• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redf ield approach*

    2019-05-11 07:32:48XuinChen陳許敏andChenWang王晨
    Chinese Physics B 2019年5期
    關鍵詞:王晨

    Xu-M in Chen(陳許敏) and ChenWang(王晨)

    1DepartmentofPhysics,Hangzhou DianziUniversity,Hangzhou 310018,China

    2DepartmentofPhysics,Zhejiang NormalUniversity,Jinhua321004,China

    (Received 27December2018;revisedmanuscript received 7 February 2019;published online4 April2019)

    Keywords:quantum transport,heat conduction,phonons or vibrational states in low-dimensional structures

    1.Introduction

    Understanding themechanism of nonequilibrium quantum transport in low dimensional systems is a long-standing challenge,which has been extensively investigated from solid-state physics,[1]quantum thermodynamics,[2]molecular electronics[3]to quantum biology.[4]In particular,quantum thermal transport,where the particle and heat f lows are modulated by the temperature bias,has triggered the emergence of phonics.[5–7]Phonons have been successfully utilized to fabricate various functional devices,such as thermal diode,memory,and transistor.[8–11]In analogy to phonics,quantum heat transfermediated by the spin(e.g.,anharmonic molecule or qubit)has also been intensively analyzed in a sim ilar way,which leads to the realization of quantum spinthermal transistor,[12,13]spin heatengine,[14–16]and nonequilibrium spin network.[17,18]

    As a genericmodel to describe quantum heat transfer at the nanoscale,the nonequilibrium spin-bosonmodel(NESB)is composed of a two-level-system(TLS)that is coupled to two thermalbaths,[19]whichwasoriginally proposed to study the quantum dissipation.[20–22]Many approaches have been explored to investigate the underlying mechanism of heat transfer in the NESB.[23–34]Analytically,the Redf ield scheme is properly introduced to investigate the sequential process in theweak spin–bath interaction regime,where two thermal baths show additive contributions to the heat transfer.[14,35]However,the Redf ield approach breaks down in the strong spin–bath interaction regime,where themultiphonon excitations should be involved to characterize the nonequilibrium heat-exchange.Then,the nonequilibrium noninteracting blip approximation(NIBA)can be applied to study baths induced nonadditive and cooperative transfer processes.[23,36–39]However,bothmethodsare found tohave theirown limitations;i.e.,the Redf ield approach is unable to capture themulti-phonon processes in the strong coupling regime,and the heat current based on thenonequilibrium NIBA schemedoesnotshow linear proportion to the coupling strength in the weak coupling regime.[38]Recently,the nonequilibrium polaron-transformed Redf ield equation(NE-PTRE)was proposed to successfully unify the steady stateheatcurrent in the NESB.[32,40,41]However,an exploration of the NE-PTRE to studymore nonequilibrium spin systems is lacking butisurgently required for the spin-based quantum heat transfer.This paper aims to f ill this gap by applying the NE-PTRE to analyze the heat transfer in the collective-qubitmodel.

    Recently,a superradiantsignatureof quantum heat transfer has been discovered in the collective-qubit system with weak qubit–bath interaction.[42,43]The steady state superradiance describes the effect that qubits collectively exchange energy with thermal baths,resulting in the current scaling as J~N2s,with Nsthe number of qubits.In sharp contrast,the superradiantheat transfer vanishes in the strong coupling regime based on the nonequilibrium NIBA under the Marcusapproximation.[44]Hence,the steady state behavior of the collective-qubit system is signif icant distinct from each other in lim iting interaction regimes.It is consequently demanding to analyze the heat transfer feature from weak to strong couplings from aunif ied perspective.

    To address these problems,we extend the NE-PTRE combined with full counting statistics(FCS)[45,46]to investigate quantum heat transfer in the collective-qubit system.The counting-f ield dependent NE-PTRE successfully unif ies the currentand f luctuations(e.g.,heat current,currentnoise,skewness),with the incoherent picture in the weak quit–bath coupling lim itand themulti-phonon excited transfer picture in thestrong coupling lim it.Moreover,superradiantheattransfer is investigated at large temperaturebias,[42]and thedisappearance of the superradiant signature is explained by enlarging thenumberofqubitsbeyond theweak qubit–bath interaction.

    This paper is organized as follows.In Section 2,the collective-qubitmodel and the NE-PTRE are described.In Section 3,FCS isbrief ly introduced and the counting-f ield dependentNE-PTRE isderived,which enablesus to analyze the steady stateheattransfer.In Section4,theheatcurrent,current noise,and skewness are all found to hold the unif ied features by extending theapplication of theNE-PTRE.In Section 5,we study the transition of superradiantheat transfer from weak to strong couplings,and explain the vanishingmechanism of superradiantsignaturewith large number of qubits.In the f inal section,we presenta concise summary.

    2.Nonequilibrium collective-qubit system

    2.1.M odel

    The nonequilibrium energy transfer in the collectivequbitsystem,which interactswith two thermalbaths,ismodeled as?H=?Hs+∑u=L,R(?Hub+?Vu).Thecollective-qubitmodel isdescribed as where the collective angular-momentum operators are?Ja=(a=x,y,z)withbeing the Paulioperator of the i-th qubit,Nsis thenumberofqubits,εandΔare the Zeeman splitting energy and the coherent tunneling strength of the angularmomentum operator,respectively.In the lim itof Ns=1,the Ham iltonian in Eq.(1)is reduced to the sem inalnonequilibrium spin-bosonmodel.[19,35]The u-th thermalbath iscomposed ofnoninteracting bosons,shown aswherecreates(annihilates)one phonon with frequencyωk.The system–bath interaction isgiven by

    where gk,uis the coupling strength between the angularmomentum and the u-th thermal bath,and is characterized by the spectral function Gu(ω)=4π∑k|gk,u|2δ(ω-ωk).In this paper,we select the spectral function having the super-Ohm ic form Gu(ω)=παuω3/ω2cexp(-ω/ωc),whereαuis the coupling strength andωcis the cutoff frequency of the thermal baths.The super-Ohm ic spectrum has been extensively considered to investigate the quantum dissipative dynam ics and transport in molecular electronics,[47–49]solidstate devices,[50]and light-harvesting complexes.[51,52]

    To analyze the multi-phonon involved energy transfer processes,we apply the canonical transformation?U=exp[i?Jz∑u?Bu]to the Ham iltonian?H as?H′=?U??H?U=?H′s+[53,54]where the collective phononmomentum is?Bu=2i.A fter the transformation,

    themodif ied system Ham iltonian isgiven by where the factorη=〈cos?B〉isspecif ied as

    2.2.Nonequilibrium polaron-transformed Red f ield equation

    Weapply theNE-PTRE to investigate thedynam icsof the collective-qubitmodel.The NE-PTRE,which is one type of thequantum masterequation,hasbeen successfully applied to unify the nonequilibrium energy transfer in the sem inal spinbosonmodel.[32,41]It isknown that themodif ied system–bath interaction disappears under the thermal average(〈?V′u〉=0).Hence,itmay be safe to perturb〈?V′u〉up to the second order to obtain the quantum master equation.Under the Born approximation,the density operator of thewhole system can be decomposed as?ρ(t)=?ρs(t)??ρb,where?ρs(t)is thedensity operatorof the qubitsand?ρb=e-∑u?Hub/kBTu/Trb{e-∑u?Hub/kBTu}is the density operatorof the bathsatequilibrium.The quantum masterequation in theMarkovian lim it isobtained as

    where the correlation functionsare with the phonon propagator in u-th thermal bath Qu(τ)=4∑k|gk,u/ωk|2[cosωkτ(2nk,u+1)-isinωkτ].Furthermore,in the eigen-basis?H′s|φn〉=En|φn〉,the dynam ical equation can be re-expressed as

    where the transition rate isΓa(ω)=∫∞0dτCa(τ)e-iωτand the element isρnn′=〈φn|?ρs(t)|φn′〉.The rateΓx(y)(Enm)describes that even(odd)number phonons are involved in the transfer processbetween thestates|φn〉and|φm〉.

    In the weak qubit–bath coupling lim it,the heat transfer is dom inated by the sequential process andη≈1.Thus,the correlation function Cy(τ)is reduced to Cy(τ)≈Δ2[∑uQu(τ)],and Cx(τ)≈0 by ignoring the high-order correlations. Accordingly,the lowest order of the transition rateΓ(1)y(ω)includes the termΔ2(QL(ω)+QR(ω)),with Qv(ω)=∫dτe-iωτQv(τ).Moreover,allof the off-diagonal elements of the qubits density matrix approach zero at the steady state(not shown here,which is quite sim ilar to the resultin Fig.1).Considering thecommutating relation[?H′s,?Jz]=-iΔ?Jy,thequantum masterequation in Eq.(8)after long time evolution issimplif ied as

    which isidentical to thedynamicalequation based on theRedf ield scheme(see Appendix A for the details).

    In the strong qubit–bath interaction lim it,the coherent tunneling ofqubits in Eq.(3)isdramatically suppressed(η≈0),and thecorrelation factorη2e-∑uQu(τ)vanishes.However,the other factorη2e∑uQu(τ)is kept f inite,which contributes to the quantum heat transfer.Hence,the correlation functions in Eq.(7)are reduced to Cx(τ)=Cy(τ)=(ηΔ)2[exp∑uQu(τ)].Consequently,themasterequation in Eq.(8)on the localbasis{|φn〉}with(ε?Jz-ξ?J2z)|φn〉=(εn-ξn2)|φn〉is changed to

    3.Fullcounting statisticsof heat current

    3.1.Thegeneral theory

    Full counting statistics is a two-time projection protocol tomeasure the current and f luctuations.[45,46]For the energy transfer in themulti-terminal setup,thegenerating function is generally given by[55]

    whereχuis the counting-f ield parameter to count the energy f low into the u-th bath with the Ham iltonian ?Hu, ?Hu(t)= ?U??Hu?U with the propagator ?U=e-i?Ht,and ?ρtot(0)is the initial density matrix of the whole system. Moreover,considering the modif ied propagator ?U{χu}(t)= ei∑uχu?Hu/2?U(t)e-i∑uχu?Hu/2,it can be reexpressed as ?U{χu}(t)=exp(-i?H{χu}t),with ?H{χu}=ei∑uχu?Hu/2?H e-i∑uχu?Hu/2.Hence,the generating function is re-expressed as

    After the long-time evolution,the cumulantgenerating function isobtained as

    Therefore,the n-th cumulantof heat current f luctuations into the u-th bath isgiven by Specif ically,the lowest cumulant is the steady state heat current

    3.2.Counting-f ield dependent NE-PTRE

    To count the heat f low into the right-hand thermal bath,we introduce the counting f ield parameters as?Hχ=ei?HRbχ/2?H e-i?HRbχ/2,[55]which results in

    where the system–bath interactionwith the counting f ield parameter isexpressed as

    withδR,R=1 andδL,R=0.Then,after the canonical transformation?H′χ=U?χ?HχUχwith transformation operator U=exp[i?Jz∑u?Bu(χ)]and themodif ied Hamiltonian isgiven by

    where the modif ied system–bath interaction with counting f ield parameter isgiven by

    By perturbing?V′u(χ)under the Born–Markov approximation,weobtain the second-orderquantum masterequation as where the correlation functionswith counting f ield parameter are In absence of the counting f ield parameter,the correlation functions are reduced to the standard version in Eq.(7).In the eigen-basis,the dynam ics of the density matrix elements can be specif ied as where the transition ratesare

    Ifwe reorganize the reduced densitymatrix of collectivequbit from thematrix form to the vector expression,the dynam icalequation in Eq.(21)isexpressed as where??(χ)is thesuperoperator to dom inate thesystem evolution.Then,the cumulantgenerating function at t-time isgiven by

    where|ρ(0)〉is the vector form of the initial system density matrix,and〈I|is the left-eigenvector of??as〈I|??=0,with the normalization relation〈I|ρχ=0(t)〉=1.Hence,heat current f luctuations at the steady state can be straightforwardly obtained by follow ing Eq.(14).4.Unif ied steady stateheat current

    Quantum heat transfer in the NESB has been successfully investigated based on the Redf ield and noninteractingblip approximation schemesin theweak and strongqubit–bath coupling lim its,respectively.However,the steady state heat currentwas found to be distinct from each other in a broad coupling regime.[38]Recently,the nonequilibrium polarontransformed Redf ield equation combined with full counting statisticswasproposed to unify theheatcurrentbetween these two lim iting approaches.[32,41]

    Here,we try to extend the counting-f ield dependent NE-PTRE to unify the heat transfer in the nonequilibrium collective-qubitmodel in Fig.1.At resonance(ε=0),we f irst analyze the steady state heat current in Figs.1(a)and 1(d).It clearly exhibits the turnover behavior,which unif ies the counterpartswithin theRedf ield and NIBAmethodsas the qubit–bath coupling strength approaches theweak and strong coupling lim its.Although we admit that to gain an analytical expression of theheatcurrentatarbitrary qubit–bath coupling is ratherdiff icult,itcan beobtained in lim iting regimes.Here,westudy theanalyticalexpression of thesteady stateheatcurrentwith Ns=2.Specif ically,in the weak interaction lim it,the heat current is analytically expressed as(see Eq.(A9)in Appendix A)

    J weak where the coeff icient

    which is linearly proportional to the qubit–bath coupling strength.The current in Eq.(25)is the special case of the general expression in Eq.(A9).It is found in Fig.1(a)that Jweakbecomes identical to the counterpart from NE-PTRE in theweak coupling lim it(e.g.,α=0.001).Moreover,itshould be noted that the current Jweakin Eq.(25)with Ns=2 has a sim ilar expression to the case in the standard NESB(Ns=1)in theweak coupling lim it,which are both proportional to the thermodynam ic bias(i.e.,J∝[nL(Δ)-nR(Δ)]).[23]

    While in the strong coupling limit,the dynamical equation in Eq.(19)with thenumberof qubits Ns=2 is reduced to the kinetic form(see Eq.(B4)in Appendix B)

    where the population is Pχn=〈1,n|?ρχ(t)|1,n〉with?Jz|1,n〉=n|1,n〉.The transition rate is

    Fig.1.Comparisons of steady state current f luctuations based on the NE-PTRE with counterpartswithin the Redf ield and NIBA schemes:(a)–(c)at resonance(ε=0)and(d)–(f)atoff-resonance(ε=1),by tuning qubit–bath coupling strengthα.Theother parametersare N s=2,Δ=1,ωc=6,T L=1.5,and T R=0.5.

    -1/2=1),then the rateκ±n(χ)is reduced to the standard NESB result(see Eq.(20)in Ref.[36]).Thus,the cumulantgenerating function atsteady state isgiven by

    whereκ±-1(χ)=κ?0(χ).Consequently,the heat current is given by

    where the f irst(second)term describes the process thatas the qubits release(gain)energyξ,the right-hand bath absorbs(emits)phonon energyωand the left-hand bath obtains(provides)the remaining energyξ-ω.Jstrongshows a similar structurewith the counterpart in the standard NESB,which is jointly contributed by the two thermalbaths.[36]Moreover,the expression of Jstrongcaptures the turnover feature of heat current in Figs.1(a)and 1(d)as shown by the dashed-blue lines with squares.Hence,we conclude that the steady state heat f lux is clearly unif ied in the nonequilibrium collective-qubit model.

    Next,we analyze the zero-frequency current noise and skewness in Figs.1(b),1(c),1(e),and 1(f).It is interesting to f ind that the results based on the NE-PTRE also perfectly bridge the limiting counterparts in theweak and strong coupling regimes,which may demonstrate the unif ication of current f luctuations in the extended spin-boson systems(e.g.,collective-qubit model). Moreover,the turnover behavior which is presented in the current is unraveled for the second and the third cumulants.A lthough notshown here,higher cumulantsof current f luctuationsalso show suchunif ied features.We should note that all above results are valid both at resonant and off-resonant conditions,which clearly exhibits that full counting statisticsof the heat current isgenerally unif ied within the NE-PTRE scheme.

    5.Suppression of superradiantheat transfer

    The superradiant effect,which describes that the system exhibits collective response under themodulation of the external f ield or thermalbath,hasbeen extensively investigated in quantum phase transition,[56,57]criticalheatengine,[58]and quantum transport.[42,43]In particular,quantum heat transfer in the nonequilibrium large-spin system shows the superradiant signature in the weak spin–bath coupling regime.[42]Specif ically,undera large temperaturebias(e.g.,TL?TR),the steady stateheatcurrent isexpressed as

    which follows the condition x/(1-x)?Ns.Itshould benoted thatequation(30)isa special case of the current in Eq.(A9)in Appendix A.However,with thestrong spin–bath interaction based on theNIBA schemecombinedwith theMarcusapproximation,itis found thatsuch superradianttransfervanishes.[44]Hence,we apply the NE-PTRE to clarify this apparent paradox.

    We f irst study the effect of the temperature biasΔT on the heat current in Fig.2(a)with spin-bath coupling strength α=0.01?{Δ,ωc},which is considered weak for the seminal spin-boson model(η≈1).It is found that the current shows monotonic enhancement by increasing bothΔT and Ns.Moreover,at large temperature bias(e.g.,TL=8 and TR=0.4),thecurrentbecomesnearly stablewith largenumber ofqubits,which isclearly exhibited in Fig.2(b)(e.g.,Ns=32).While for relatively small number of qubits(e.g.,Ns<20)in Fig.2(b),the superradiantsignature of heatcurrent isnumerically obtained as J∝Nγswithγ=2.0±0.1(forboth resonance and off-resonance).Thus,it is known that the expression of superradiantheatcurrent in Eq.(30)becomes invalid at large N s.

    Fig.2.Behaviors of steady state heat current J by tuning:(a)temperature biasΔT=T L-T R with T R=0.4,ε=0,andα=0.01;(b)the number of qubits N s with T L=8,T R=0.4,andα=0.01;(c)qubit–bath coupling strengthαwith T L=8,T R=0.4,andε=0.The other parametersareΔ=1 andωc=6.

    To exploit the origin,we plot the current as a function of the qubit–bath coupling strengthαfor different Nswith TL=8,TR=0.4,andε=0,as shown in Fig.2(c).It is shown that for small Ns(e.g.,Ns=8),the heat f lux exhibits approximately linear increasing behavior in theweak coupling regime(e.g.,α≤0.01).The heat f lux demonstrates the sequential transfer process,where a superradiantheat transfer is accordingly observed,which could be described by the Redf ield scheme.While the current shows distinct behavior for large Nsfrom that for small Nsin the same coupling regime.Forexample,thecurrent for Ns=32with thecoupling strength α=0.01 has already surpassed the turnover pointof the current,while the current for Ns=8 is almost linearly dependent on the coupling strength in the same coupling regime.It is known that the appearance of the turnover point of the current is the signif icant signature of themulti-phonons involved coherent transfer,as exploited in the nonequilibrium spin-bosonmodel.[32]Sinceηisnearly equal to 1 in these two casesand theheatcurrentshowsdifferent features in the same coupling regime,we conclude thatη≈1 doesnotnecessarily correspond to theweak coupling condition.Furthermore,the behavior of the current should be properly described by the NIBA scheme,which resultsin theabsenceofnonequilibrium superradiant signature.Therefore,the effect of superradiant heat transfer in the collective-qubitmodelw illbedramatically suppressed in the large Nsregime;i.e.it is an Ns-dependent phenomenon.

    6.Conclusion

    In summary,we investigate the quantum heat transfer in the nonequilibrium collective-qubit system by applying the nonequilibrium polaron-transformed Redf ield equation combined with full counting statistics.We f irstanalyze the effect ofqubit–bath coupling on the steady stateheatcurrent,which results in a turnoverbehaviorand issimilar to the counterpart in the nonequilibrium spin-boson model.Interestingly,the currentconsistently bridges the results in theweak and strong coupling lim its,which clearly demonstrates that the heat currentcan beunif ied in themulti-qubitscase.A lthough itshould beadmitted that thegeneralsolution of theheatcurrent isdiff icult to obtain even for Ns=2,the analyticalexpression can be still obtained in the weak and strong couplings based on the Redf ield(Eq.(25))and NIBA(Eq.(29))schemes,respectively.Moreover,the current noise and skewness are shown to be unif ied accordingly.A lthough not shown in the present paper,the unif ication of higher cumulants of heat current can also be observed.Therefore,we propose that full counting statisticsofheatcurrentatsteady state can beunif ied by using the NE-PTRE.

    Next,we study the superradiantheat transfer in the high temperature bias regime.It is found thatwith small number of qubits,the heat transfer is described by the sequential process under the Redf ield scheme.The heat current exhibitsan apparent signature of the steady state superradiance.While with the large number of qubits,the superradiant signature of the heat f lux vanishes.The corresponding physical process is described by the NIBA scheme becausemulti-phonons should be involved to contribute to the heat transfer.Therefore,we conclude that the superradiant transfer in the collective-qubitmodel isa size-dependentphenomenon,and itw illbe strongly suppressed by increasing the qubitsnumber.

    We believe that based on the counting-f ield dependent NE-PTRE,theunif ied featureofsteady stateheat transfermay be realized in amuch bigger fam ily of the quantum nonequilibrium system,such asaquantum spin-boson network.[18]

    Appendix A:Quantum thermal transfer within the Redf ield scheme

    The nonequilibrium collective-qubitsystem is expressed as?H=?Hs+∑v=L,R(?Hvb+?Vv),where the qubits Hamiltonian isgiven by the v-th thermal bath is,and the system–bath interaction is

    To count the energy f low into the right bath including the full counting statistics,the total Hamiltonian is changed to ?H(χ)=eiχ?HRb/2?H e-iχ?HRb/2=?Hs+∑v(?Hvb+?Vχv),where

    Considering theweak qubit–bath interaction,we directly perturb the system–bath interaction in Eq.(A3)up to the second order.Then,based on the Born–Markov approximation,the Redf ield equation isgiven by

    d?ρχ(t)d t =-i[?Hs,?ρχ(t)] (A4)-∑v∞0dτTrb{[?Vχv,[?Vχv(-τ),?ρχ(t)??ρb]χ]χ},with the commutating relation[?Aχ,?Bχ]χ=?Aχ?Bχ-?Bχ?A-χ.In the eigen-basis{|φn〉}with?Hs|φn〉=En|φn〉,the dynam ical equation of the system densitymatrix element isgiven by where the counting-f ield dependent density matrix element is,the transition rate is Gv(ω)=,and theBose–Einstein distribution function is nv(ω)=1/[exp(ω/kBTv)-1].

    At resonance(ε=0),it is found that the off-diagonalelements of the qubits system in eigen-space vanish at steady state in Figs.A1(a)–A1(c),in theabsenceof the counting f ield(χ=0).Hence,the steady state equation isgiven by

    Fig.A1.Dynam icsof theoff-diagonalelementsof the collectivequbits system Pij=〈φi|?ρs(t→∞)|φj〉(a)–(c)at resonance(ε=0)and(d)–(f)atoff-resonance(ε=1),with theeigen-solution?H s|φi〉=Ei|φi〉.The initialstate isgiven by?ρs(0)=|1,-1〉〈1,-1|.Theother parametersare N s=2,Δ=1,α=0.005,ωc=6,T L=1.5,and T R=0.5.

    Actually,the system Hamiltonian at resonance is?Hs=Δ?Jx,with the eigen-solution ?Hs|j,m〉x=Δm|j,m〉x(m=-Ns/2,-Ns/2+1,...,Ns/2).Thus,the coeff icient Jnmzcan be specif ied as-m(m±1).Consequently,the steady state population can be analytically obtained as

    with the coeff icient

    Finally,the steady stateheat f lux isgiven by

    where the current factor isexpressed as

    While at the off-resonantcondition(e.g.,ε=1),the offdiagonal elements after long time evolution also vanish,as shown in Figs.A1(d)–A1(f).Hence,the heatcurrent into the right thermalbath isgenerally expressed as

    Appendix B:Quantum thermal transfer within the NIBA schemeto obtain themodif ied Hamiltonian of thewholesystem?H′χ=?U?χ?Hχ?Uχas

    Themodif ied system Hamiltonian isgiven by where the renormalization energy isξ=The eigen-solution isgiven bywith En=εn-ξn2and n=-Ns/2,...,Ns/2.Themodif ied system–bath interaction isgiven by Hence,by perturbing?Vχ

    sbup to thesecond order,weobtain the quantum kinetic equation

    where the counting-f ield dependent population element is Pχn=〈φn|?ρχ(t)|φn〉and themodif ied transition ratesare

    where the coeff icient is j+n=Ns/2(Ns/2+1)-n(n+1),the energy gapΔn=En+1-En=ε-ξ(2n+1),and the correlation function in the frequency domain is with the renormalization factorηv=and the correlation phase In the absence of the counting-f ield parameter(χ=0),this modif ied kinetic equation is identical to the dynam ical equation in Eq.(10).Hence,the heat currentatsteady state isobtained as

    where the steady state population is given by Pnss=〈Ns/2,n|ρ?s(t→∞)|Ns/2,n〉.

    猜你喜歡
    王晨
    區(qū)塊鏈技術嵌入下數字政府成本會計系統構建
    MOMENTS AND LARGE DEVIATIONS FOR SUPERCRITICAL BRANCHING PROCESSES WITH IMMIGRATION IN RANDOM ENVIRONMENTS*
    Duality of Semi-infinite Programming via Augmented Lagrangian
    應用數學(2021年4期)2021-10-20 03:26:18
    Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system?
    X線與CT在下肢骨關節(jié)骨折中的診斷價值分析
    穿梭武漢疫情“火線”
    民生周刊(2020年8期)2020-04-20 11:18:24
    王晨
    寶藏(2018年1期)2018-04-18 07:39:20
    大學有機化學教學中學案的作用探討
    火車上蹭坐
    蹭座
    故事會(2015年11期)2015-05-14 15:24:30
    一区二区三区国产精品乱码| av天堂久久9| 欧美午夜高清在线| 亚洲全国av大片| 动漫黄色视频在线观看| 丁香六月欧美| 欧美国产日韩亚洲一区| 69精品国产乱码久久久| 一区二区三区精品91| 欧美国产日韩亚洲一区| 欧美日韩福利视频一区二区| 亚洲av成人不卡在线观看播放网| 黑人欧美特级aaaaaa片| 久99久视频精品免费| 1024视频免费在线观看| 亚洲黑人精品在线| 90打野战视频偷拍视频| 国产91精品成人一区二区三区| 精品电影一区二区在线| 黑人巨大精品欧美一区二区mp4| 看黄色毛片网站| 国内精品久久久久精免费| 首页视频小说图片口味搜索| 在线观看免费午夜福利视频| a在线观看视频网站| 人成视频在线观看免费观看| 午夜亚洲福利在线播放| 亚洲精品美女久久久久99蜜臀| 搡老岳熟女国产| 欧美一区二区精品小视频在线| 女人爽到高潮嗷嗷叫在线视频| 在线播放国产精品三级| 在线av久久热| 午夜精品久久久久久毛片777| 久久久久久久精品吃奶| 亚洲久久久国产精品| 村上凉子中文字幕在线| av天堂在线播放| 国产三级在线视频| 伊人久久大香线蕉亚洲五| 日韩中文字幕欧美一区二区| 成人国产综合亚洲| 国产亚洲精品一区二区www| 精品久久久久久久人妻蜜臀av | 亚洲一区高清亚洲精品| 亚洲一卡2卡3卡4卡5卡精品中文| 极品教师在线免费播放| av欧美777| 久久精品国产亚洲av香蕉五月| 国产精品久久久av美女十八| 日本五十路高清| 久久精品亚洲熟妇少妇任你| 亚洲 欧美一区二区三区| 欧美最黄视频在线播放免费| 麻豆一二三区av精品| 怎么达到女性高潮| 国产aⅴ精品一区二区三区波| 亚洲国产精品久久男人天堂| 久久影院123| 丁香六月欧美| 国产熟女xx| 成人永久免费在线观看视频| 女性被躁到高潮视频| 久久精品亚洲熟妇少妇任你| www.999成人在线观看| 久久狼人影院| 黄色女人牲交| 国产精品一区二区三区四区久久 | 韩国av一区二区三区四区| 99国产精品99久久久久| 又黄又粗又硬又大视频| 欧美性长视频在线观看| 欧美绝顶高潮抽搐喷水| 99国产精品一区二区三区| 国产亚洲精品一区二区www| 熟妇人妻久久中文字幕3abv| 亚洲国产精品合色在线| 美国免费a级毛片| 国内精品久久久久精免费| 精品国产乱子伦一区二区三区| 女人被狂操c到高潮| 亚洲成a人片在线一区二区| 精品久久蜜臀av无| 亚洲国产中文字幕在线视频| 两个人看的免费小视频| 国产精品电影一区二区三区| 亚洲国产欧美网| 成人国产综合亚洲| 在线观看www视频免费| 免费在线观看影片大全网站| 久久人人97超碰香蕉20202| 嫩草影视91久久| 久久人人精品亚洲av| 日本欧美视频一区| 国产主播在线观看一区二区| 国产精品免费一区二区三区在线| 亚洲欧美日韩无卡精品| 久久国产精品男人的天堂亚洲| 美女大奶头视频| 两个人免费观看高清视频| 巨乳人妻的诱惑在线观看| 少妇的丰满在线观看| 国产精品综合久久久久久久免费 | 免费观看人在逋| 欧美久久黑人一区二区| 97超级碰碰碰精品色视频在线观看| 国产一区二区三区在线臀色熟女| 天天躁狠狠躁夜夜躁狠狠躁| 一级黄色大片毛片| 亚洲 欧美 日韩 在线 免费| 女人被躁到高潮嗷嗷叫费观| 每晚都被弄得嗷嗷叫到高潮| 嫩草影视91久久| 国产在线观看jvid| 天天躁狠狠躁夜夜躁狠狠躁| 波多野结衣av一区二区av| 亚洲伊人色综图| 国产精品久久久久久亚洲av鲁大| 12—13女人毛片做爰片一| 少妇粗大呻吟视频| 欧美+亚洲+日韩+国产| 亚洲伊人色综图| 亚洲自拍偷在线| 丝袜美腿诱惑在线| 欧美黑人欧美精品刺激| 久久久久久大精品| 久久久精品欧美日韩精品| 亚洲全国av大片| 黑人巨大精品欧美一区二区蜜桃| 国产精品国产高清国产av| 欧美 亚洲 国产 日韩一| 超碰成人久久| 国产亚洲精品一区二区www| 国产精品一区二区精品视频观看| 精品不卡国产一区二区三区| 一进一出抽搐gif免费好疼| 久久国产乱子伦精品免费另类| 亚洲伊人色综图| 波多野结衣高清无吗| 无遮挡黄片免费观看| 国产又色又爽无遮挡免费看| 成人免费观看视频高清| 女生性感内裤真人,穿戴方法视频| 免费av毛片视频| АⅤ资源中文在线天堂| 国产一区二区三区在线臀色熟女| 免费高清在线观看日韩| 18禁美女被吸乳视频| 性色av乱码一区二区三区2| 久久亚洲真实| 中文字幕人妻熟女乱码| 性少妇av在线| svipshipincom国产片| 看免费av毛片| 99国产精品一区二区三区| 一二三四在线观看免费中文在| 国产精品永久免费网站| 色尼玛亚洲综合影院| 国产日韩一区二区三区精品不卡| 人妻丰满熟妇av一区二区三区| 一级毛片高清免费大全| 一本大道久久a久久精品| 97人妻天天添夜夜摸| 日本黄色视频三级网站网址| 乱人伦中国视频| 精品人妻在线不人妻| 琪琪午夜伦伦电影理论片6080| 精品免费久久久久久久清纯| 国产色视频综合| 国产成人一区二区三区免费视频网站| 亚洲欧美激情综合另类| 熟女少妇亚洲综合色aaa.| 黄色a级毛片大全视频| 欧美乱码精品一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲中文字幕日韩| 91字幕亚洲| 中文字幕人成人乱码亚洲影| 人人妻人人爽人人添夜夜欢视频| 一二三四社区在线视频社区8| 国产精品九九99| 丝袜美腿诱惑在线| 国产精华一区二区三区| av片东京热男人的天堂| 亚洲男人的天堂狠狠| 美国免费a级毛片| 精品国产超薄肉色丝袜足j| 日韩 欧美 亚洲 中文字幕| 国产蜜桃级精品一区二区三区| 国产一卡二卡三卡精品| 精品国产乱码久久久久久男人| 欧美成人一区二区免费高清观看 | 中亚洲国语对白在线视频| 老鸭窝网址在线观看| 精品国产一区二区久久| 国产成人啪精品午夜网站| 免费在线观看日本一区| 免费无遮挡裸体视频| 韩国精品一区二区三区| 精品一品国产午夜福利视频| 亚洲中文av在线| 最近最新中文字幕大全免费视频| 日韩av在线大香蕉| 欧美人与性动交α欧美精品济南到| 日本vs欧美在线观看视频| 久久国产精品人妻蜜桃| 香蕉久久夜色| 国产一级毛片七仙女欲春2 | 九色亚洲精品在线播放| 日本免费一区二区三区高清不卡 | 禁无遮挡网站| 久久草成人影院| 一级毛片女人18水好多| 国产亚洲精品久久久久久毛片| 欧美亚洲日本最大视频资源| 中文字幕人成人乱码亚洲影| 视频区欧美日本亚洲| 电影成人av| 成年女人毛片免费观看观看9| 丰满人妻熟妇乱又伦精品不卡| 亚洲中文日韩欧美视频| 亚洲精品一卡2卡三卡4卡5卡| 99久久久亚洲精品蜜臀av| 日本欧美视频一区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲最大成人中文| 日韩免费av在线播放| 男人舔女人下体高潮全视频| 亚洲狠狠婷婷综合久久图片| 丝袜人妻中文字幕| 成人国语在线视频| 国产成人免费无遮挡视频| 亚洲五月色婷婷综合| 女人高潮潮喷娇喘18禁视频| 亚洲第一青青草原| 国产精品久久久久久人妻精品电影| 亚洲人成电影免费在线| 久久国产精品人妻蜜桃| 精品福利观看| 色在线成人网| 国产一区二区三区在线臀色熟女| 国产成人影院久久av| 久久久国产成人精品二区| 99精品在免费线老司机午夜| 不卡av一区二区三区| 最好的美女福利视频网| 19禁男女啪啪无遮挡网站| 一级作爱视频免费观看| 久久人人爽av亚洲精品天堂| 无限看片的www在线观看| 日韩免费av在线播放| 黄片小视频在线播放| 满18在线观看网站| 国产麻豆成人av免费视频| 日韩大尺度精品在线看网址 | 国产高清有码在线观看视频 | 亚洲av电影不卡..在线观看| 看免费av毛片| 一边摸一边抽搐一进一出视频| 亚洲一区二区三区不卡视频| 又紧又爽又黄一区二区| 国产精品久久久av美女十八| 亚洲精品国产精品久久久不卡| 俄罗斯特黄特色一大片| 久99久视频精品免费| 亚洲色图综合在线观看| 激情视频va一区二区三区| 亚洲第一青青草原| 一级,二级,三级黄色视频| 成人国语在线视频| 99精品在免费线老司机午夜| 亚洲精品一卡2卡三卡4卡5卡| 日韩免费av在线播放| 中文字幕人妻丝袜一区二区| 国产成人影院久久av| www.精华液| 亚洲午夜精品一区,二区,三区| av天堂在线播放| 嫩草影院精品99| 女警被强在线播放| 精品久久久久久久人妻蜜臀av | 久久精品国产亚洲av香蕉五月| 久久人妻福利社区极品人妻图片| 久久午夜亚洲精品久久| 天堂影院成人在线观看| 国产精品1区2区在线观看.| 一a级毛片在线观看| 亚洲一码二码三码区别大吗| 两人在一起打扑克的视频| 免费一级毛片在线播放高清视频 | 91成年电影在线观看| 欧美日韩一级在线毛片| 国产成人av激情在线播放| 精品少妇一区二区三区视频日本电影| 亚洲伊人色综图| 90打野战视频偷拍视频| 欧美日韩福利视频一区二区| 国产成人av激情在线播放| 亚洲中文字幕一区二区三区有码在线看 | 黄片播放在线免费| 侵犯人妻中文字幕一二三四区| 神马国产精品三级电影在线观看 | 国产在线精品亚洲第一网站| 97人妻天天添夜夜摸| 国产xxxxx性猛交| 大型av网站在线播放| 亚洲avbb在线观看| 超碰成人久久| 99国产极品粉嫩在线观看| av有码第一页| 免费在线观看黄色视频的| 99精品在免费线老司机午夜| 欧美亚洲日本最大视频资源| 99精品欧美一区二区三区四区| 高清黄色对白视频在线免费看| 精品国产一区二区久久| 久久国产亚洲av麻豆专区| 伊人久久大香线蕉亚洲五| 天天添夜夜摸| 性欧美人与动物交配| 久久 成人 亚洲| 男人舔女人的私密视频| 国产一区二区激情短视频| 国产精品美女特级片免费视频播放器 | 亚洲国产欧美一区二区综合| 久久久久久亚洲精品国产蜜桃av| 成人精品一区二区免费| 亚洲精品在线观看二区| 久久中文字幕一级| x7x7x7水蜜桃| 中文字幕精品免费在线观看视频| 人人妻人人澡欧美一区二区 | 欧美久久黑人一区二区| 国产一级毛片七仙女欲春2 | 国产精品二区激情视频| 波多野结衣一区麻豆| 亚洲 欧美一区二区三区| 亚洲全国av大片| 成在线人永久免费视频| 老司机午夜福利在线观看视频| 国产亚洲精品av在线| 成人三级黄色视频| 亚洲欧美一区二区三区黑人| 亚洲男人的天堂狠狠| 侵犯人妻中文字幕一二三四区| 国产高清激情床上av| 1024视频免费在线观看| 怎么达到女性高潮| 婷婷精品国产亚洲av在线| 午夜亚洲福利在线播放| www.精华液| 动漫黄色视频在线观看| 久久香蕉国产精品| 成年女人毛片免费观看观看9| 国产激情欧美一区二区| 免费看a级黄色片| 亚洲五月天丁香| 午夜免费鲁丝| www.自偷自拍.com| 国产成人精品无人区| 我的亚洲天堂| 一区二区三区高清视频在线| 久久久久久久午夜电影| 十分钟在线观看高清视频www| 老司机深夜福利视频在线观看| 免费少妇av软件| 18美女黄网站色大片免费观看| 丰满人妻熟妇乱又伦精品不卡| 一边摸一边做爽爽视频免费| 99热只有精品国产| 好男人在线观看高清免费视频 | av中文乱码字幕在线| 十八禁网站免费在线| 中文字幕人妻熟女乱码| 看片在线看免费视频| 久久国产乱子伦精品免费另类| 免费看美女性在线毛片视频| 日本撒尿小便嘘嘘汇集6| 国产精品国产高清国产av| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 国产精品电影一区二区三区| 神马国产精品三级电影在线观看 | 淫妇啪啪啪对白视频| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 国产精品久久电影中文字幕| 欧美日韩黄片免| 国产成人精品在线电影| 成年女人毛片免费观看观看9| 一边摸一边抽搐一进一出视频| 日韩精品免费视频一区二区三区| 亚洲精华国产精华精| 久久人妻av系列| 日韩免费av在线播放| 黄色视频,在线免费观看| 91麻豆av在线| 老汉色∧v一级毛片| 一个人免费在线观看的高清视频| 亚洲欧美激情综合另类| 麻豆一二三区av精品| 亚洲欧美日韩无卡精品| 啪啪无遮挡十八禁网站| 50天的宝宝边吃奶边哭怎么回事| 亚洲电影在线观看av| 视频区欧美日本亚洲| 日韩欧美在线二视频| 久久婷婷成人综合色麻豆| 免费高清在线观看日韩| 熟女少妇亚洲综合色aaa.| 久久久久久免费高清国产稀缺| 亚洲熟妇熟女久久| 日本撒尿小便嘘嘘汇集6| 亚洲色图av天堂| 十八禁网站免费在线| 最新在线观看一区二区三区| 97人妻天天添夜夜摸| 日韩三级视频一区二区三区| 久久香蕉激情| 欧美日韩亚洲国产一区二区在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 视频区欧美日本亚洲| 久久这里只有精品19| 亚洲午夜精品一区,二区,三区| av欧美777| 午夜免费激情av| 久久 成人 亚洲| 日韩成人在线观看一区二区三区| 俄罗斯特黄特色一大片| 国产成人欧美在线观看| 一级a爱视频在线免费观看| 91精品三级在线观看| 国产麻豆69| 欧美精品啪啪一区二区三区| 一进一出好大好爽视频| 99精品久久久久人妻精品| 热re99久久国产66热| 国产不卡一卡二| 中亚洲国语对白在线视频| 在线播放国产精品三级| 丝袜在线中文字幕| 制服丝袜大香蕉在线| 国内久久婷婷六月综合欲色啪| 又紧又爽又黄一区二区| 淫秽高清视频在线观看| 欧美一级毛片孕妇| 777久久人妻少妇嫩草av网站| 岛国视频午夜一区免费看| 热99re8久久精品国产| 亚洲色图av天堂| 中文字幕人妻丝袜一区二区| 性少妇av在线| 搞女人的毛片| 国产私拍福利视频在线观看| 久久这里只有精品19| 亚洲va日本ⅴa欧美va伊人久久| 日韩精品免费视频一区二区三区| 国产亚洲av嫩草精品影院| 精品卡一卡二卡四卡免费| 一a级毛片在线观看| 给我免费播放毛片高清在线观看| 男男h啪啪无遮挡| 亚洲第一av免费看| a在线观看视频网站| 麻豆一二三区av精品| 天天躁狠狠躁夜夜躁狠狠躁| 日日干狠狠操夜夜爽| 婷婷丁香在线五月| 久久久久久久久中文| 在线观看舔阴道视频| 国语自产精品视频在线第100页| 国产精品99久久99久久久不卡| 亚洲成人精品中文字幕电影| 十八禁人妻一区二区| 黑人操中国人逼视频| 欧美一区二区精品小视频在线| 午夜福利一区二区在线看| 欧美人与性动交α欧美精品济南到| 国产精品野战在线观看| 国产在线观看jvid| 真人一进一出gif抽搐免费| 欧美激情久久久久久爽电影 | 老司机午夜福利在线观看视频| 免费在线观看视频国产中文字幕亚洲| 久久精品国产清高在天天线| 国产精品美女特级片免费视频播放器 | 人成视频在线观看免费观看| 人妻丰满熟妇av一区二区三区| 日韩成人在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 欧美黄色淫秽网站| 国产一级毛片七仙女欲春2 | 老汉色av国产亚洲站长工具| 校园春色视频在线观看| 乱人伦中国视频| 男人的好看免费观看在线视频 | 岛国视频午夜一区免费看| 老司机午夜福利在线观看视频| 精品少妇一区二区三区视频日本电影| 在线天堂中文资源库| √禁漫天堂资源中文www| 亚洲全国av大片| 中国美女看黄片| 又黄又粗又硬又大视频| 在线天堂中文资源库| 在线播放国产精品三级| 91成人精品电影| 一级作爱视频免费观看| 在线观看66精品国产| 男女之事视频高清在线观看| 可以在线观看毛片的网站| 久久中文看片网| 国产成人啪精品午夜网站| 国产精品久久久久久亚洲av鲁大| 夜夜爽天天搞| 韩国av一区二区三区四区| 亚洲av成人av| 亚洲欧洲精品一区二区精品久久久| 波多野结衣高清无吗| 午夜精品在线福利| av免费在线观看网站| 搡老妇女老女人老熟妇| 韩国av一区二区三区四区| 欧美激情极品国产一区二区三区| 国产亚洲欧美精品永久| 午夜福利高清视频| 欧美成狂野欧美在线观看| 亚洲五月色婷婷综合| 母亲3免费完整高清在线观看| 人妻丰满熟妇av一区二区三区| 美女午夜性视频免费| 性欧美人与动物交配| 亚洲专区中文字幕在线| 香蕉国产在线看| 国产精品国产高清国产av| 51午夜福利影视在线观看| 国产精品亚洲美女久久久| 免费高清在线观看日韩| 色综合婷婷激情| 日韩三级视频一区二区三区| 脱女人内裤的视频| 99精品欧美一区二区三区四区| e午夜精品久久久久久久| 嫩草影视91久久| 国产成人av教育| 国产欧美日韩一区二区三区在线| 99riav亚洲国产免费| 亚洲一区中文字幕在线| 满18在线观看网站| 免费在线观看视频国产中文字幕亚洲| 国产黄a三级三级三级人| 高潮久久久久久久久久久不卡| av在线播放免费不卡| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美日韩在线播放| 黄片大片在线免费观看| 一二三四在线观看免费中文在| 性色av乱码一区二区三区2| 搞女人的毛片| 午夜亚洲福利在线播放| 一本综合久久免费| 国产三级黄色录像| 窝窝影院91人妻| 免费高清视频大片| 黄片播放在线免费| 欧美老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 99re在线观看精品视频| 午夜福利成人在线免费观看| 久久国产乱子伦精品免费另类| 操美女的视频在线观看| 亚洲伊人色综图| 日本vs欧美在线观看视频| 99国产极品粉嫩在线观看| e午夜精品久久久久久久| 最好的美女福利视频网| 亚洲成国产人片在线观看| 美女免费视频网站| 精品午夜福利视频在线观看一区| 黑人巨大精品欧美一区二区蜜桃| 国产熟女午夜一区二区三区| 久久久久久人人人人人| 国产成人av教育| 亚洲av成人不卡在线观看播放网| 男人操女人黄网站| 动漫黄色视频在线观看| 制服诱惑二区| 欧美日韩黄片免| 18禁黄网站禁片午夜丰满| 男女午夜视频在线观看| 狂野欧美激情性xxxx| 日本 av在线| 最近最新中文字幕大全电影3 | 变态另类成人亚洲欧美熟女 | 欧美日本视频| 久久中文字幕一级| 欧美国产精品va在线观看不卡| 久久久精品欧美日韩精品| 亚洲自偷自拍图片 自拍| 两个人视频免费观看高清| 97人妻天天添夜夜摸| 欧美成人一区二区免费高清观看 | 亚洲中文字幕日韩| 欧美乱妇无乱码| 亚洲成人久久性| 99久久国产精品久久久| 村上凉子中文字幕在线| 极品人妻少妇av视频| 天天躁狠狠躁夜夜躁狠狠躁| 99久久综合精品五月天人人| 日韩欧美一区视频在线观看| 欧美大码av| 十八禁网站免费在线| 丁香六月欧美| 黄色视频,在线免费观看|