• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MOMENTS AND LARGE DEVIATIONS FOR SUPERCRITICAL BRANCHING PROCESSES WITH IMMIGRATION IN RANDOM ENVIRONMENTS*

    2022-03-12 10:21:00ChunmaoHUANG黃春茂
    關(guān)鍵詞:王晨

    Chunmao HUANG (黃春茂)

    Department of Mathematics,Harbin Institute of Technology (Weihai),Weihai 264209,China E-mail:cmhuang@hitwh.edu.cn

    Chen WANG (王晨)

    School of Data and Computer Science,Sun Yat-sen University,Guangzhou 510006,China E-mail:wangch329@mail2.sysu.edu.cn

    Xiaoqiang WANG (王效強)?

    School of Mathematics and Statistics,Shandong University,Weihai 264209,China E-mail:xiaoqiang.wang@sdu.edu.cn

    Abstract Let (Zn) be a branching process with immigration in a random environment ξ,where ξ is an independent and identically distributed sequence of random variables.We show asymptotic properties for all the moments of Zn and describe the decay rates of the n-step transition probabilities.As applications,a large deviation principle for the sequence logZn is established,and related large deviations are also studied.

    Key words branching process with immigration;random environment;moments;harmonic moments;large deviations

    1 Introduction

    As an important extension of the Galton-Watson process,the branching process in a random environment (BPRE) has received extensive attention.Smith and Wilkerson[34]introduced the concept of independent and identically distributed (i.i.d.) environment variables into the Galton-Watson process and studied the certain or noncertain extinction.Athreya and Karlin[2,3]generalized the environment variables to a more common situation called a stationary and ergodic environment,and established some basic limit theorems.A lot of asymptotic properties and behaviours of BPRE-such as limit theorems,large deviations,survival probabilities,moments and convergence rates of martingales-have been studied;see for example[6,7,9,14,15,17,18,21,24,37].

    The model of the branching process with immigration in a random environment (BPIRE) extends BPRE by considering the in fluence of the immigration.Based on the original reproductive mechanism of BPRE,a certain number of alien populations join the original population at every generation.The initial conditions of the branching process can determine whether or not the population will become extinct over time.The immigration can actually also be used to prevent extinction.The latter overcomes some of the former’s limitations on variable restrictions.

    After BPIRE was proposed,some scholars devoted themselves to building their theoretical framework by studying its commonalities with BPRE;see the papers[4,11,12,25,33,36,38].However,the theoretical research on BPIRE is still lacking and the relevant theories are not yet mature,which limits some applications.For example,Bansaye[4]needed to base his work on some asymptotic properties of BPIRE when he studied cell contamination models.Among the studies on BPIRE,Wang and Liu[38]established the principles of large deviation and moderate deviation for supercritical BPIRE.Based on their work,our study completes the theory of moments and improves the condition of the large deviation principle of BPIRE.For branching processes with immigration and related topics,recent developments can be found in the papers[16,26,27,32,37,39];readers may refer to the references therein for more information.

    1.1 Description of the model and the notation

    Let us describe the model in detail.We consider a branching process with immigration in a random environment (BPIRE).The random environment,denoted by ξ=(ξn),is an i.i.d.sequence of random variables taking values in some measurable space Θ.Without loss of generality,we can suppose that ξ is de fined on the product space (ΘN,E?N,τ),where τ is the law of ξ and N={0,1,2,···}.Each realization of ξncorresponds to two probability distributions on N:one is the offspring distribution denoted by

    the other is the distribution of the number of immigrants denoted by

    In particular,we write pi=pi(ξ0) and hi=hi(ξ0) for brevity.The branching process (Zn) with immigration Y=(Yn) in the random environment ξ is de fined as follows:the process starts with Z0initial individuals,and Z0is independent of the environment ξ.Then

    where given the environment ξ,Z0,Xn,i(n=0,1,2,···,i=1,2,···) and Yn(n=0,1,2,···) are all independent of each other,Xn,ihas the distribution p (ξn) and Ynhas the distribution h (ξn).We write Xn=Xn,1for brevity.The random variable Xn,ican be regarded as the number of offspring of the i-th individual in the n-th generation and Ynas the amount of immigration in the (n+1)-th generation,so that Zn+1represents the total population of the (n+1)-th generation.If h0=1,there is no immigration and the process (Zn) forms the so-called branching process in a random environment (BPRE) which is what has been largely studied in the literature.To distinguish between BPRE and BPIRE,we useto denote the process BPRE without immigration Y,i.e.,

    It is clear that Zn≥.

    Let (Γ,Pξ) be the probability space on which the process is de fined when the environment ξ is given.The total probability space can be formulated as the product space (?!力∟,P),with P (dx,dξ)=Pξ(dx)τ(dξ).The probability Pξis usually called a quenched law,while the total probability P is usually called an annealed law.The quenched law Pξmay be considered to be the conditional probability of the annealed law P given ξ.Moreover,for k∈N*={1,2,···},denote Pk(·)=P (·|Z0=k) as the probability conditioned on{Z0=k}for the process starting with k initial individuals.The expectation with respect to Pξ(resp.P,Pk) will be denoted by Eξ(resp.E,Ek).

    For n∈N and t∈R,set

    Let F0=σ(ξ) and Fn=σ(ξ,Yl,Xl,i:0≤l<n,i≥1),(n≥1).It is known that under the probability Pξ(·|Z0=k),(Wn,F(xiàn)n) forms a nonnegative submartingale,and it converges almost surely (a.s.) to some limit W if Elogm0>0 and<∞,by[38,Theorem 3.2],while (,F(xiàn)n) is a nonnegative martingale and hence it naturally converges a.s.to a limit.

    Just as with the case of BPRE,the asymptotic behaviour of the process Zncan often be analysed with the help of the moments of Zn,or those of Wn.For a branching process in an i.i.d.environment,Huang and Liu studied the moments ofof positive orders in[22]and those of negative orders in[21].Wang and Liu generalized these results for a branching process with immigration in an i.i.d.environment in[38].Here,we want to investigate the annealed moments of Zn;namely,for s∈R.We remark that the quenched moments of Zncan be studied via the corresponding quenched moments of Wn,which was discussed in another paper by the authors[23].

    Let us briefly introduce the structure of this article.For the rest of Section 1,we summarize the main results and conclusions.First,based on the Lpconvergence of the submartingale Wnof BPIRE studied in[38],we show the asymptotic properties of the moments(see Theorem 1.1).Second,we describe the decay rates of the n-step transition probabilities (see Theorem 1.2) and those of the harmonic moments(see Theorem 1.5).Third,we show large deviations for logZn(see Theorems 1.7 and 1.8).Section 2 is devoted to the proof of Theorem 1.1.In Section 3,a sharp upper bound for harmonic moments is given to prepare for the proofs of Theorems 1.2 and 1.5.In Sections 4-6,the proofs of Theorems 1.2,1.5 and 1.8 are shown successively.

    1.2 Main results

    We first show the annealed convergence rates of the positive moments of Zn.

    Theorem 1.1(Moments) Let p>0,and assume that∈(1,∞).Then,

    Theorem 1.1 shows that under necessary moment conditions,has the same asymptotic properties asfor p>0.For BPRE,a similar result was shown in[21,Theorem 1.3].

    Next we consider the harmonic moments of Zn.From now on we will restrict things to the case that

    (H0) P (p0=0)=1 and P (p1=1)<1.

    The first condition means that each individual produces at least one child,and the second condition avoids the trivial case that everyone gives birth to just one child.Under (H0),we have Elogm0>0,which means that the process Znis supercritical.Moreover,it can be seen that Zn+1≥Zn,and hence Pξ(Zn→∞)=1 for almost all ξ.Furthermore,we introduce the following two assumptions:

    (H1) There exist constants δ>1 and A>A1>1 such that A1≤m0and m0(δ)≤Aδa.s.;

    (H2)‖p1‖∞=esssup p1<1.

    First proposed in[21],the assumptions (H1) and (H2) allow one to find the critical value for the existence of the harmonic moments of the limitfor BPRE (see[21,Theorem 1.4]):for r>0,

    We remark that the assumptions (H1) and (H2) are not essential for our results,and we need them just to make sure of the sufficiency of statement (1.5).In fact,the assumptions (H1) and (H2) can be replaced by the following statement:

    For i,j,n∈N*,denote

    as the n-step transition probability from i to j.Write pij=for brevity.For k∈N*and r>0,we set

    Let rkbe the solution of the equation γk=,with the convention that rk=∞if γk=0.The following theorem describes the decay rate of the n-step transition probabilityas well as that of the the probability generating function of Zn:

    Theorem 1.2Assume (H0).If γk>0,then the following assertions hold:

    (a) For any state j≥k,we have

    where qkk=1,and for j>k,qkj=0 if j is a non-accessible state,i.e.=0 for all l∈N*,while qkj∈(0,∞) is the solution of the recurrence relation

    if j is an accessible state,i.e.>0 for some l∈N*.

    (b) Let Gk,n(t)=be the probability generating function of Znunder the probability Pk.For all t∈[0,1),

    and Qk(t) satisfies the functional equation

    where f0(t)=andare the probability generating functions of X0and Y0,respectively,under the probability Pξ.

    (c) Under the assumptions (H1) and (H2),for any r>rk,we have the series<∞.In particular,the radius of convergence of the power series Qk(t) equals 1.

    Theorem 1.2 is a generalizationof[19,Theorem 2.3]for BPRE.Since there is no immigration in BPRE,we have h0=1 and γk=.Similar aspects of BPRE were also studied in[5,8].For the case of a deterministic environment,similar results were shown in[28,35].

    Corollary 1.3Assume (H0).If γk>0,then for j≥k,

    Corollary 1.3 is about the probability of staying bounded without extinction,which describes the asymptotic behaviour of Pk(Zn≤j) for BPIRE.For BPRE,Bansaye introduced the decay rate of Pk(Zn≤j) and gave an interpretation in a trajectory for the associated rare event{Zn=j}in[8];Grama et al.improved this result in[17].

    Theorem 1.2 can also be used to study the large deviations of Zn+1/Zn.This subject has attracted much interest;see for example[1,13,18,20,28,31,35].In particular,for classical Galton-Watson process,Athreya[1]showed that if p1mr>1 and E (X0+Y0)2r+δ<∞for some r≥1 and δ>0,then

    exists in[0,∞),where m=EX0.Liu and Zhang[28]generalized such a result to a branching process with immigration,with p1replaced by h0.For BPIRE,an associated result is established by applying Theorem 1.2 as follows:

    Corollary 1.4Assume (H0),(H1) and (H2).If<∞and<∞for some r>rk,then for every ε>0,there exists Ck(ε)∈[0,∞) such that

    For the case in a deterministic environment,since γ1=h0p1<min{h0,p1}for the case k=1,Corollary 1.4 is actually a generalization and improvement of the results in[1,28].

    In order to further obtain some results similar to those that were shown in[18,31,35]on the large deviations of Zn+1/Zn,we need to find an equivalence to describe the convergence rates of the annealed harmonic moments of Zn.On this subject,readers can refer to[31]for the classical Galton-Watson process,[35]for the branching process with immigration,and[18]for BPRE.In term of research methods,in[31,35],the authors divided the momentsinto three parts of integrals and then calculated the rates of each part by distinguishing three different cases according to the values of r.However,when the influence of the environment is taken into account,that classical method is no longer effective.For BPRE,a method of using a recurrence relation was adopted in[18].Following such an idea,we obtain the theorem below which describes precisely the decay rates of the harmonic moments.

    Recall that in the de finition (1.8),and rkis the solution of the equation γk=.For n∈N,set

    Theorem 1.5(Harmonic moments) Assume (H0),(H1) and (H2).Then,

    (a) For r>rk,

    (b) If Elog+Y0<∞,for r≤rk,

    Theorem 1.5 gives a complete description of the asymptotic behaviour of the harmonic momentsof BPIRE.For BPRE,Grama et al.showed that=C (k,r)∈(0,∞) for all r>0,where γk=(see[18,Theorem 2.1]).When r>rk,Theorem 1.5(a) coincides with the result of[18],but when r≤rk,instead of finding the precise limit as in[18],we just obtain (1.13) in Theorem 1.5(b),which also implies that the equivalent decay rate ofis an(k,r).In contrast with the result for BPRE,one should notice that for BPIRE,γk=becomes smaller,and hence rkbecomes larger.

    Using Theorem 1.5,we can get the decay rate of the probability Pk(Zn≤kn),where knis larger than k and may tend to infinity with a rate slower than the exponential rate eθn(θ>0).For BPRE,corresponding results can be found in[7,18].

    Corollary 1.6Assume (H0),(H1) and (H2).Let (kn) be a sequence of positive numbers satisfying≥k andlogkn=0.If γk>0,then

    To prove Corollary 1.6,one just needs to notice that for n large enough (such that k≤kn) and r>rk,Markov’s inequality yields

    Applying Theorem 1.2(a) and Theorem 1.5(a),we can obtain the conclusion.In particular,applying Corollary 1.6 with kn=j≥k leads tologPk(Zn≤j)=logγk,which means that the conclusion of Corollary 1.3 can also be deduced from Corollary 1.6.It is obvious,however,that the conditions of Corollary 1.3 are less than those of Corollary 1.6.If kntends to infinity with an exponential rate eθn(θ>0),we cannot reach (1.14) from Corollary 1.6.In this instance,one can expect thatlogPk(Zn≤kn)>logγkif the limit exists.

    Finally,we consider large deviations of logZn.Later we will particularly work on the lower and upper deviations Pk(Zn≤eθn) and Pk(Zn≥eθn) for θ>0.Let Λ(t)=(t∈R) and Λ*(x)=(x∈R) be its Fenchel-Legendre transform.It is clear that

    which implies that logΠnsatisfies a large deviation principle with the rate function Λ*(x),according to the classical large deviation theory.As logZn=logΠn+logWn,it is possible that logZnsatisfies the same large deviation principle as logΠnin the case where Wnconverges to a non-degenerate limit W.Let

    Since p0=0 a.s.,it is clear that χk(t)≥Λ(t),so that≤Λ*(x).Denote θk=Λ′(-rk),where Λ′(t)=is the derivative of the function Λ(t).We can calculate that

    The graphs of the functionsand Λ*(x) are shown in Figure 1.

    Figure 1 Graphs of the functions and Λ*(x)

    In particular,if γk=0(i.e.,rk=∞),we have χk(t)=Λ(t) and=Λ*(x).Noticing (1.16) and applying the G?rtner-Ellis theorem[10,p.53,Exercise 2.3.20],we immediately obtain the following large deviation principle for logZn:

    Theorem 1.7(Large deviation principle) Assume (H0),(H1) and (H2).If γk=0,<∞and<∞for all p>1,then for any measurable subset B of R,we have

    where B?denotes the interior of B,andits closure.

    The large deviation principle of logZnfor BPRE was proved by Huang and Liu in[21].Wang and Liu then extended that result to BPIRE[38,Theorem 7.2].Theorem 1.7 improves the condition of[38,Theorem 7.2].

    Remark 1.1The conclusion of Theorem 1.7 was also shown in[37,Theorem 7.2]under the condition that p1=0 a.s..Here we relax that condition to γk=0.It is clear that γk=0 means that p1=0 or h0=0 a.s..We remark that[38,Theorem 7.2]was proved by using the harmonic moments of W of BPRE[16,Theorem 2.1].In[17],the authors claimed that the assumptions (H1) and (H2) could be weakened.However,their proof was not correct,hence,in order to ensure[37,Theorem 7.2],the assumptions (H1) and (H2) have still been necessary up until now.However,as we have pointed out before,the assumptions (H1) and (H2) can be replaced by the statement (1.6).

    Under the conditions of Theorem 1.7,applying Theorem 1.7(by taking B=[θ,∞) and B=(-∞,θ],respectively),we can deduce the following results about the upper and lower deviations of logZn:

    However,the conditions of Theorem 1.7 seem a little strong for investigating the upper and lower deviations of logZn.For example,Theorem 1.7 requires the existence of the positive momentsandfor all p>1,but in general,in the case that the momentsandare finite for some p>1,it still can be expected that the upper deviations of logZnfor certain θ(but not for all θ>Elogm0) will be obtained.That is why,below,we investigate the upper and lower large deviations of logZnseparately without using Theorem 1.7.

    Theorem 1.8(Large deviations) Assume (H0).Then,

    Compared with (1.18) and (1.19),under weaker moment conditions and considering the case where γk=0 is possible,Theorem 1.8(a) reveals the upper deviations of logZnfor certain θ,and Theorem 1.8(b) shows the lower deviations of logZnfor all θ∈(0,Elogm0) with the rate functioninstead of Λ*.For BPRE,more precise properties about the upper and lower deviations of logZnwere shown in[5-7,18].

    Remark 1.2If<∞and<∞for all p>1,it can be seen that (1.20) holds for all θ>Elogm0;i.e.,(1.18) holds.Indeed,by Theorem 1.8(a),(1.20) holds for θ∈(Elogm0,Λ′(∞)).For θ≥Λ′(∞),we have that Λ*(θ)=∞.By Markov’s inequality and Theorem 1.1,we have

    which means that (1.20) also holds for θ≥Λ′(∞).For lower deviations,noticing that Pk(Zn≤eθn)=0 for θ≤0 and Λ′(-∞)≥0 under the condition (H0),we have

    for θ≤0.As there is no practical sense,we do not care about the case in which θ≤0.In particular,if γk=0,then=Λ*(θ),so under the conditions of Theorem 1.8(b),we see that (1.19) holds in the case γk=0.

    2 Proof of Theorem 1.1

    We introduce a change of measure.Denote the distribution of ξ0by τ0.Fix t∈R and de fine a new distributionas

    where m (x)=E[X0|ξ0=x]=.Consider the new BPIRE whose environment distribution is τ(t)=instead of τ=.The corresponding probability and expectation are denoted by P(t)=Pξ?τ(t),and E(t),respectively.

    To prove Theorem 1.1,we need a decomposition of the family tree.Assume that the whole family tree begins with initial ancestor particle k of generation 0,denoted by ?1,···,?k.For i∈{1,2,···,k},the ancestor particle ?iproducesnumber of progeny particles of generation 1,denoted by ?i1,?i2,···,,where=X0,i.At the same time,Y0immigrants join the family,denoted by 001,002,···,00Y0.All the new born particles and all the new immigrants form the first generation of the family.In general,the i-th particle of generation n,say u,produces Nuoffspring of generation n+1,denoted by u1,u2,···,uNu,where Nu=Xn,i;the new immigrants of generation n+1 are denoted by 0n1,0n2,···,0nYn.For a particle u,we denote bythe number of the n-th generation descendants originating from u.Let T be the shift operator that Tnξ=(ξn,ξn+1,···) if ξ=(ξ0,ξ1,···).If the environment is ξ and the particle u is of generation l,it is clear that the processforms a BPRE originating from a single initial particle with the random environment Tlξ,and.According to different origins,the population Zncan be decomposed as

    Proof of Theorem 1.1For the assertion (a),since p>1,notice that by (1.1) and by Jensen’s inequality,

    which implies that Ck,p≥kp.On the other hand,using the change of measure,we see that

    Now we consider the assertion (b).For the lower bound,we have

    3 Upper Bound for Harmonic Moments

    In this section,we shall show an upper bound for harmonic momentsfor r>0,which is useful for the proofs of Theorems 1.2 to 1.8.

    Lemma 3.1Let l≥1 be an integer.For different positive numbers α1,···,αl,set

    in which s1,···,sl∈{0,1,2,···}.Then there exists C (α1,···,αl)∈(0,∞) such that

    where α(l)=max{α1,···,αl}.

    ProofWe will prove the conclusion by induction on l.The conclusion is clearly valid when l=1.Now supposing that the conclusion is true for l=m for some m≥1,we shall prove that the conclusion is still valid for l=m+1.Due to the inductive hypothesis,there exists C (α1,···,αm)∈(0,∞) such that

    Without loss of generality,we can think that α1<α2<···<αm+1.In this case,α(m+1)=αm+1.Notice that

    We have

    Thanks to (3.2),we derive that

    Following arguments similar to the proof of[20,Theorem 1.4](by considering k initial ancestors instead of one),we can deduce the lemma below,which regards the critical value for the existence of the harmonic moments of the limitof BPRE originating from k initial ancestors.

    Lemma 3.2Assume (H0),(H1) and (H2).Let r>0.Then<∞if and only if<1.

    With the help of Lemmas 3.1 and 3.2,inspired by the method used in[17],we obtain the following lemma,which reveals that=O (an(k,r)) as n tends to in finity:

    Lemma 3.3Assume (H0),(H1) and (H2).If γk>0,then

    ProofFix k and r.Take an integer l≥0 large enough such that<cr,and then fix this l.Set bn(i)=.By the Markov property,it can be seen that for every integer 0≤i≤k+l,

    For An,noticing that the sequence (γk) is strictly decreasing,by Lemma 3.1 we obtain that

    4 Proof of Theorem 1.2

    Based on the upper bound offor r>0(see Lemma 3.3),in this section we give the proof of Theorem 1.2 and use Theorem 1.2 to prove Corollary 1.4.

    Proof of Theorem 1.2We first give the proof of the assertion (a).By the total probability formula and the Markov property,for j≥k,

    In other words,Qk(1)=∞,which means that the radius of convergence is ρ≤1.In order to prove ρ=1,we need to show that the series Qk(t) converges when|t|<1.For|t|<1,it is clear that|t|j≤j-rif j is large enough.Therefore,we know the convergence of Qk(t)=directly from the convergence of the series. □

    Proof of Corollary 1.4Denoteand A (j,ε)=.Applying the total probability formula,we obtain that

    By the formula (1.9) in Theorem 1.2(a) and the monotone convergence theorem,we have that

    Set Ck(ε)=.We shall prove that there exists C (r,ε)∈(0,∞) such that A (j,ε)≤C (r,ε) j-rfor all j,which implies that Ck(ε)<∞,by Theorem 1.2(c).It is easy to see that

    For the first term on the right hand side of (4.5),by Markov’s inequality,

    For the second term on the right hand side of (4.5),setting α=max{2r,r+1},by Markov’s inequality again,we get that

    By a consequence of the Marcinkiewicz-Zygmund inequality[29,Lemma 1.4],

    where Bα=2min{k1/2:k∈N,k≥α/2}is a constant depending only on α.Thus we have

    Combining (4.6) and (4.7) with (4.5),we see that A (j,ε)≤C (r,ε) j-rfor all j,where C (r,ε)=∈(0,∞). □

    5 Proof of Theorem 1.5

    In this section,we give the proof of Theorem 1.5.In Lemma 3.3,we have found an upper bound forfor r>0.In order to obtain the lower bound,we need the non-degeneracy of the limit of the submartingale Wn.

    Lemma 5.1Assume (H0).If Elog+Y0<∞and EX0log+X0<∞,then for any r>0,under the probability P(-r),Wnconverges a.s.to a limit W∈(0,∞),so that>0 for all k≥1 and s>0.

    ProofThe assumption (H0) implies that m0>1 with positive probability,so we have that

    Noticing (5.1) and that

    by[38,Theorem 3.2]we see that under the probability P(-r),Wnconverges a.s.to a limit W∈[0,∞).In addition,noticing (5.1) and that

    we deduce that under the probability P(-r),>0 a.s.according to the classic non-degenerate condition of BPRE (cf.[3]).As W≥,we have W>0 a.s.The proof is complete. □

    Proof of Theorem 1.5We first prove the assertion (a).For r>rk,we have an(k,r)=.By the Markov property,we can get that,which means that the sequenceis increasing.Thus,we have the limit

    By Theorem 1.2 and the monotone convergence theorem,

    Meanwhile,we can calculate that

    Combining (5.2) and (5.3) yields (1.12).

    We next prove the assertion (b).Let us first consider the case where r=rk.We have that γk=crand an(k,r)=.By Lemma 3.3,we see that

    For the inferior limit,since=1 and pkk=γk∈(0,1),there exists j>k such that pkj>0.By the Markov property,

    Using (5.5),and iterating,we obtain

    Thus

    Combining (5.4) and (5.6) leads to (1.13) for r=rk.It remains to deal with the case where r<rk.In this case,we have an(k,r)=.For the inferior limit of (1.13),by Lemma 5.1 and Fatou’s lemma,we see that

    The superior limit of (1.13) we distinguish into two cases:(i)γk>0;(ii)γk=0.For case (i),the superior limit is given by Lemma 3.3.For case (ii),we know from γk=0 that for any i,γi=0.By the Markov property,we have

    6 Proof of Theorem 1.8

    In this section,we focus on large deviations of logZn.For the lower deviations Pk(Zn≤eθn),we will show upper and lower bounds,respectively,in the two propositions below.

    Proposition 6.1Assume (H0),(H1) and (H2).Then,for θ<Elogm0,

    ProofBy Markov’s inequality,for s>0,

    Letting n tend to infinity and using (1.16),we get

    Notice that (6.1) holds for all s>0.Thus

    We calculate that

    Proposition 6.2Assume (H0) and (H1).If Elog+Y0<∞,then,for θ>0,

    ProofWe first prove that for all θ,

    Under (H0) and (H1),the function Λ′(t) is continuous and increasing everywhere.If θ≤Λ′(-∞) or θ≥Λ′(∞),then Λ*(θ)=∞and (6.4) holds naturally.Let θ∈(Λ′(-∞),Λ′(∞)).Then there exists tθsuch that Λ′(tθ)=θ.With the help of the change of measure,for ε>0 and η>0,

    Now let us prove (6.3).If γk=0,then=Λ*(θ),so (6.3) holds from (6.4).We next consider the case γk>0.Taking t∈[0,1),by the Markov property,we have

    Proof of Theorem 1.8The assertion (a) is derived from Theorem 1.1 and[21,Lemma 3.1](see also[29,Theorem 6.1]).For the assertion (b),the upper bound is from Proposition 6.1 and the lower bound is from Proposition 6.2. □

    Appendix

    In[18,Remark 2.4],the authors pointed out thatfor θ∈(0,Elogm0).Here,for the reader’s convenience,we prove this result in a different way,by a method of direct calculations.

    Lemma A.1Assume (H0) and (H1).For θ>0,

    ProofFor θ>0,denote gθ(s)=(s-1) logγk+.By setting s=1-t,we see that

    Noticing the fact that

    we calculate that

    猜你喜歡
    王晨
    區(qū)塊鏈技術(shù)嵌入下數(shù)字政府成本會計系統(tǒng)構(gòu)建
    Duality of Semi-infinite Programming via Augmented Lagrangian
    Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system?
    X線與CT在下肢骨關(guān)節(jié)骨折中的診斷價值分析
    穿梭武漢疫情“火線”
    民生周刊(2020年8期)2020-04-20 11:18:24
    Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redf ield approach*
    王晨
    寶藏(2018年1期)2018-04-18 07:39:20
    大學(xué)有機化學(xué)教學(xué)中學(xué)案的作用探討
    火車上蹭坐
    蹭座
    故事會(2015年11期)2015-05-14 15:24:30
    亚洲一码二码三码区别大吗| e午夜精品久久久久久久| 亚洲成av片中文字幕在线观看| 国产深夜福利视频在线观看| 咕卡用的链子| 久久久久国产一级毛片高清牌| 亚洲精品中文字幕一二三四区| 午夜91福利影院| 日本撒尿小便嘘嘘汇集6| 国产xxxxx性猛交| 50天的宝宝边吃奶边哭怎么回事| 国产精品自产拍在线观看55亚洲 | 99热只有精品国产| 美女视频免费永久观看网站| 国产日韩一区二区三区精品不卡| 亚洲五月天丁香| 久久中文看片网| 丝袜在线中文字幕| 国产精品久久久久成人av| 少妇的丰满在线观看| 精品国产一区二区三区久久久樱花| 黄色 视频免费看| av国产精品久久久久影院| 人人妻人人澡人人看| 女人久久www免费人成看片| av中文乱码字幕在线| 搡老熟女国产l中国老女人| 99热国产这里只有精品6| 日韩熟女老妇一区二区性免费视频| 国产高清视频在线播放一区| 国产精品永久免费网站| 欧美乱妇无乱码| 亚洲精品美女久久av网站| 亚洲精品在线美女| 正在播放国产对白刺激| 麻豆国产av国片精品| 国产免费现黄频在线看| 精品一区二区三卡| 精品国产亚洲在线| 夜夜躁狠狠躁天天躁| 大片电影免费在线观看免费| 黄色丝袜av网址大全| 丝袜人妻中文字幕| 午夜亚洲福利在线播放| 国产免费av片在线观看野外av| 国产一区二区三区视频了| 无限看片的www在线观看| 正在播放国产对白刺激| 99热网站在线观看| 天天操日日干夜夜撸| 男女床上黄色一级片免费看| 丝瓜视频免费看黄片| 97人妻天天添夜夜摸| 一级毛片女人18水好多| 免费久久久久久久精品成人欧美视频| 午夜精品在线福利| 久久久国产精品麻豆| 涩涩av久久男人的天堂| 国产免费男女视频| 操美女的视频在线观看| 久久精品国产亚洲av高清一级| 亚洲av成人av| 国产在线观看jvid| 手机成人av网站| 50天的宝宝边吃奶边哭怎么回事| 日韩一卡2卡3卡4卡2021年| 99精国产麻豆久久婷婷| 亚洲欧美色中文字幕在线| 色婷婷久久久亚洲欧美| 夜夜躁狠狠躁天天躁| svipshipincom国产片| 三级毛片av免费| 日韩大码丰满熟妇| 黄频高清免费视频| 日韩免费av在线播放| 高清欧美精品videossex| 怎么达到女性高潮| 高清av免费在线| 十八禁人妻一区二区| 男女下面插进去视频免费观看| 日本黄色日本黄色录像| 十八禁高潮呻吟视频| 又紧又爽又黄一区二区| 老司机深夜福利视频在线观看| 亚洲情色 制服丝袜| 精品国产一区二区久久| 一级,二级,三级黄色视频| 欧美日韩中文字幕国产精品一区二区三区 | 天堂动漫精品| 国产在线一区二区三区精| av电影中文网址| 91大片在线观看| 首页视频小说图片口味搜索| 中文字幕人妻熟女乱码| 国产精品.久久久| 99久久人妻综合| 在线十欧美十亚洲十日本专区| 国产精品秋霞免费鲁丝片| 美女高潮喷水抽搐中文字幕| 亚洲精品成人av观看孕妇| 窝窝影院91人妻| 欧美丝袜亚洲另类 | 动漫黄色视频在线观看| 91大片在线观看| 亚洲人成电影免费在线| 国产精品自产拍在线观看55亚洲 | 亚洲精品久久午夜乱码| 十八禁高潮呻吟视频| 9191精品国产免费久久| 日韩欧美在线二视频 | bbb黄色大片| 日韩人妻精品一区2区三区| 黄片小视频在线播放| 亚洲美女黄片视频| 亚洲av成人不卡在线观看播放网| 超碰97精品在线观看| 黑人巨大精品欧美一区二区mp4| 国产成人av激情在线播放| 高清在线国产一区| e午夜精品久久久久久久| 欧美人与性动交α欧美精品济南到| 精品免费久久久久久久清纯 | 51午夜福利影视在线观看| www.999成人在线观看| 精品一区二区三卡| 悠悠久久av| 美国免费a级毛片| 国产成人av激情在线播放| 国产男女内射视频| 18在线观看网站| 亚洲黑人精品在线| 美女高潮到喷水免费观看| 亚洲视频免费观看视频| 久久久久久久国产电影| 热99国产精品久久久久久7| 亚洲中文日韩欧美视频| 成熟少妇高潮喷水视频| 狂野欧美激情性xxxx| 狂野欧美激情性xxxx| 首页视频小说图片口味搜索| 久久久精品国产亚洲av高清涩受| 亚洲七黄色美女视频| 国产不卡av网站在线观看| 一级a爱视频在线免费观看| 久久青草综合色| 久久影院123| 久久ye,这里只有精品| 美女扒开内裤让男人捅视频| 午夜久久久在线观看| 欧美日韩亚洲国产一区二区在线观看 | 在线观看一区二区三区激情| 国产精品99久久99久久久不卡| 国产精品国产高清国产av | 97人妻天天添夜夜摸| 美国免费a级毛片| 欧美人与性动交α欧美软件| 日日爽夜夜爽网站| 一级毛片精品| 亚洲精品av麻豆狂野| 欧美一级毛片孕妇| 日韩人妻精品一区2区三区| 多毛熟女@视频| 脱女人内裤的视频| 久久精品国产亚洲av高清一级| 精品久久久久久电影网| xxx96com| 天堂动漫精品| 午夜福利在线观看吧| 久久久久久人人人人人| 久久国产精品人妻蜜桃| 久久久国产成人免费| 欧美黑人精品巨大| 丁香六月欧美| 亚洲九九香蕉| 两个人看的免费小视频| 国产亚洲欧美在线一区二区| 在线视频色国产色| 久久久久久免费高清国产稀缺| 91老司机精品| 国产精品偷伦视频观看了| 欧美黄色片欧美黄色片| 一区福利在线观看| www日本在线高清视频| 人妻丰满熟妇av一区二区三区 | 欧美黑人精品巨大| 999精品在线视频| 国产精品久久久久久人妻精品电影| 国产精品香港三级国产av潘金莲| 国产精品综合久久久久久久免费 | 午夜福利,免费看| 在线观看免费高清a一片| cao死你这个sao货| 欧美精品高潮呻吟av久久| 亚洲在线自拍视频| 国产亚洲欧美精品永久| 18禁观看日本| 女警被强在线播放| 男女下面插进去视频免费观看| 黄片小视频在线播放| 伊人久久大香线蕉亚洲五| av免费在线观看网站| 久久国产精品人妻蜜桃| 国产精品自产拍在线观看55亚洲 | 两性夫妻黄色片| videosex国产| 99国产极品粉嫩在线观看| 手机成人av网站| 国产成人av激情在线播放| 777米奇影视久久| 操美女的视频在线观看| 中亚洲国语对白在线视频| 91成人精品电影| 午夜日韩欧美国产| 法律面前人人平等表现在哪些方面| 免费观看a级毛片全部| 国产精品久久视频播放| 精品一品国产午夜福利视频| 午夜两性在线视频| 99久久99久久久精品蜜桃| 免费av中文字幕在线| 女人被狂操c到高潮| 国产成人av教育| 午夜精品在线福利| 99国产精品一区二区蜜桃av | 国产亚洲av高清不卡| 欧美日韩成人在线一区二区| videosex国产| 在线播放国产精品三级| 免费不卡黄色视频| 成在线人永久免费视频| 欧美黑人精品巨大| 久久狼人影院| 免费在线观看影片大全网站| 亚洲色图av天堂| 国产成人精品久久二区二区免费| 丰满迷人的少妇在线观看| 成人18禁在线播放| 婷婷丁香在线五月| 男人操女人黄网站| 最新的欧美精品一区二区| 国产成人精品久久二区二区91| 午夜福利免费观看在线| 1024香蕉在线观看| 亚洲国产看品久久| av线在线观看网站| 欧美成人午夜精品| 欧美精品啪啪一区二区三区| 久久天躁狠狠躁夜夜2o2o| 9色porny在线观看| 亚洲欧美一区二区三区久久| 亚洲avbb在线观看| 电影成人av| 少妇裸体淫交视频免费看高清 | 欧美乱码精品一区二区三区| 我的亚洲天堂| 久久草成人影院| 亚洲av成人av| 悠悠久久av| 淫妇啪啪啪对白视频| 国产av一区二区精品久久| 97人妻天天添夜夜摸| 天天躁日日躁夜夜躁夜夜| 免费在线观看视频国产中文字幕亚洲| 国内毛片毛片毛片毛片毛片| 成人18禁在线播放| 色综合欧美亚洲国产小说| 在线国产一区二区在线| 大片电影免费在线观看免费| 制服诱惑二区| 一二三四社区在线视频社区8| 夜夜爽天天搞| 国产在线观看jvid| 18禁观看日本| 国产视频一区二区在线看| 精品第一国产精品| 18禁裸乳无遮挡动漫免费视频| 18禁美女被吸乳视频| 亚洲av日韩精品久久久久久密| 久久久久久久国产电影| 亚洲成人手机| 欧美日韩国产mv在线观看视频| 色尼玛亚洲综合影院| 成人国语在线视频| 久久久久久亚洲精品国产蜜桃av| 午夜亚洲福利在线播放| 精品久久久久久,| 日韩一卡2卡3卡4卡2021年| 999久久久精品免费观看国产| 免费一级毛片在线播放高清视频 | 亚洲男人天堂网一区| 国产成人精品久久二区二区免费| av天堂久久9| 国产精品一区二区免费欧美| 亚洲人成77777在线视频| 亚洲精品国产色婷婷电影| 精品国内亚洲2022精品成人 | 欧美黑人欧美精品刺激| 亚洲精品在线观看二区| 欧美亚洲日本最大视频资源| 欧美日韩黄片免| 国产亚洲一区二区精品| 国产免费男女视频| 亚洲一区高清亚洲精品| 中文字幕人妻丝袜制服| 女性生殖器流出的白浆| 99在线人妻在线中文字幕 | 热99国产精品久久久久久7| 无限看片的www在线观看| netflix在线观看网站| 午夜91福利影院| 亚洲中文日韩欧美视频| 欧美日韩国产mv在线观看视频| 国产成人免费无遮挡视频| 久久 成人 亚洲| 国产高清videossex| av一本久久久久| 国产人伦9x9x在线观看| 国产国语露脸激情在线看| 国产精品偷伦视频观看了| 制服诱惑二区| 99riav亚洲国产免费| 一边摸一边抽搐一进一小说 | 伦理电影免费视频| 9色porny在线观看| 在线国产一区二区在线| 色综合婷婷激情| 欧美日韩亚洲国产一区二区在线观看 | 两个人看的免费小视频| 国产高清国产精品国产三级| 国产成人av激情在线播放| 在线观看免费高清a一片| 久久久久国产精品人妻aⅴ院 | 国产成人影院久久av| 国产亚洲精品久久久久5区| 欧美日本中文国产一区发布| 黄色视频不卡| 岛国毛片在线播放| 男女免费视频国产| 国产成人影院久久av| 中文字幕人妻丝袜制服| 悠悠久久av| 天天躁夜夜躁狠狠躁躁| 亚洲成人免费av在线播放| 成人av一区二区三区在线看| 一级毛片精品| 欧美人与性动交α欧美软件| 亚洲五月色婷婷综合| 国产成人欧美| 又紧又爽又黄一区二区| 黄色 视频免费看| 欧美日韩精品网址| 999久久久精品免费观看国产| 九色亚洲精品在线播放| 妹子高潮喷水视频| 黑人操中国人逼视频| 欧美久久黑人一区二区| 黑人欧美特级aaaaaa片| 黄色a级毛片大全视频| 男男h啪啪无遮挡| 久久国产亚洲av麻豆专区| 国产人伦9x9x在线观看| 法律面前人人平等表现在哪些方面| 日韩欧美在线二视频 | 韩国精品一区二区三区| 丝瓜视频免费看黄片| 无遮挡黄片免费观看| 人人妻,人人澡人人爽秒播| 新久久久久国产一级毛片| avwww免费| 欧美黄色片欧美黄色片| 亚洲精品成人av观看孕妇| 在线观看免费视频日本深夜| 老汉色∧v一级毛片| 日韩欧美国产一区二区入口| 亚洲国产精品sss在线观看 | 欧美日韩福利视频一区二区| 夜夜夜夜夜久久久久| 老司机午夜十八禁免费视频| 在线观看免费高清a一片| 性少妇av在线| 一级片'在线观看视频| 亚洲情色 制服丝袜| 人妻丰满熟妇av一区二区三区 | 一边摸一边抽搐一进一小说 | 国产精品久久视频播放| 成年人黄色毛片网站| 女性生殖器流出的白浆| 日本黄色视频三级网站网址 | x7x7x7水蜜桃| 99香蕉大伊视频| 久久性视频一级片| 狠狠狠狠99中文字幕| 日韩大码丰满熟妇| 日本vs欧美在线观看视频| 午夜成年电影在线免费观看| 亚洲情色 制服丝袜| 又黄又爽又免费观看的视频| 麻豆乱淫一区二区| 日韩成人在线观看一区二区三区| 男女下面插进去视频免费观看| 午夜老司机福利片| 久久人妻av系列| 亚洲精品av麻豆狂野| 色综合婷婷激情| 久久久精品区二区三区| 村上凉子中文字幕在线| 91麻豆精品激情在线观看国产 | 日韩免费av在线播放| 日韩欧美一区二区三区在线观看 | 动漫黄色视频在线观看| 亚洲av美国av| 中文字幕人妻丝袜制服| 一区二区三区精品91| 99久久国产精品久久久| 777米奇影视久久| 久久久久久久久免费视频了| 香蕉久久夜色| 精品国产亚洲在线| 在线观看www视频免费| 老熟妇乱子伦视频在线观看| 久久精品亚洲熟妇少妇任你| 亚洲欧美激情在线| 国产野战对白在线观看| 美女国产高潮福利片在线看| 久久久久久免费高清国产稀缺| 午夜影院日韩av| 18禁国产床啪视频网站| www.999成人在线观看| 视频区欧美日本亚洲| 在线观看午夜福利视频| 视频区欧美日本亚洲| 欧美精品人与动牲交sv欧美| 超色免费av| 首页视频小说图片口味搜索| 色综合婷婷激情| 久久婷婷成人综合色麻豆| 国产高清视频在线播放一区| tube8黄色片| 91精品三级在线观看| 国产成人精品久久二区二区91| 亚洲精品自拍成人| 日韩欧美一区视频在线观看| 国产高清激情床上av| 美女高潮到喷水免费观看| 免费人成视频x8x8入口观看| 老司机影院毛片| 一级片免费观看大全| 9191精品国产免费久久| 国产深夜福利视频在线观看| av天堂久久9| 我的亚洲天堂| 一区二区三区激情视频| 国产精品香港三级国产av潘金莲| 国产精品九九99| 精品人妻在线不人妻| 国产精品久久久久久人妻精品电影| 国产精品影院久久| 欧美日韩成人在线一区二区| 91麻豆av在线| 在线观看舔阴道视频| 好男人电影高清在线观看| 免费在线观看完整版高清| 国产精品av久久久久免费| 中文字幕人妻熟女乱码| 久久午夜亚洲精品久久| 伦理电影免费视频| 色老头精品视频在线观看| 无遮挡黄片免费观看| av有码第一页| 18在线观看网站| 亚洲黑人精品在线| 中文字幕色久视频| av电影中文网址| 欧美不卡视频在线免费观看 | 看免费av毛片| 老司机午夜福利在线观看视频| 王馨瑶露胸无遮挡在线观看| 国产亚洲精品久久久久久毛片 | 大型黄色视频在线免费观看| 他把我摸到了高潮在线观看| 高清黄色对白视频在线免费看| 亚洲人成伊人成综合网2020| 啦啦啦视频在线资源免费观看| 国产亚洲av高清不卡| 国产成人系列免费观看| 亚洲av成人av| 中文欧美无线码| 老司机福利观看| 国产欧美日韩一区二区精品| 免费女性裸体啪啪无遮挡网站| 精品国产一区二区久久| 窝窝影院91人妻| 亚洲va日本ⅴa欧美va伊人久久| av线在线观看网站| 日本黄色视频三级网站网址 | 国产精品一区二区免费欧美| 日本黄色视频三级网站网址 | 超色免费av| 中文欧美无线码| 人成视频在线观看免费观看| 久久久久视频综合| 亚洲国产精品合色在线| av欧美777| 精品一品国产午夜福利视频| 每晚都被弄得嗷嗷叫到高潮| a级片在线免费高清观看视频| avwww免费| 午夜福利在线免费观看网站| 欧美在线一区亚洲| 国产精品久久视频播放| 国产精品 欧美亚洲| www.熟女人妻精品国产| 一级毛片女人18水好多| 狂野欧美激情性xxxx| 老司机深夜福利视频在线观看| 热99国产精品久久久久久7| 两性午夜刺激爽爽歪歪视频在线观看 | 青草久久国产| 午夜影院日韩av| 51午夜福利影视在线观看| 午夜精品在线福利| 久久久久国产一级毛片高清牌| 夫妻午夜视频| 亚洲av成人一区二区三| videos熟女内射| 久久99一区二区三区| 国产精品免费大片| 国产精品99久久99久久久不卡| 另类亚洲欧美激情| 青草久久国产| 大片电影免费在线观看免费| 国产成人av激情在线播放| 国产一区二区三区视频了| 男女床上黄色一级片免费看| 18在线观看网站| 91老司机精品| 午夜视频精品福利| 国产男女超爽视频在线观看| 亚洲一区高清亚洲精品| 国产亚洲精品一区二区www | 久久影院123| 一本大道久久a久久精品| 黑人巨大精品欧美一区二区mp4| 免费看a级黄色片| 大型av网站在线播放| 久久久久精品国产欧美久久久| 精品国产亚洲在线| 国产男女超爽视频在线观看| 色综合欧美亚洲国产小说| 欧美激情久久久久久爽电影 | 18禁裸乳无遮挡免费网站照片 | 欧美黑人精品巨大| 亚洲av日韩在线播放| 成人国语在线视频| 50天的宝宝边吃奶边哭怎么回事| ponron亚洲| 免费看a级黄色片| 久久精品aⅴ一区二区三区四区| 一级片免费观看大全| 中国美女看黄片| 久久久久久亚洲精品国产蜜桃av| 91在线观看av| www日本在线高清视频| 一区福利在线观看| 91成年电影在线观看| 国产成人免费观看mmmm| 成人永久免费在线观看视频| 亚洲国产毛片av蜜桃av| 成人永久免费在线观看视频| ponron亚洲| 亚洲少妇的诱惑av| 18禁黄网站禁片午夜丰满| 一进一出抽搐gif免费好疼 | 午夜福利影视在线免费观看| 精品国产一区二区三区四区第35| 亚洲av日韩在线播放| 欧美久久黑人一区二区| 欧美 日韩 精品 国产| 俄罗斯特黄特色一大片| 在线播放国产精品三级| 动漫黄色视频在线观看| 国产精品av久久久久免费| √禁漫天堂资源中文www| 国产精品亚洲一级av第二区| 午夜福利免费观看在线| 操美女的视频在线观看| 亚洲欧美精品综合一区二区三区| 亚洲精品粉嫩美女一区| 在线av久久热| 精品国产超薄肉色丝袜足j| 午夜亚洲福利在线播放| 欧美另类亚洲清纯唯美| 18禁观看日本| 桃红色精品国产亚洲av| 飞空精品影院首页| 精品福利永久在线观看| 黄色怎么调成土黄色| 婷婷精品国产亚洲av在线 | 一a级毛片在线观看| 两性夫妻黄色片| 在线国产一区二区在线| 99re在线观看精品视频| a级片在线免费高清观看视频| 18在线观看网站| 久久久久国产一级毛片高清牌| 亚洲国产精品合色在线| 亚洲美女黄片视频| 最新的欧美精品一区二区| 黄片播放在线免费| 无遮挡黄片免费观看| 男人的好看免费观看在线视频 | 制服诱惑二区| 大片电影免费在线观看免费| 日韩免费av在线播放| 欧美在线一区亚洲|