精品一区二区| 国产精品亚洲一级av第二区| 成人性生交大片免费视频hd| 少妇人妻一区二区三区视频| 天堂影院成人在线观看| 国产男人的电影天堂91| 中文资源天堂在线| 国产精品久久久久久av不卡| 国产免费一级a男人的天堂| 国内精品久久久久久久电影| 午夜a级毛片| 国产成人a区在线观看| 欧美一区二区国产精品久久精品| 天天一区二区日本电影三级| 男人的好看免费观看在线视频| 悠悠久久av| 成年免费大片在线观看| 黄色女人牲交| 国产伦精品一区二区三区四那| 日韩欧美免费精品| 欧美区成人在线视频| 简卡轻食公司| 18禁黄网站禁片免费观看直播| av黄色大香蕉| 九九热线精品视视频播放| 国产精品99久久久久久久久| 色精品久久人妻99蜜桃| ponron亚洲| 麻豆av噜噜一区二区三区| 久久婷婷人人爽人人干人人爱| 成人综合一区亚洲| 午夜亚洲福利在线播放| 亚洲成人免费电影在线观看| 无人区码免费观看不卡| 日韩精品有码人妻一区| 淫妇啪啪啪对白视频| 黄色视频,在线免费观看| 亚洲色图av天堂| 亚洲欧美日韩高清专用| 国产三级在线视频| 级片在线观看| 日韩强制内射视频| 国产精品98久久久久久宅男小说| 成人av在线播放网站| 97人妻精品一区二区三区麻豆| 一本精品99久久精品77| 国产一区二区三区在线臀色熟女| h日本视频在线播放| 99在线视频只有这里精品首页| 亚洲美女黄片视频| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区在线av高清观看| 国产探花极品一区二区| 一夜夜www| 国产午夜福利久久久久久| 一区二区三区激情视频| 久久亚洲真实| 老熟妇乱子伦视频在线观看| а√天堂www在线а√下载| 91狼人影院| 我要搜黄色片| 老司机深夜福利视频在线观看| 一级毛片久久久久久久久女| 久久久久免费精品人妻一区二区| 亚洲无线在线观看| 免费av观看视频| 99九九线精品视频在线观看视频| 国产亚洲精品av在线| 国产精品精品国产色婷婷| 日韩在线高清观看一区二区三区 | 91久久精品国产一区二区成人| 色综合色国产| 国产精品久久久久久av不卡| 黄色日韩在线| 日韩高清综合在线| 久久香蕉精品热| 免费观看的影片在线观看| 亚洲一区二区三区色噜噜| 日韩 亚洲 欧美在线| 自拍偷自拍亚洲精品老妇| 又爽又黄无遮挡网站| 精品久久久久久,| 欧美中文日本在线观看视频| 我的女老师完整版在线观看| 国产精品不卡视频一区二区| 18禁裸乳无遮挡免费网站照片| 成人国产一区最新在线观看| 色尼玛亚洲综合影院| 欧美性猛交黑人性爽| av福利片在线观看| 亚洲欧美激情综合另类| 国产91精品成人一区二区三区| 日日摸夜夜添夜夜添av毛片 | 日韩一本色道免费dvd| 内地一区二区视频在线| 九九热线精品视视频播放| 亚洲专区国产一区二区| 久久久久性生活片| 国产精品国产三级国产av玫瑰| 国产成人一区二区在线| 免费观看的影片在线观看| 深夜a级毛片| 免费观看精品视频网站| 欧美在线一区亚洲| 成人国产一区最新在线观看| 99久久成人亚洲精品观看| 亚洲无线在线观看| 99视频精品全部免费 在线| 色视频www国产| 国产成年人精品一区二区| 日本熟妇午夜| 精品人妻熟女av久视频| 国产蜜桃级精品一区二区三区| 国产亚洲精品av在线| 欧美黑人巨大hd| 欧美三级亚洲精品| 午夜爱爱视频在线播放| 可以在线观看毛片的网站| 日本五十路高清| 亚洲一区高清亚洲精品| 美女免费视频网站| 精品99又大又爽又粗少妇毛片 | 亚洲欧美清纯卡通| 身体一侧抽搐| 久久精品国产亚洲网站| 搡老岳熟女国产| 尤物成人国产欧美一区二区三区| 深夜精品福利| 中文字幕av在线有码专区| 综合色av麻豆| 亚洲最大成人中文| www.www免费av| ponron亚洲| 成人二区视频| 他把我摸到了高潮在线观看| 联通29元200g的流量卡| av在线天堂中文字幕| 国产精品一区二区三区四区免费观看 | 色噜噜av男人的天堂激情| 国产aⅴ精品一区二区三区波| 亚洲精品粉嫩美女一区| 国产午夜精品论理片| 欧美成人a在线观看| 国产精品一区二区性色av| 97超级碰碰碰精品色视频在线观看| eeuss影院久久|