• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon

    2022-03-12 07:45:02XiaoKeLei雷曉軻BinChengLi李斌成QiMingSun孫啟明JingWang王靜ChunMingGao高椿明andYaFeiWang王亞非
    Chinese Physics B 2022年3期
    關(guān)鍵詞:王靜亞非李斌

    Xiao-Ke Lei(雷曉軻), Bin-Cheng Li(李斌成), Qi-Ming Sun(孫啟明),Jing Wang(王靜), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亞非)

    School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China

    Keywords: ultra-low energy ion implantation, differential nonlinear photocarrier radiometry, junction depth,electronic transport parameters

    1. Introduction

    As the fabrication of silicon CMOS devices develops toward the nanotechnology,the ultra-shallow source/drain(S/D)junction acting as an essential part of silicon CMOS devices is required to meet the requirements, specifically specking,abruptly steep doping profile and highly active doping concentration, further, both of which are confined within the top nanometers of substrate.[1,2]The processing and characterization of shallow junctions consequently face extreme challenges.[3,4]The technological process, usually adopted such a treatment as combining ultra-low energy ion implantation with rapid-thermal annealing treatment to achieve a well reliable reproducibility and the good control of implanted atoms,dosage and spatial distributions,is extensively used to form shallow junctions of ultra-shallow source/drain junctions(USJ)wafers.[5-7]The ion implantation with the precise control of junction depth and doping concentration is closely related to the scaling of source/drain(S/D)junctions.[1,8]Scaled junction processing should simultaneously accomplish two objectives: limiting the diffusion of impurities to maintain the thermal budget, and substantially activating the implantation atoms. For the boron implanted ultra-shallow junctions studied in this paper,it means that the group III acceptor B atoms should be placed on the lattice or substitution site in silicon target.The measurement techniques of electronic properties of ultra-shallow junctions continuously develop to keep up with the scaling of devices. The shallow junction characteristics depend strongly on implantation conditions such as species,energy, dose, and temperature, and the relevant ultra-low energy implantation techniques and processing conditions.[9,10]In the meantime,shallow junction characteristics also depend strongly on thermal annealing techniques.[11]The distribution of depth at which the ions eventually reside in silicon,the lattice damage induced by the ions and high energy recoils,and the relocation of doping atoms by diffusion during thermal annealing are all essential quantities in junction processing.[12,13]It is necessary to quantitatively analyze the formation and dissolution of defects in shallow junctions by analyzing the depth distribution of implanted atoms in silicon and the electronic parameters characterizing the electrical activity. Therefore,the real-time monitoring and precise controlling of processing parameters and the accurate evaluating the recrystallization and impurity activation are critical to the achievement of the device miniaturization and the control of demanded damage well during the ultra-shallow junction processing.[14]The real-time inspection analysis is one of the key steps for determining the final quality and structure of USJ during processing.

    In this paper, the differential nonlinear photocarrier radiometry(PCR)measurement is performed to investigate and characterize the electrical activity and junction depth for different ultra-low-energy ion implantations in silicon. Experimentally, four USJ samples with implantation energy of 0.5 keV, 1 keV, 2.5 keV, and 5 keV and one reference sample are measured by using PCR frequency scan(dependences of PCR amplitude and phase on modulation frequency)under 405-nm excitation at 44.5 mW.The raw PCR signal measured from the reference sample is utilized to normalize that from the implanted surface of the USJ wafers to obtain the differential amplitude and phase data which eliminate the instrumental frequency response(IFR)completely. The parameters of shallow junction are extracted via a multi-parameter estimation procedure. The correlation between differential PCR signal and implantation energy is explained by the effect of the implantation energy on the electronic properties and junction thickness of USJ wafers in detail. In addition,the depth profiles of boron atoms in silicon substrate under four different ultra-low implantation energy values are calculated by the SRIM program, and thus the thickness values of shallow junction with an electrical damage threshold (YED) of 5.3×1015cm-3are determined. The junction depth values determined by the two techniques are analyzed and discussed for the USJ wafers.

    2. Material and experiment

    2.1. Material process and SRIM measurement

    Four USJ wafers under test are selected from a batch of 100-oriented N-type c-Si samples, are implanted with boron ion under ultra-low energy.Compared with the heavy ions,the implanted boron ions transfer less energy to the target atoms and have a large scattering angle, thereby contributing to a small number of displaced atoms in silicon target. The movement direction of boron ions changes greatly, and the shallow layer has a large-damaged region with the serrated shape and the high non-overlapping damage density. A subsequent thermal annealing treatment for 1 s at a peak temperature of 1050°C is absolutely necessary to highly activate the dopants into effective electronic impurities and eliminate most of the surface lattice damages caused by low-energy ion implantation in silicon wafer, implying that the lifetime and mobility of minority carriers of shallow junction are recovered and its optical properties in visible and near infrared ranges are close to those of the crystalline silicon.[4]The implanted surfaces are all chemo-mechanically polished. The specimen processing conditions are summarized in Table 1. In addition,a nonimplanted and non-annealed (NINA) wafer are also prepared to be used as the reference sample for the differential measurement.

    Table 1. Processing parameters of USJ wafers under test.

    The stoppings and ranges of implanted impurities in silicon wafers with the different processing parameters such as implantation species, implantation energy,etc. are determined by a comprehensive SRIM program based on the Monte Carlo method resulting from its reliability and wide acceptance as an industry standard in modeling the ion trajectories in solid.[15-17]We carefully study the ion-implantationinduced shallow region on the upper surface of silicon wafer at different ultra-low implantation energy values. The typical impurity depth profile as shown in Fig. 1 highlights the boron atom density along the depth direction in silicon substrate. There is a notable feature for the ion depth profiles of the heavily doped silicon wafers with the fixed implantation dose: the bombarded B+atoms gradually penetrate into the silicon target, contributing to the ion depth profile expansion and reducing its peak with the implantation energy increasing. The peaks of depth profiles are located at 5.6 nm,7.7 nm,13.6 nm,and 23.1 nm for the implantation energies of 0.5 keV,1 keV,2.5 keV,and 5 keV,respectively.

    Fig.1. Typical ion depth profiles of boron-implanted USJ wafer at ultra-low implantation energy ranging from 0.5 keV to 5 keV.

    The B+atom concentration distributions with various implantation energy values are derived by multiplying the depth profile shown in Fig.1 by the implantation dose 1×1015cm-2and are shown in Fig.2.The basic definition of electrical damage threshold(YED)is used to significantly simplify the corresponding correlation between the degree of lattice damage of the implanted layer in silicon and its electrical properties by avoiding the use of the complicated theoretical model.[18]The implanted layer is generally composed of the region traversed by the implanted atoms and the region in which the atoms eventually reside,and its thickness is generally defined as the distance between the wafer surface and the internal intersection between the electrical damage threshold and the impurity concentration depth profile due to the much higher sensitivity of electronic properties to the activation degree of implanted atoms and crystalline damage as the much higher sensitivity of electronic properties to the activation degree of implanted atoms and crystalline damage.[19,20]According to the calculated electrical damage threshold(YED)of the boron-implanted silicon wafer with aYEDof 5.3×1015cm-3,[21,22]the determined thickness values of the shallow junction are listed in Table 1. The results indicate that the lower the implantation energy,the shallower the formed junction is.

    Fig.2. Depth-dependent implanted boron concentrations with four different implantation values at high implantation dose of 1×1015 cm-2.

    2.2. Differential nonlinear PCR measurements

    Room-temperature frequency-scanning measurements are conducted with a PCR measurement system. Wafers are excited via a 405-nm semiconductor laser with an output power of around 45 mW monitored by a power meter. The laser is periodically modulated by a function generator and then focuses onto the sample surface by a focusing lens. The small focus spot is employed due to the power output limitation of laser to obtain the PCR signal with enough high signal-to-noise ratio (SNR). The radius of beam tightly focused onto the sample surface, measured by a knife-edge approach, is approximately 35 μm. The periodic PCR signals are collected through a pair of off-axis paraboloidal mirrors and detected by an InGaAs photodetector whose spectral range of response spans from 700 nm to 1800 nm and the effective detection radius is approximately 55 μm,and then are demodulated by a lock-in amplifier and thus the resulting amplitude and phase data are outputted. The absorption coefficient of the crystalline silicon (c-Si) at 405-nm wavelength is set to be 1.02×107m-1, and the corresponding optical penetration depth is approximately 0.098 μm.[23]To investigate the effect of implantation energy on electronic properties and junction depth of USJ wafers,we perform the PCR frequency-scanning measurements for four different USJ wafers. An NINA wafer is used as the reference sample for the differential measurement.

    When the silicon wafers with different processing parameters(implantation dose,implantation energy,annealing temperature,etc.) are investigated,[24,25]it is conventionally assumed that the transport properties of the substrate layer of all implanted samples are the same as those of the reference sample from the same batch.In this work,the transport parameters of the substrate layers are obtained by fitting the frequencydependent PCR amplitude and phase measured from the reference sample to a single-layer nonlinear PCR model,and the corresponding fitted values of the carrier lifetimeτand the carrier diffusion coefficientDare 589.3 μs and 16.5 cm2/s,respectively. The scaling of the electrical properties and thickness value of the shallow junction in silicon is based on their correlation to the activation degree of implanted atoms and damage to the lattice in the ion implantation and thermally annealing process. In the fitting process, the electronic transport parameters of the boron-implanted shallow junction,i.e.,the minority carrier lifetimeτ1,the carrier diffusion coefficientD1, and the front surface recombination velocitys1as well as the thicknessL1of the shallow junction are set to be free variables. In addition, the rear surface recombination velocitys2is assumed to be 100 m/s.[26]Considering the influence of vignetting and defocusing,the effective detection radius of photodetector obtained by fitting the PCR data of the reference sample to the corresponding theoretical mode is used instead of the real radius (500 μm) which is much larger than the former.[27]

    3. Results and discussion

    The experimental differential PCR amplitude and phase data as well as the corresponding theoretical best fits are illustrated in Fig. 3 for all four boron-implanted USJ wafers.Good agreement between the experimental results and theoretical curves is obtained. As the implantation energy increases,the implantation damage is gradually aggravated and thus it is more difficult to recover in the annealing process. The thicker implantation layer and the higher electrical defect concentration hinder the radiation recombination and thus enhance the non-radiation recombination pathway. Therefore, the PCR amplitude and phase lag both decrease monotonically with the implantation energy increasing. This is mainly due to that the wider damage region with the implantation energy gives rise to the increase of its relative contribution weight in the total photogeneration unit.

    Fig. 3. Modulation frequency-dependent differential PCR amplitudes (a)and phases (b) at 405-nm excitation for four boron-implanted USJ wafers with different implantation energy values,with NINA wafer acting as a reference sample, and symbols and solid lines representing experimental data and the corresponding best fits,respectively.

    Figure 3 shows that the frequency behavior of the differential PCR signal can be broken into three regions in the entire energy range studied. The differential amplitudes are approximately 1 at the low frequency end that exhibits independent behavior of the modulation frequency as shown in Fig. 3(a).As the frequency increases to higher than 1 kHz, the amplitude values decrease rapidly and come to minimum values at a frequency range of ca. 60 kHz-110 kHz, and then start to increase at higher frequencies. Similarly, the phase lags are approximately 0 at lower modulated frequencies and start to increase slightly at intermediate frequency end. However,the modulation frequency is higher than about 10 kHz, the opposite monotonic behavior of phase lag appears. From this figure, it is evident that as the implantation energy increases,the position corresponding with the minimum amplitude value moves toward the low frequencies.

    It is noted from Fig.3 that the energy dependence of PCR signal exhibits an obvious monotonic characteristic within the medium and high frequency range.This is a result of the larger carrier-wave contribution weight generated in shallow junction in the overall PCR signal due to the shorter carrier-wave diffusion length at higher frequency. Experimentally it is found that,with thought for both PCR phase and amplitude,the most sensitive frequency range derived from these figures is about 10 kHz-220 kHz.

    As is well known that the structural,electronic,and optical properties of the surface and sub-surface regions for silicon wafers are greatly affected by the ion implantation and thermal annealing processing. The effect of energy on PCR amplitude and phase lag can be explained through the electronic transport characteristics and depth value of the shallow junction varying monotonically with the implantation energy. The differential nonlinear PCR model is utilized in the multi-parameter fitting. In Table 3 are summarized the best-fitted results and mean square variances extracted from the best-fitting procedures presented in Fig.3. The electronic parameters related to the carrier density wave such as minority carrier lifetimeτ1,carrier diffusion coefficientD1of the boron-implanted shallow junctions with four different implantation energy values are much lower than those of the substrate wafers. In addition,it is observed that the minority carrier lifetimeτ1and carrier diffusion coefficientD1are significantly sensitive to the degree of electrical activation of implanted atoms and damage to the lattice structure,and exhibit a monotonic variation with the implantation energy.

    Table 2. Determined electronic properties and thickness values for four different USJ wafers obtained by the differential nonlinear PCR technique.

    Figure 4 presents the determined electronic parameters and thickness of the shallow junction in silicon as a function of the implantation energy under the NINA reference sample.The determined results clearly show that electronic parametersτ1,D1,s1, and the thicknessL1of the shallow junction in silicon increase monotonically with the implantation energy increasing. For a given high implantation dose, the decreasing of the minority carrier lifetimeτ1with the increasing of impurity density is due to the fact that the depth profile of implanted atoms becomes narrower and its peak value increases with the implantation energy decreasing.[28,29]Simultaneously,the higher impurity density within the shallow junction increases the probability of carrier scattering,contributing to the decrease of carrier diffusion coefficientD1. No firm explanation has been put forward for the increase ofs1with the implantation energy in the literature. One explanation is that the built-in electrical field generated near the junction depth after the ion implantation and thermal annealing process limits the diffusion behavior of excess carrier to the material surface,and thus reducing the surface recombination velocitys1.[30]The alternative explanation is that the dislocation loops generated around the junction depth after the ion implantation and thermal annealing process confine the excess carrier spatially through the local strain field and then lower the non-radiation recombination of carriers on the sample surface, thereby resulting in the decrease ofs1.[31-33]

    Fig.4. Curves of extracted electronic transport parameters and thickness of boron-implanted layer versus implantation energy,respectively,showing(a)minority carrier lifetime τ1 versus energy, (b) carrier diffusion coefficient D1 versus energy,(c)front surface recombination velocity s1 versus energy,and(d)thickness of boron-implanted layer L1 versus energy.

    It is intriguing to notice that the thickness (L1) values of the shallow junctions in silicon determined by PCR technique at the different implantation energy values are generally in agreement with those calculated by SRIM program under the electrical damage thresholdYED=5.3×1015cm-3.Smaller deviations are probably attributed to the fact that the SRIM simulation may not completely reflect the complexity of lattice structure for the boron-implanted and annealing USJ wafers under test. The above results show that the PCR techniques can not only accurately determine the junction depth values which are equivalent to those calculated by SRIM program, but also quantitatively characterize the performance of ultra-shallow junction wafers by extracting the electronic parameters of the implanted layer.

    A number of studies have been devoted to the characterizing of USJ wafers with various processing parameters in the past few years.[4,25]Huang and Ren[4]have employed the energy dependence of PCR signal at single frequency in combination with infrared spectroscopic ellipsometry(IRSE)data to investigate the junction depth and monitor the implantation energy for USJ wafers,and extracted the electronic properties of shallow junction to explain the dependence of PCR signal on energy. The corresponding theoretical model of PCR measurement is based on the linear proportion between the luminescence intensity and photogenerated carrier density. While the existing nonlinearity issue of PCR technique may affect the consistency between the above theory reliability and experimental measurement, the subsequent theoretical perfection is indispensable.[34,35]In addition,only PCR amplitude data are used in the fitting process.

    To solve the above problems,the n-p product model,[36]which predicts that the band-to-band photoluminescence intensity is proportional to the product of the majority and minority carrier densities,is introduced to improve the model of USJ wafers in the PCR measurement. This work puts emphasis on the differential PCR measurements of shallow junction in the frequency domain to identify the most sensitive frequency range of PCR signal to energy,and thus achieving the optimal monitoring of energy. The frequency-dependent PCR amplitude and phase are fitted simultaneously to the differential nonlinear theoretical model in the multiparameter fitting,which is expected to obtain more accurate electronic information from silicon wafers. The lower implantation energy results in a higher impurity density within the shallow junction under the fixed high implantation dose, which gives rise to the monotonic decreasing of the electronic properties involving transport parameters and depth of junction with the decreasing of energy as presented in Fig. 4. This monotonic trend of determined parameters well explains the behavior of PCR signal varying with energy,mapping the recovery behavior of structure damage induced by ion implantation and the electrical activation behavior of dopant boron.

    In addition, the SRIM program is used to calculate the depth profiles of the implanted impurity in order to investigate the dependence of junction depth on implantation energy and the contribution of shallow junction to the total signal,thereby validating the results determined by the differential PCR technique.The above results show that the nonlinear PCR theory is applicable not only to explaining accurately the effects of implantation energy on the frequency behavior of the PCR signal but also to more fully extracting the electrical parameters and junction depth.

    4. Conclusion and perspectives

    Experimental measurements have demonstrated that SRIM and PCR are sensitive techniques for characterizing the ultra-lowenergy ion implantation in silicon. The monitoring of nm-level thickness and electronic properties of ultrashallow junctions exhibits apparent monotonicity over the industrially relevant energy range. The determined parameters well explain the dependence of PCR signal on implantation energy and further quantitatively characterize the recovery degrees of structure damage induced by ion implantation and the electrical activation degree of impurities. The depth profiles and depth values with an electrical damage threshold(YED)of 5.3×1015cm-3are also calculated by the SRIM simultaneously,and the determined thickness values fit well with those extracted by the differential PCR.The effectiveness of the experimental differential PCR technique and the corresponding theoretical model is not limited to the accurate characterization of the junction depth dependence on implantation energy nor to the evaluation of the effect of energy on its electrical activity involving the excess carrier diffusion,recombination behavior,and the nonlinear correlation between excitation power and PCR signals.In conclusion,the differential nonlinear PCR technique, which is improved by greatly shortening the measurement time through the simplification of reference sample,reflects the complexity of implantation silicon to be more realistic than the SRIM.It offers a potential application prospect for the near-line and in-line control and evaluation of the industrial semiconductor processes in the design and fabrication of silicon-based USJ devices.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61771103, 61704023, and 61601092).

    猜你喜歡
    王靜亞非李斌
    第二十二屆亞非眼科大會(huì)(AACO 2022)
    The Management Methods And Thinking Of Personnel Files
    客聯(lián)(2021年9期)2021-11-07 19:21:33
    World Wetlands Day
    The Wizard of Oz
    The Wizard of Ozby L. Frank Baum
    The Wizard of Ozby L. Frank Baum
    The Development of Contemporary Oil Painting Art
    青年生活(2019年16期)2019-10-21 01:46:49
    Income Inequality in Developing Countries
    商情(2017年17期)2017-06-10 12:27:58
    Let it Go隨它吧
    阿迪逛超市
    国产精品三级大全| 亚洲美女搞黄在线观看| 欧美 亚洲 国产 日韩一| 精品一区二区免费观看| 国产黄色免费在线视频| 久久人妻熟女aⅴ| 久久精品国产亚洲av涩爱| 涩涩av久久男人的天堂| 欧美丝袜亚洲另类| 精品一区二区三区视频在线| 久久国产亚洲av麻豆专区| 中文精品一卡2卡3卡4更新| 国产精品无大码| 色94色欧美一区二区| 国产在线男女| 男人添女人高潮全过程视频| 特大巨黑吊av在线直播| 国产成人aa在线观看| 国产淫片久久久久久久久| 国产在视频线精品| 久久午夜福利片| 啦啦啦中文免费视频观看日本| 观看美女的网站| 亚洲精品国产色婷婷电影| 亚洲av成人精品一二三区| 免费人妻精品一区二区三区视频| 最近中文字幕2019免费版| h日本视频在线播放| 色94色欧美一区二区| 黑丝袜美女国产一区| 看十八女毛片水多多多| 精品少妇黑人巨大在线播放| 中文资源天堂在线| 欧美97在线视频| 国产一区有黄有色的免费视频| 免费少妇av软件| 精品亚洲乱码少妇综合久久| 精品亚洲乱码少妇综合久久| 内地一区二区视频在线| 国产欧美日韩一区二区三区在线 | 熟女电影av网| 色94色欧美一区二区| 看十八女毛片水多多多| 黄色配什么色好看| videosex国产| 国产精品二区激情视频| 老司机影院成人| 精品国产国语对白av| 精品少妇内射三级| 国产免费一区二区三区四区乱码| 国精品久久久久久国模美| 在线观看免费高清a一片| 99国产精品一区二区三区| 五月天丁香电影| 男人爽女人下面视频在线观看| 亚洲午夜精品一区,二区,三区| 欧美国产精品va在线观看不卡| 99九九在线精品视频| 亚洲色图综合在线观看| xxxhd国产人妻xxx| 久久青草综合色| 亚洲 欧美一区二区三区| 啦啦啦在线免费观看视频4| 91精品国产国语对白视频| 一级毛片精品| 精品国产乱子伦一区二区三区 | 纯流量卡能插随身wifi吗| 亚洲伊人色综图| tube8黄色片| 久久精品国产亚洲av香蕉五月 | 日本猛色少妇xxxxx猛交久久| 午夜成年电影在线免费观看| 欧美精品av麻豆av| 亚洲精品久久午夜乱码| 丰满迷人的少妇在线观看| 精品少妇久久久久久888优播| 国产免费视频播放在线视频| 王馨瑶露胸无遮挡在线观看| 欧美性长视频在线观看| 欧美日韩av久久| 亚洲三区欧美一区| 另类精品久久| 中文字幕制服av| 在线亚洲精品国产二区图片欧美| 亚洲精品国产av蜜桃| 欧美+亚洲+日韩+国产| 99国产极品粉嫩在线观看| 18禁观看日本| 女人高潮潮喷娇喘18禁视频| 欧美97在线视频| 国产一区二区三区综合在线观看| 午夜福利在线免费观看网站| 国产亚洲精品久久久久5区| 久久久久久久久久久久大奶| 亚洲av国产av综合av卡| 午夜老司机福利片| 人妻久久中文字幕网| 久久国产精品人妻蜜桃| 99久久99久久久精品蜜桃| 亚洲一区中文字幕在线| 欧美亚洲日本最大视频资源| 丝瓜视频免费看黄片| 精品亚洲乱码少妇综合久久| 男女无遮挡免费网站观看| 日本精品一区二区三区蜜桃| 亚洲人成77777在线视频| 亚洲av欧美aⅴ国产| 久久久国产成人免费| 亚洲成国产人片在线观看| 伦理电影免费视频| 日日摸夜夜添夜夜添小说| 欧美 亚洲 国产 日韩一| 少妇 在线观看| 成人av一区二区三区在线看 | 久久久国产成人免费| 夜夜夜夜夜久久久久| www.精华液| 一区二区三区四区激情视频| 美国免费a级毛片| 九色亚洲精品在线播放| 午夜精品国产一区二区电影| 欧美在线黄色| 男人添女人高潮全过程视频| 欧美97在线视频| 亚洲成av片中文字幕在线观看| 99精国产麻豆久久婷婷| 久久天躁狠狠躁夜夜2o2o| 国产色视频综合| 精品欧美一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 精品国产乱子伦一区二区三区 | 国产欧美日韩精品亚洲av| 久久精品国产亚洲av高清一级| 欧美人与性动交α欧美精品济南到| 精品久久蜜臀av无| 精品一区在线观看国产| 王馨瑶露胸无遮挡在线观看| 又紧又爽又黄一区二区| 国产亚洲一区二区精品| 人人妻,人人澡人人爽秒播| 精品亚洲成国产av| 久久亚洲国产成人精品v| 91成年电影在线观看| 狠狠狠狠99中文字幕| 伊人亚洲综合成人网| 一区在线观看完整版| 成年女人毛片免费观看观看9 | 黑人欧美特级aaaaaa片| 国精品久久久久久国模美| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩精品网址| 久久久精品区二区三区| 国产深夜福利视频在线观看| 日本91视频免费播放| 亚洲成人国产一区在线观看| 老司机影院毛片| 麻豆av在线久日| 一区在线观看完整版| 少妇的丰满在线观看| 欧美精品av麻豆av| 精品卡一卡二卡四卡免费| 美女国产高潮福利片在线看| 久久久久久免费高清国产稀缺| 国产日韩欧美在线精品| 另类亚洲欧美激情| 黑丝袜美女国产一区| 嫁个100分男人电影在线观看| 美女主播在线视频| 成人国产av品久久久| 亚洲精华国产精华精| 别揉我奶头~嗯~啊~动态视频 | 新久久久久国产一级毛片| 亚洲精品久久成人aⅴ小说| 在线天堂中文资源库| 伊人亚洲综合成人网| 精品熟女少妇八av免费久了| 亚洲第一欧美日韩一区二区三区 | 中文欧美无线码| 日本wwww免费看| 精品一区在线观看国产| 91九色精品人成在线观看| 麻豆乱淫一区二区| 亚洲国产欧美网| 母亲3免费完整高清在线观看| 免费在线观看日本一区| 欧美+亚洲+日韩+国产| 韩国高清视频一区二区三区| 99热网站在线观看| 最黄视频免费看| 亚洲国产中文字幕在线视频| 国产成人免费无遮挡视频| 亚洲欧美精品综合一区二区三区| 国产日韩欧美在线精品| www.av在线官网国产| 超色免费av| 人妻久久中文字幕网| 91九色精品人成在线观看| 午夜精品国产一区二区电影| 人妻一区二区av| 在线看a的网站| 精品国产乱码久久久久久小说| 国产高清videossex| 欧美性长视频在线观看| 日韩欧美国产一区二区入口| 人妻 亚洲 视频| 丝袜美腿诱惑在线| 如日韩欧美国产精品一区二区三区| 法律面前人人平等表现在哪些方面 | 久久人人爽人人片av| 少妇粗大呻吟视频| 两个人免费观看高清视频| 久久人妻福利社区极品人妻图片| 亚洲熟女精品中文字幕| 黑人猛操日本美女一级片| 搡老熟女国产l中国老女人| 国产欧美日韩一区二区三区在线| 国产一卡二卡三卡精品| 亚洲欧美一区二区三区黑人| 777米奇影视久久| 亚洲国产欧美网| 亚洲中文字幕日韩| 另类亚洲欧美激情| 69av精品久久久久久 | 日本vs欧美在线观看视频| 一级毛片女人18水好多| 日韩一区二区三区影片| 国产淫语在线视频| 99国产综合亚洲精品| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩高清在线视频 | 国产精品久久久久成人av| 欧美日韩亚洲高清精品| 亚洲国产看品久久| 欧美日韩亚洲综合一区二区三区_| 热99re8久久精品国产| av在线播放精品| 在线观看www视频免费| 日韩欧美一区视频在线观看| 51午夜福利影视在线观看| 日本撒尿小便嘘嘘汇集6| 中文字幕高清在线视频| 亚洲国产成人一精品久久久| 99精品欧美一区二区三区四区| 亚洲激情五月婷婷啪啪| 久久久国产一区二区| 午夜福利影视在线免费观看| 男人舔女人的私密视频| 精品国产一区二区三区久久久樱花| 大陆偷拍与自拍| 欧美成狂野欧美在线观看| 亚洲欧洲日产国产| 在线十欧美十亚洲十日本专区| 嫩草影视91久久| 国产三级黄色录像| 免费观看a级毛片全部| 国产高清videossex| 手机成人av网站| 9热在线视频观看99| 天天躁夜夜躁狠狠躁躁| 十八禁网站免费在线| 母亲3免费完整高清在线观看| 满18在线观看网站| 99热网站在线观看| 亚洲第一欧美日韩一区二区三区 | 日韩大码丰满熟妇| 国产精品免费大片| 岛国在线观看网站| 天天影视国产精品| 中文字幕另类日韩欧美亚洲嫩草| 一区在线观看完整版| 久久热在线av| 一区二区三区激情视频| 精品国产一区二区三区四区第35| 久久精品国产亚洲av高清一级| 狂野欧美激情性xxxx| 国产亚洲精品一区二区www | 午夜精品久久久久久毛片777| 国产精品 欧美亚洲| 女性被躁到高潮视频| 无遮挡黄片免费观看| 最近中文字幕2019免费版| 色婷婷av一区二区三区视频| 人人妻人人添人人爽欧美一区卜| 国产老妇伦熟女老妇高清| 国产精品久久久av美女十八| 俄罗斯特黄特色一大片| 少妇人妻久久综合中文| 精品卡一卡二卡四卡免费| 亚洲国产成人一精品久久久| 国产欧美日韩精品亚洲av| 亚洲色图 男人天堂 中文字幕| 亚洲av电影在线观看一区二区三区| 欧美日韩精品网址| 精品人妻在线不人妻| 欧美精品人与动牲交sv欧美| 婷婷丁香在线五月| 色老头精品视频在线观看| 亚洲少妇的诱惑av| 叶爱在线成人免费视频播放| 18禁黄网站禁片午夜丰满| 黄色怎么调成土黄色| 国产欧美日韩一区二区三区在线| 日韩三级视频一区二区三区| 久久九九热精品免费| 久久综合国产亚洲精品| 国产精品久久久久久精品古装| 99re6热这里在线精品视频| 这个男人来自地球电影免费观看| 777米奇影视久久| 午夜激情av网站| 巨乳人妻的诱惑在线观看| 免费高清在线观看日韩| 精品久久蜜臀av无| 女性被躁到高潮视频| 国产又爽黄色视频| 老鸭窝网址在线观看| 免费av中文字幕在线| 黑人巨大精品欧美一区二区mp4| 日韩欧美一区二区三区在线观看 | svipshipincom国产片| 日韩 亚洲 欧美在线| 欧美变态另类bdsm刘玥| 老鸭窝网址在线观看| 亚洲av电影在线观看一区二区三区| 久久人人爽人人片av| 欧美激情 高清一区二区三区| 亚洲激情五月婷婷啪啪| 法律面前人人平等表现在哪些方面 | 国产无遮挡羞羞视频在线观看| 人人妻人人爽人人添夜夜欢视频| 久久性视频一级片| 久久人人爽av亚洲精品天堂| 另类精品久久| 欧美黑人欧美精品刺激| 欧美精品一区二区免费开放| 精品国内亚洲2022精品成人 | 大香蕉久久网| 三级毛片av免费| av不卡在线播放| 亚洲成人免费av在线播放| 日韩欧美免费精品| 欧美一级毛片孕妇| 久久久久网色| 精品人妻在线不人妻| 这个男人来自地球电影免费观看| 人人澡人人妻人| 狠狠精品人妻久久久久久综合| 欧美激情极品国产一区二区三区| 日本撒尿小便嘘嘘汇集6| 高清欧美精品videossex| 久久狼人影院| 久久九九热精品免费| 日日夜夜操网爽| 久久精品国产a三级三级三级| 高清黄色对白视频在线免费看| 一级片'在线观看视频| 黑人巨大精品欧美一区二区mp4| 1024香蕉在线观看| 一进一出抽搐动态| 两性午夜刺激爽爽歪歪视频在线观看 | 久久性视频一级片| 黄色毛片三级朝国网站| 人人妻,人人澡人人爽秒播| 亚洲国产精品一区二区三区在线| 日本猛色少妇xxxxx猛交久久| 亚洲中文av在线| 免费人妻精品一区二区三区视频| 日日夜夜操网爽| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品自拍成人| av国产精品久久久久影院| 日本五十路高清| 啪啪无遮挡十八禁网站| 亚洲精品国产色婷婷电影| 中文字幕制服av| 久久人妻熟女aⅴ| 丰满人妻熟妇乱又伦精品不卡| 动漫黄色视频在线观看| 亚洲精品国产精品久久久不卡| 少妇人妻久久综合中文| 国产老妇伦熟女老妇高清| 美女高潮喷水抽搐中文字幕| 国产成人av教育| 欧美人与性动交α欧美软件| 日韩欧美一区视频在线观看| 国产熟女午夜一区二区三区| 丰满少妇做爰视频| 国产淫语在线视频| 欧美精品一区二区免费开放| 亚洲欧美清纯卡通| 1024香蕉在线观看| 精品国产一区二区久久| 一边摸一边抽搐一进一出视频| 国产精品二区激情视频| 日韩大片免费观看网站| 国产亚洲av高清不卡| 欧美日韩中文字幕国产精品一区二区三区 | 在线av久久热| 精品少妇一区二区三区视频日本电影| 亚洲久久久国产精品| 国产区一区二久久| 99热全是精品| 美女高潮喷水抽搐中文字幕| 亚洲伊人久久精品综合| 老熟妇乱子伦视频在线观看 | 欧美成狂野欧美在线观看| 搡老熟女国产l中国老女人| 国产91精品成人一区二区三区 | 中文字幕人妻熟女乱码| 99久久综合免费| 青春草视频在线免费观看| 免费看十八禁软件| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av香蕉五月 | 亚洲专区中文字幕在线| 亚洲欧美精品自产自拍| 亚洲欧美日韩高清在线视频 | 久久精品国产a三级三级三级| 美女大奶头黄色视频| 久久热在线av| 国产野战对白在线观看| 久久免费观看电影| 日日摸夜夜添夜夜添小说| 精品亚洲成国产av| 中亚洲国语对白在线视频| av在线播放精品| 国产成人系列免费观看| 桃红色精品国产亚洲av| netflix在线观看网站| 在线观看免费视频网站a站| 精品熟女少妇八av免费久了| 一边摸一边抽搐一进一出视频| 久久久水蜜桃国产精品网| 亚洲国产av新网站| 一边摸一边做爽爽视频免费| 俄罗斯特黄特色一大片| 青春草亚洲视频在线观看| 亚洲精品国产av蜜桃| 精品福利永久在线观看| av网站在线播放免费| 各种免费的搞黄视频| 亚洲熟女毛片儿| 老司机影院毛片| 成人18禁高潮啪啪吃奶动态图| 国产野战对白在线观看| 日韩有码中文字幕| 国产精品久久久久成人av| 久久久久精品人妻al黑| 亚洲avbb在线观看| 久久久国产欧美日韩av| 国产av又大| 五月天丁香电影| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品国产色婷婷电影| 12—13女人毛片做爰片一| 国产亚洲精品久久久久5区| 中国国产av一级| 精品亚洲成国产av| 如日韩欧美国产精品一区二区三区| 超碰成人久久| www.av在线官网国产| 国产精品欧美亚洲77777| 久久人人97超碰香蕉20202| 亚洲一区二区三区欧美精品| 99久久综合免费| 久久亚洲国产成人精品v| 亚洲第一欧美日韩一区二区三区 | 日日夜夜操网爽| 两个人免费观看高清视频| 两人在一起打扑克的视频| 丝袜在线中文字幕| 国产精品久久久久久人妻精品电影 | 最近最新免费中文字幕在线| 亚洲精品av麻豆狂野| 国产av一区二区精品久久| 午夜老司机福利片| 老汉色∧v一级毛片| 亚洲精华国产精华精| 亚洲五月色婷婷综合| 久久精品人人爽人人爽视色| 黄片播放在线免费| 一区二区日韩欧美中文字幕| 在线观看免费日韩欧美大片| 老司机影院成人| 国产成人精品在线电影| 一级毛片女人18水好多| 国产av一区二区精品久久| 99久久精品国产亚洲精品| 超碰97精品在线观看| 交换朋友夫妻互换小说| 精品久久久精品久久久| 一二三四社区在线视频社区8| 国产男女内射视频| 国产野战对白在线观看| 精品国产乱码久久久久久小说| 精品久久久精品久久久| 男人添女人高潮全过程视频| 69av精品久久久久久 | 国产欧美亚洲国产| 日韩一卡2卡3卡4卡2021年| 精品久久久精品久久久| 欧美在线黄色| 天天操日日干夜夜撸| 国产男人的电影天堂91| 99国产精品一区二区三区| 国产淫语在线视频| 黄片大片在线免费观看| 日本av手机在线免费观看| 亚洲精品国产区一区二| 亚洲av日韩精品久久久久久密| 色婷婷av一区二区三区视频| 一边摸一边抽搐一进一出视频| 精品少妇内射三级| 国产精品久久久久久精品古装| 亚洲av电影在线进入| 国产精品免费大片| 婷婷色av中文字幕| 天天添夜夜摸| 国产男女内射视频| 12—13女人毛片做爰片一| 老司机影院毛片| svipshipincom国产片| 欧美日韩黄片免| 国产av精品麻豆| 老司机午夜福利在线观看视频 | 久久久精品国产亚洲av高清涩受| 精品福利观看| 午夜福利在线免费观看网站| 高潮久久久久久久久久久不卡| 午夜免费观看性视频| 亚洲第一欧美日韩一区二区三区 | 欧美 亚洲 国产 日韩一| 久久女婷五月综合色啪小说| 国产1区2区3区精品| 99精品欧美一区二区三区四区| 制服人妻中文乱码| 在线永久观看黄色视频| 夫妻午夜视频| 国产精品香港三级国产av潘金莲| 十分钟在线观看高清视频www| 国产亚洲精品第一综合不卡| 各种免费的搞黄视频| 亚洲国产看品久久| 国产亚洲午夜精品一区二区久久| 日韩欧美一区二区三区在线观看 | 一二三四社区在线视频社区8| 久久国产亚洲av麻豆专区| 久久人妻福利社区极品人妻图片| 老熟妇乱子伦视频在线观看 | 日日摸夜夜添夜夜添小说| 国产一区二区三区在线臀色熟女 | 久热这里只有精品99| 黄色怎么调成土黄色| 成人亚洲精品一区在线观看| 午夜福利视频精品| 中文字幕人妻丝袜制服| 色老头精品视频在线观看| 久久久久国内视频| 久久久久久久大尺度免费视频| e午夜精品久久久久久久| av欧美777| 久久久久久久久免费视频了| 国产成人精品在线电影| 亚洲国产精品一区三区| 亚洲久久久国产精品| 精品卡一卡二卡四卡免费| 满18在线观看网站| 韩国高清视频一区二区三区| 99久久国产精品久久久| 欧美精品高潮呻吟av久久| 欧美国产精品一级二级三级| 1024香蕉在线观看| 久久人人爽av亚洲精品天堂| 国产在线视频一区二区| 咕卡用的链子| 精品福利永久在线观看| 精品少妇一区二区三区视频日本电影| 丝袜人妻中文字幕| 国产精品久久久久久精品古装| 热99re8久久精品国产| 精品人妻1区二区| 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 免费av中文字幕在线| 午夜福利,免费看| 美女福利国产在线| 精品免费久久久久久久清纯 | 在线看a的网站| 欧美日韩精品网址| 又大又爽又粗| 亚洲中文字幕日韩| 久9热在线精品视频| 久久精品国产a三级三级三级| 99久久国产精品久久久| 人人妻,人人澡人人爽秒播| 精品国产一区二区久久| 国产野战对白在线观看| 免费不卡黄色视频| 国产又爽黄色视频| 成人国语在线视频| 精品一品国产午夜福利视频| 一级毛片电影观看| 国产精品二区激情视频| 亚洲 欧美一区二区三区| 精品久久久久久久毛片微露脸 | 新久久久久国产一级毛片| e午夜精品久久久久久久| 青春草视频在线免费观看| 精品一区在线观看国产| 91精品三级在线观看| 亚洲精品久久午夜乱码| 视频区欧美日本亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区免费| 国产一区二区三区在线臀色熟女 |