• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides

    2022-03-12 07:49:20DongYan嚴(yán)冬LingyongZeng曾令勇YijieZeng曾宜杰YishiLin林一石JunjieYin殷俊杰MengWang王猛YihuaWang王熠華DaoxinYao姚道新andHuixiaLuo羅惠霞
    Chinese Physics B 2022年3期
    關(guān)鍵詞:王猛嚴(yán)冬俊杰

    Dong Yan(嚴(yán)冬) Lingyong Zeng(曾令勇) Yijie Zeng(曾宜杰) Yishi Lin(林一石) Junjie Yin(殷俊杰)Meng Wang(王猛) Yihua Wang(王熠華) Daoxin Yao(姚道新) and Huixia Luo(羅惠霞)

    1School of Materials Science and Engineering,State Key Laboratory of Optoelectronic Materials and Technologies,Key aboratory of Polymer Composite&Functional Materials,Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices,Sun Yat-Sen University,Guangzhou 510275,China

    2Center for Neuron Science and Technology,School of Physics,Sun Yat-Sen University,Guangzhou 510275,China

    3State Key Laboratory of Surface Physics and Department of Physics,Fudan University,Shanghai 200433,China

    4Shanghai Research Center for Quantum Sciences,Shanghai 201315,China

    5Key Laboratory of Functional Molecular Solids,Ministry of Education,College of Chemistry and Materials Science,Anhui Normal University,Wuhu 241002,China

    6College of Science,Hangzhou Dianzi University,Hangzhou 310018,China

    Keywords: layered telluride chalcogenide,superconductivity,charge-density-wave,CuIr2-xAlxTe4

    1. Introduction

    The continuous suppression of metal-insulator(MI)transition, charge-density-wave (CDW) transition, magnetism,etc. leading to the occurrence of superconductivity (SC) in the proximity of such quantum states has garnered great interest and widespread study in solid-state physics.[1-4]The phase diagrams of unconventional high-temperature (high-Tc)cuprates and iron-based superconductors exemplified such phenomena.[5-11]Nevertheless, how SC emerges in these high-Tcsuperconductors is intricate and remains extremely puzzling. It is still essential to sort out the interplay between the SC and the other quantum states,promoting further understanding of the mechanism of high-Tcsuperconductors.

    Low-dimensional layered transition metal dichalcogenides(TMDs)are other opportune material platforms for the exploration of various quantum instabilities,[12-21]especially the interplay between SC and CDW,in which the CDW order refers to condensate with periodic modulations of the crystalline lattice and conduction electron density in real space.Typically,the SC can be induced and a dome-shape superconducting phase diagram is formed upon suppressing the CDW order,[22-27]which is highly similar to the phase diagrams of unconventional high-Tccuprates and iron-based superconductors. Despite overall phase diagram similarities, there are significant differences especially between their mechanisms,

    where unconventional high-TcFe-based and cuprate superconductors cannot be well explained by Bardeen-Cooper-Schrieffer(BCS)theory but most of the TMD superconductors can be explained by BCS theory. It has been generally considered that the collapse of CDW state accompanied by the improvement of superconducting transition temperature(Tc)is in reference to the abrupt enhancement of density of states(DOS)around the Fermi levelN(EF) in the conventional superconductors owning to CDW state gaps out some regions of the Fermi surface.[1,2]The formation of CuxTiSe2(0 ≤x≤0.1)from intercalating the Cu into 1T-TiSe2exemplified a vivid phase diagram in the TMDs family,[2]and further evoked the continuous interest in searching for new superconductors in TMD materials by gating, adding physical pressures, chemical doping or point contact method.[22-38]For example, Cuintercalation 2H-TaS2forms CuxTaS2(0 ≤x≤0.12)and displays an enhancement ofTcfrom 0.8 K (x= 0) to 4.5 K(x=0.04).[34]In addition, experiments show that theTcof WTe2can be increased to 7 K under an applied physical pressure of 16.8 GPa.[35]Moreover, manifold phase transitions from MI to metal show in 1T-TaS2thin flakes with collapses of CDWs,and finally SC are induced by ionic gating.[36]

    Currently, CuIr2Te4, adopting a NiAs defected structure of trigonal symmetry with the space groupP-3m1, has been found to exhibit the coexistence of the CDW-like transition(TCDW= 250 K on heating and 186 K on cooling) and SC(Tc= 2.5 K). Besides, recent electronic structure calculations have unveiled that the Fermi energy is mostly derived from Ir 5d and Te 5p orbitals.[39]More recently, experiments have documented that both CDW and SC performances of CuIr2Te4can be modified via 3d, 4d transition metals (e.g.,Ti and Ru) and 4p, 5p dopants (e.g., Se and I). Dome-shape phase diagrams with respect toTcvs. doping amount associated with the suppression of CDW have been found in the CuIr2-xRuxTe4and CuIr2-xTixTe4systems, but dome-shape diagrams crowded in the middle doping region with two CDW regions at two sides in Se- and I-doped systems.[40-43]Furthermore, the non-magnetic element Al is usually selected as the dopant because Al3+ion has a closed shell electron configuration and a clear oxidation state. The transport properties of Al-doped high-Tccopper-based superconductors (e.g.,SmBa2Cu3-xAlxO6+δ, YBa2Cu3-xAlxO7) have been widely studied.[44,45]And nano Al has been used to improve the critical current in MgB2superconductor.[46]Therefore,it will be interesting to explore the effect of 3s dopants(e.g.,Al)on the CDW and SC in CuIr2Te4.

    In this work,we prepared polycrystalline CuIr2-xAlxTe4(0 ≤x≤0.2) compounds successfully by a solid-state reaction method. Our results demonstrate that the CDW order can be completely suppressed within a fine-tuned Al-doped content as a result of the improvement ofTc.Tcinitially increases with the rise of doping amount untilx=0.075 and reaches the highest value of 2.75 K, eventually forming a dome-phase like electronic phase diagram. The acquisition of the CuIr2-xAlxTe4(0 ≤x≤0.2)system also provides some enlightenment for the search of new superconductors.

    2. Experimental methods

    Synthesis Polycrystalline specimens of CuIr2-xAlxTe4(0 ≤x≤0.2) were prepared through the classical solidstate phase reaction. First, the Cu (99%, Alfa Aesar), Ir(99.9%, Macklin), and Al (99.95%, Aladdin) powder, and Te lump (99.999%, Alfa Aesar) with an element ratio of Cu:Ir:Al:Te=1:2-x:x:4.05 were sealed in quartz tubes,then they were put in a muffle furnace with the ramping rate of 1°C/min to 850°C and the furnace temperature was maintained for 5 days. The resulting samples were annealed at 850°C for 4 days with a heating rate of 1°C/min.

    Instruments Powder x-ray diffraction(PXRD)MiniFlex,Rigaku with CuKα1radiation was used to examine the crystal structure and phase purity of the CuIr2-xAlxTe4(0 ≤x≤0.2)compounds.FULLPROF software suite was used to determine the cell parameters based on Thompson-Cox-Hastings pseudo-Voigt peak shapes model. Measurements of the temperaturedependence of electrical resistivity, specific heat, and magnetic susceptibilities (M(T,H)) were performed by a Dyna-Cool Quantum Design physical property measurement system(PPMS,Quantum Design,Inc.).

    3. Results and discussion

    The PXRD patterns of the CuIr2-xAlxTe4compounds are presented in Fig. 1(a). PXRD analysis shows that Al concentration is limited up to 0.2 since Al2Te3impurity is found with further increasing Al content. As Al doping content increases, the (001) peak moves to the right,which can be verified by the decrease of lattice constantsaandcwith increasingx(Fig. 1(c)), reflecting the compression of the CuIr2Te4unit cell. As illustrated in Fig. 1(c)clearly, both lattice constants (aandc) andc/asingly reduce with increasing Al concentration. It is found thataandcreduce from 3.9397(5) °A and 5.3965 (3) °A for the pristine sample to 3.9264(1) °A and 5.3757(2) °A (x= 0.2) in CuIr2-xAlxTe4, respectively. The detailed refinement of the selected sample CuIr1.925Al0.075Te4is displayed in Fig. 2(a).Most of the diffraction peaks have been indexed in terms of trigonal symmetry with a space groupP-3m1 (No. 164)and some small peaks indexed for tiny unreacted Ir are also detected. The illustration shows that the disordered trigonal structure, in which the Cu is inserted between twodimensional(2D)IrTe2layers,Ir partial substituting by Al simultaneously(see Figs.2(b)and 2(c)).

    Fig.1. (a)and(b)PXRD patterns of the CuIr2-xAlxTe4 (0 ≤x ≤0.2)compounds. (c)The evolution of lattice constants for CuIr2-xAlxTe4 (0 ≤x ≤0.2).

    Fig.2. (a)Refinements of CuIr1.925Al0.075Te4 polycrystalline sample. (b)and(c)The crystal structure of CuIr2-xAlxTe4 in different direction views.

    Fig. 3. (a) Temperature-dependence of resistivity for the polycrystalline CuIr2-xAlxTe4 (0 ≤x ≤0.2) compounds. (b) The superconducting transition at 1.6-3.0 K for the polycrystalline CuIr2-xAlxTe4 (0 ≤x ≤0.2) compounds. (c) Temperature dependences of resistivity for the polycrystalline CuIr1.925Al0.075Te4 sample under various applied magnetic fields. (d)Temperature dependence of Hc2 for the polycrystalline CuIr1.925Al0.075Te4 sample.

    The temperature-dependent normalized resistivity(ρ/ρ300K) of the CuIr2-xAlxTe4(0 ≤x≤0.2) compounds is exhibited in Fig. 3(a). Besides, our previous finding indicates that there is no structure transition for the pristine sample. Thus,we propose that the normalized resistivity with cooling and heating exhibits a distinct hysteresis associated with the formation of CDW-like transition for the pristine CuIr2Te4sample. It is worth mentioning that no signature of the abnormal hump can be observed aboveTcinρ/ρ300Kof the Al doping samples CuIr2-xAlxTe4(0<x≤0.2), indicating the CDW-like transition can be suppressed with subtle Al substitution for Ir,companying with the increment ofTc. The resistivity data for Al-doped samples show a metallic behavior.We can observe sharp drops ofρ(T) for the CuIr2-xAlxTe4(0 ≤x≤0.15) below 3.0 K (see Fig. 3(b)), which represent the outset of the superconducting state. The transition width of the Al-doped compounds is much narrower than that of the pristine CuIr2Te4. TheTcand residual resistivity ratio (RRR=R(300 K)/R(3 K))of the CuIr2-xAlxTe4(0 ≤x≤0.2)samples are summarized in Table 1. As the Al content increases,bothTcand RRR increase to the highest value atx=0.075,then decrease for further Al doping. For 0.075 ≤x≤0.5,the RRR sharply decreases form 4.44 forx=0.075 to 2.342 forx=2.34. This phenomenon indicates that high Al content induces significant disorder in the polycrystalline CuIr2-xAlxTe4series.

    Table 1. The Tc and RRR of CuIr2-xAlxTe4 (0 ≤x ≤0.2)compounds.The Tc is determined by using 50%normal state resistance criterion.

    Table 2. Comparison of physical properties of CuIr2Te4-based superconductors.

    The superconducting transition has also been confirmed by the magnetic susceptibility data(Fig.4(a))with strong diamagnetic signals under zero-field-cooling (ZFC) mode. The superconducting volume fraction of the CuIr2-xAlxTe4(0 ≤x≤0.15) compounds can be calculated around 95%, which manifests high purity of the polycrystalline CuIr2-xAlxTe4samples. Next, we examine the lower critical fields (μHc1)by the field-dependent magnetic susceptibilityM(H)measurements in a temperature range of 2-2.6 K.Figure 4(b)presents the magnetization(M-H)curves at different temperatures belowTcof the representative CuIr1.925Al0.075Te4. As shown by the purple line in Fig. 4(b), theM(H) isotherms show a linear relationship with the magnetic field (H) at low magnetic fields,indicating that it is a type-II superconductor.We can extract the demagnetization factor(N)following the expressionN=4πχV+1, whereχV= dM/dHrepresents the linearly fitted slope. The calculatedNfor CuIr1.925Al0.075Te4is about 0.53. We can use the expressionMfit=m+nHto fit the experimental data at low magnetic fields,wheremrepresents the intercept andnstands for the slope of linear fitting from the low magnetic fieldM(H)data. The inset of Fig.4(c)displays the (M-Mfit) data vs.H. Then, we can fit theμHc1(T) by the expressionμ0Hc1(T)=μ0H*c1(T)/(1-N), whereμ0H*c1is the intersection point between theM-Mfitvs.Hcurves and the field (purple line in the inset of Fig. 4(c)), which deviates by~1% above the fitted data (Mfit) as customary. The temperature dependence ofμ0Hc1(T) for CuIr1.925Al0.075Te4is displayed in the main panel of Fig. 4(c). Consequently,we can further acquire theμ0Hc1(T) using the equationμ0Hc1(T)=μ0Hc1(0)(1-(T/Tc)2). The estimatedμ0Hc1(0)at zero temperature of CuIr1.925Al0.075Te4sample is 0.060 T,which is larger than that of the undoped parent sample (see in Table 2).

    Fig. 4. (a) Magnetic susceptibility for CuIr2-xAlxTe4 (0 ≤x ≤0.2) compounds under 30 Oe magnetic field with zero-field-cooling (ZFC) mode.(b) The magnetization M(H) in a temperature range of 2-2.6 K for CuIr1.925Al0.075Te4. (c) Temperature dependence of Hc1. Inset: Difference between M and MFit in a temperature range of 2-2.6 K for CuIr1.925Al0.075Te4.

    Fig. 5. (a) The specific heat data plotted as a function of T2 for CuIr1.925Al0.075Te4. (b) The electronic part of the specific heat in CuIr1.925Al0.075Te4.

    To further convince that SC is an essential feature of the highestTccompound CuIr1.925Al0.075Te4,we also perform the temperature-dependent specific heat measurement. Figure 5 illustrates the detailed characterization of the superconducting transition in the highestTccomposition CuIr1.925Al0.075Te4through specific heat measurements under the absence of magnetic field. The dataCp/Tvs.T2can be fitted by the equationCp=γT+βT3above theTcto acquire the values ofβandγbeing 2.20 mJ·mol-1·K-4and 12.12 mJ·mol-1·K-2for CuIr1.925Al0.075Te4,respectively,whereγTrepresents the sum of electron contributions(Cel.)to the specific heat andβT3is the sum of phonon contributions(Cph.). Figure 5(b)shows the sum of electron contribution to the specific heat at the temperature near theTcunder 0 T, whereCel.is easily derived from deducting the phonon part,Cel.=Cp-βT3. Apparently, a sharp specific heat jump occurs in our representative CuIr1.925Al0.075Te4, characteristic of bulk SC. TheTcfurther can be determined to be 2.70 K using the common equal-area entropy construction method,which agrees well with those observed in magnetization and resistivity tests. Based on theTcandγvalues, we can determine ΔCel./(γTc)=1.53, which is slightly larger than the value of 1.43 forecasted by the BCS theory,revealing its superconducting nature. The Debye temperature obtained using the equationΘD=(12π4nR/(5β))1/3is 183.5(1)K,whereRrepresents the gas constant,nexpresses the number of atoms per formula unit. The resultant electronphonon coupling constantλepvalue further estimated by introducing theΘDnumber into the inverted McMillan equation[49]

    Finally, to further understand the effect of Al dopant on the CDW and SC of CuIr2Te4, the electronic phase diagrams plotted asTcversus Al-contentxhave been established (see Fig.6).All theTcvalues were obtained from the resistivity and magnetization tests.From Fig.6,we can find that the CDW order is immediately suppressed whileTcincreases with increasing Al content up tox=0.075 and rises towards the highest value 2.75 K atx=0.075. From this,we find that despite subtle Al is substituted for Ir,it has a strong impact on the SC and CDW. Besides, in contrast to our previously reported Ru/Tidoped CuIr2Te4system,the similarity is the destabilization of CDW upon small amount doping concentration no matter Ru,Ti,or Al as dopants and formation of dome-shape like superconducting phase diagrams.[32,33]Despite overall similarities,there are significant differences between the CuIr2-xRuxTe4,CuIr2-xTixTe4,and CuIr2-xAlxTe4systems. Substitution of Ir by Ru or Ti in CuIr2Te4corresponds to a“hole”(p-type)doping of the IrTe2layers, while partial doping Al into Ir site in CuIr2Te4is an electron (n-type) doping. As for the high-Tccuprate superconductors,where the competition between antiferromagnetism and SC develops as a function of chemical doping,the evolving balance between competing electronic orders in CDW/SC systems is one of their most fundamentally tempting properties. In our case, the bands in the neighborhood of the Fermi energyEFof the pristine sample CuIr2Te4mostly come from Ir d and Te p orbitals and locate at a flat plateau,in which Al doping acts as a chemical pressure,closing the gap on the Fermi surface that usually leads to rapid suppression of CDW.On the other hand,the increase of band filling of the Fermi surface under chemical pressure could be the mechanism of the promotion of SC.But further study and evidence need to be collected to find out the competition between CDW and SC.

    Fig. 6. The electronic phase diagram of polycrystalline CuIr2-xAlxTe4(0 ≤x ≤0.2)series.

    4. Conclusion and perspectives

    In conclusion, we have successfully synthesized a series of polycrystalline CuIr2-xAlxTe4(0 ≤x≤0.2) samples via a solid-state method and systemically studied the effect of Al doping on the structure and electronic properties of CuIr2Te4. The ΔCel./(γTc)=1.53 for the highestTcsample CuIr1.925Al0.075Te4is slightly larger than 1.43 (BCS value),proving its bulk superconducting nature. We recognize that the CDW order is suppressed immediately whileTcincreases as Al doping amountxrises and achieves a maximumTc=2.75 K with Al doping content of 0.075. Our systematic study of CuIr2-xAlxTe4(0 ≤x≤0.2) not only extends the family of the TMD superconductors but also provides a platform for further research on the relationship between the CDW and SC.

    Acknowledgments

    H. X. Luo acknowledges the financial support by the National Natural Science Foundation of China (Grant No. 11922415), Guangdong Basic and Applied Basic Research Foundation, China (Grants No. 2019A1515011718),and the Pearl River Scholarship Program of Guangdong Province Universities and Colleges (Grants No. 20191001).Y. Zeng and D. X. Yao are supported by the National Natural Science Foundation of China (Grants No. 11974432)and the National Key R&D Program of China (Grant Nos. 2018YFA0306001 and 2017YFA0206203). D. Yan acknowledges the financial support by the National Key Laboratory Development Fund (No. 20190030). Y. H. Wang would like to acknowledge partial support by the National Key R&D Program of China (Grant No. 2017YFA0303000), National Natural Science Foundation of China (Grant No. 11827805),and Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01). M. Wang was supported by the National Natural Science Foundation of China(Grant Nos.11904414 and 12174454)and the National Key R&D Program of China(Grant No.2019YFA0705702).

    猜你喜歡
    王猛嚴(yán)冬俊杰
    決戰(zhàn)嚴(yán)冬
    A NON-LOCAL DIFFUSION EQUATION FOR NOISE REMOVAL*
    嚴(yán)冬過盡綻春蕾——致公黨連云港市委會(huì)齊心協(xié)力戰(zhàn)疫情
    Holism in Education
    嚴(yán)冬海獵
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    王猛仁作品
    詩潮(2019年3期)2019-03-25 05:36:16
    表演大師
    我的同桌
    胸懷寬廣才能走好官場(chǎng)路
    色网站视频免费| av片东京热男人的天堂| 免费观看性生交大片5| 最近的中文字幕免费完整| av在线老鸭窝| 精品国产一区二区三区久久久樱花| 国产一区二区三区av在线| 伦理电影免费视频| 亚洲精品第二区| 精品一品国产午夜福利视频| 国产精品久久久久久人妻精品电影 | 咕卡用的链子| 日日啪夜夜爽| 国产高清不卡午夜福利| 国产成人免费观看mmmm| 日韩欧美精品免费久久| 国产精品久久久av美女十八| 国产女主播在线喷水免费视频网站| 国产97色在线日韩免费| 亚洲国产最新在线播放| 欧美精品高潮呻吟av久久| 国产精品一区二区在线观看99| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦视频在线资源免费观看| 免费看av在线观看网站| 亚洲精品美女久久av网站| 亚洲av国产av综合av卡| 国产精品女同一区二区软件| 欧美 日韩 精品 国产| 男女床上黄色一级片免费看| 99精品久久久久人妻精品| 我的亚洲天堂| 国产欧美日韩一区二区三区在线| 欧美人与善性xxx| 日韩av不卡免费在线播放| 2018国产大陆天天弄谢| 精品少妇一区二区三区视频日本电影 | 制服丝袜香蕉在线| 国产成人啪精品午夜网站| 免费在线观看视频国产中文字幕亚洲 | 久久国产亚洲av麻豆专区| 另类精品久久| 久久久久久久久久久免费av| 桃花免费在线播放| 欧美日韩国产mv在线观看视频| 三上悠亚av全集在线观看| 久热这里只有精品99| 男人添女人高潮全过程视频| 亚洲成色77777| 欧美激情高清一区二区三区 | 欧美日韩av久久| 99久久人妻综合| 人人妻,人人澡人人爽秒播 | 久久精品人人爽人人爽视色| 欧美日韩综合久久久久久| 日韩一卡2卡3卡4卡2021年| 国产男人的电影天堂91| 下体分泌物呈黄色| 国产亚洲av片在线观看秒播厂| 国产精品av久久久久免费| 丝袜人妻中文字幕| 精品一区二区三区av网在线观看| 精品久久久精品久久久| 免费看a级黄色片| 国产精品免费一区二区三区在线| 后天国语完整版免费观看| 可以免费在线观看a视频的电影网站| 国产精品亚洲美女久久久| 精品国产超薄肉色丝袜足j| 成人三级黄色视频| 亚洲黑人精品在线| 国产麻豆成人av免费视频| 国产成人免费无遮挡视频| 久久久久国产精品人妻aⅴ院| 国产一区在线观看成人免费| 亚洲熟妇熟女久久| 非洲黑人性xxxx精品又粗又长| av天堂久久9| 国产亚洲精品综合一区在线观看 | 色综合欧美亚洲国产小说| 人人澡人人妻人| 精品一区二区三区视频在线观看免费| 日本 av在线| 岛国视频午夜一区免费看| 成年人黄色毛片网站| 老司机福利观看| 国产精品国产高清国产av| 国产欧美日韩一区二区三区在线| 欧美日韩亚洲综合一区二区三区_| 亚洲色图 男人天堂 中文字幕| 国产日韩一区二区三区精品不卡| 国产精品99久久99久久久不卡| 色哟哟哟哟哟哟| 久久久水蜜桃国产精品网| 国产精品久久久久久人妻精品电影| 成人18禁在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 大型黄色视频在线免费观看| 久久中文字幕一级| av福利片在线| 国产熟女xx| 一进一出抽搐gif免费好疼| 久久精品人人爽人人爽视色| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 久久婷婷成人综合色麻豆| 黄色视频不卡| 国产精华一区二区三区| 丝袜美足系列| 亚洲av五月六月丁香网| 国产人伦9x9x在线观看| 亚洲电影在线观看av| 神马国产精品三级电影在线观看 | 在线视频色国产色| 午夜福利免费观看在线| 色av中文字幕| 日韩国内少妇激情av| 美女午夜性视频免费| 琪琪午夜伦伦电影理论片6080| 免费不卡黄色视频| 91精品国产国语对白视频| 午夜精品国产一区二区电影| 天堂√8在线中文| 香蕉丝袜av| 亚洲欧美精品综合久久99| 男男h啪啪无遮挡| 亚洲美女黄片视频| 免费观看人在逋| 亚洲av电影不卡..在线观看| 国产精品亚洲美女久久久| 国产精品香港三级国产av潘金莲| 午夜亚洲福利在线播放| 日本在线视频免费播放| 成年版毛片免费区| 色综合站精品国产| 精品欧美国产一区二区三| 免费一级毛片在线播放高清视频 | 99香蕉大伊视频| 欧美中文综合在线视频| 亚洲国产欧美日韩在线播放| 91精品三级在线观看| 国产欧美日韩一区二区精品| 久久久久久久久免费视频了| 91字幕亚洲| 久久婷婷人人爽人人干人人爱 | 91麻豆精品激情在线观看国产| 成在线人永久免费视频| 操出白浆在线播放| 亚洲精品av麻豆狂野| 在线观看免费视频日本深夜| 亚洲av电影在线进入| 人妻久久中文字幕网| 成熟少妇高潮喷水视频| 免费在线观看影片大全网站| 免费人成视频x8x8入口观看| 国产激情久久老熟女| 国产精品亚洲一级av第二区| 黄片小视频在线播放| 热99re8久久精品国产| 欧美一级a爱片免费观看看 | 欧美成人免费av一区二区三区| 精品高清国产在线一区| 国产精品久久久人人做人人爽| 岛国视频午夜一区免费看| 香蕉国产在线看| 亚洲人成伊人成综合网2020| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久亚洲av鲁大| 搡老妇女老女人老熟妇| xxx96com| 欧美日韩黄片免| 露出奶头的视频| 久久精品成人免费网站| 日韩大尺度精品在线看网址 | 色精品久久人妻99蜜桃| 亚洲国产欧美网| 身体一侧抽搐| 最近最新中文字幕大全免费视频| 一卡2卡三卡四卡精品乱码亚洲| 成人特级黄色片久久久久久久| 国产欧美日韩一区二区三| 欧美日韩一级在线毛片| 麻豆一二三区av精品| avwww免费| 日韩av在线大香蕉| 啦啦啦韩国在线观看视频| 不卡一级毛片| 午夜免费观看网址| 精品久久久久久久毛片微露脸| 国产麻豆成人av免费视频| 成年版毛片免费区| 亚洲,欧美精品.| 精品国产一区二区久久| 国产99久久九九免费精品| 国产亚洲精品第一综合不卡| 亚洲欧美一区二区三区黑人| 怎么达到女性高潮| 久久人人精品亚洲av| 视频在线观看一区二区三区| 啦啦啦观看免费观看视频高清 | 高清黄色对白视频在线免费看| 性少妇av在线| 丝袜美足系列| 国产一卡二卡三卡精品| 中亚洲国语对白在线视频| 多毛熟女@视频| 亚洲熟女毛片儿| 日韩欧美三级三区| 亚洲国产欧美一区二区综合| 久久 成人 亚洲| 岛国在线观看网站| 国产av精品麻豆| 午夜成年电影在线免费观看| 国产一级毛片七仙女欲春2 | 国产高清有码在线观看视频 | 欧美亚洲日本最大视频资源| 老汉色∧v一级毛片| 亚洲中文字幕一区二区三区有码在线看 | 黄色丝袜av网址大全| 亚洲国产欧美网| 亚洲专区国产一区二区| 精品不卡国产一区二区三区| 波多野结衣高清无吗| 亚洲av电影在线进入| 久久九九热精品免费| 人妻丰满熟妇av一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人啪精品午夜网站| 亚洲一区二区三区不卡视频| 一二三四在线观看免费中文在| 好男人电影高清在线观看| 宅男免费午夜| 国内毛片毛片毛片毛片毛片| 久久久精品国产亚洲av高清涩受| 久久草成人影院| 久久久久久久久免费视频了| 不卡一级毛片| 97人妻精品一区二区三区麻豆 | 日本撒尿小便嘘嘘汇集6| 最新在线观看一区二区三区| 亚洲精品国产区一区二| videosex国产| 午夜免费鲁丝| av天堂在线播放| 18禁裸乳无遮挡免费网站照片 | 激情视频va一区二区三区| 高潮久久久久久久久久久不卡| 亚洲最大成人中文| 久久狼人影院| 国内毛片毛片毛片毛片毛片| 大香蕉久久成人网| 午夜福利成人在线免费观看| 在线播放国产精品三级| 99久久99久久久精品蜜桃| 午夜免费成人在线视频| 亚洲国产精品999在线| 中文字幕人妻丝袜一区二区| 青草久久国产| 久久久久国产一级毛片高清牌| 两个人看的免费小视频| 此物有八面人人有两片| 国产野战对白在线观看| 亚洲中文字幕一区二区三区有码在线看 | 黄色女人牲交| 日韩欧美三级三区| 日韩av在线大香蕉| 免费久久久久久久精品成人欧美视频| 法律面前人人平等表现在哪些方面| 精品高清国产在线一区| av电影中文网址| 亚洲欧美精品综合一区二区三区| 99久久99久久久精品蜜桃| 在线观看免费视频日本深夜| 国产男靠女视频免费网站| 欧美av亚洲av综合av国产av| 国产在线观看jvid| 国产亚洲精品久久久久5区| a在线观看视频网站| 欧美日韩一级在线毛片| 9191精品国产免费久久| 成年版毛片免费区| 亚洲 国产 在线| 黑人巨大精品欧美一区二区蜜桃| 人人妻,人人澡人人爽秒播| АⅤ资源中文在线天堂| 午夜福利视频1000在线观看 | 国内精品久久久久久久电影| 在线播放国产精品三级| 亚洲电影在线观看av| 亚洲国产看品久久| 久久人妻熟女aⅴ| 一夜夜www| 久久人妻熟女aⅴ| 国产av在哪里看| 日本精品一区二区三区蜜桃| 大型av网站在线播放| 一级作爱视频免费观看| 中国美女看黄片| www国产在线视频色| 99久久99久久久精品蜜桃| 亚洲成国产人片在线观看| 可以在线观看的亚洲视频| 成年女人毛片免费观看观看9| 看片在线看免费视频| 色老头精品视频在线观看| 麻豆成人av在线观看| 97人妻精品一区二区三区麻豆 | 在线视频色国产色| 免费搜索国产男女视频| 非洲黑人性xxxx精品又粗又长| 亚洲成a人片在线一区二区| 女人被狂操c到高潮| 色播在线永久视频| 亚洲国产精品sss在线观看| 高清毛片免费观看视频网站| 精品无人区乱码1区二区| 日本vs欧美在线观看视频| 国产人伦9x9x在线观看| 可以在线观看毛片的网站| 亚洲av电影不卡..在线观看| 国产一区二区三区视频了| 国产精品久久久久久亚洲av鲁大| 日韩欧美免费精品| 免费在线观看亚洲国产| 91麻豆av在线| 激情在线观看视频在线高清| 啦啦啦免费观看视频1| 国产精品久久视频播放| 熟女少妇亚洲综合色aaa.| 老熟妇乱子伦视频在线观看| 亚洲成人国产一区在线观看| 久久久久国内视频| 看片在线看免费视频| 久9热在线精品视频| 久9热在线精品视频| 国产在线精品亚洲第一网站| 欧美性长视频在线观看| 精品人妻1区二区| 久久久水蜜桃国产精品网| 中国美女看黄片| 久久午夜亚洲精品久久| 国产精品 欧美亚洲| 91九色精品人成在线观看| 国产精品亚洲一级av第二区| 国产不卡一卡二| 亚洲精华国产精华精| 自拍欧美九色日韩亚洲蝌蚪91| 咕卡用的链子| 99精品欧美一区二区三区四区| 禁无遮挡网站| 国产成+人综合+亚洲专区| 每晚都被弄得嗷嗷叫到高潮| av中文乱码字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| 少妇粗大呻吟视频| 午夜福利,免费看| 最近最新中文字幕大全免费视频| 男男h啪啪无遮挡| 国产xxxxx性猛交| 精品一区二区三区四区五区乱码| 熟妇人妻久久中文字幕3abv| 欧美日韩黄片免| 欧美激情极品国产一区二区三区| 久99久视频精品免费| 亚洲熟女毛片儿| 色播亚洲综合网| 黑人欧美特级aaaaaa片| 日韩 欧美 亚洲 中文字幕| 十八禁人妻一区二区| 9色porny在线观看| 久久亚洲精品不卡| 如日韩欧美国产精品一区二区三区| 九色亚洲精品在线播放| 日本精品一区二区三区蜜桃| 亚洲国产精品久久男人天堂| 亚洲中文字幕一区二区三区有码在线看 | 国内毛片毛片毛片毛片毛片| 久久草成人影院| 色播在线永久视频| 久久人人97超碰香蕉20202| 日韩精品免费视频一区二区三区| 天堂√8在线中文| 成人亚洲精品一区在线观看| 母亲3免费完整高清在线观看| 国产一区二区激情短视频| 欧美乱妇无乱码| 国产精品永久免费网站| 黄色毛片三级朝国网站| 午夜福利高清视频| АⅤ资源中文在线天堂| 国产精品 欧美亚洲| 不卡一级毛片| 免费人成视频x8x8入口观看| 国产精品一区二区在线不卡| 村上凉子中文字幕在线| 久久久久久久精品吃奶| 99久久综合精品五月天人人| 亚洲全国av大片| 黑丝袜美女国产一区| xxx96com| 亚洲精品国产区一区二| 亚洲熟妇中文字幕五十中出| 亚洲欧美精品综合久久99| 老熟妇乱子伦视频在线观看| 免费在线观看影片大全网站| 两个人视频免费观看高清| 精品国产一区二区久久| 日日夜夜操网爽| ponron亚洲| 久久久久久国产a免费观看| 日韩大码丰满熟妇| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 叶爱在线成人免费视频播放| 国产激情久久老熟女| 一区二区三区激情视频| 久久久水蜜桃国产精品网| 亚洲精品国产一区二区精华液| 欧美乱色亚洲激情| 人人妻人人澡欧美一区二区 | 如日韩欧美国产精品一区二区三区| 88av欧美| 18禁黄网站禁片午夜丰满| 久久精品亚洲精品国产色婷小说| 男女下面插进去视频免费观看| 啦啦啦观看免费观看视频高清 | 久久中文字幕一级| 一边摸一边抽搐一进一出视频| 久久中文看片网| 两个人看的免费小视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成伊人成综合网2020| 欧美在线黄色| 欧美中文日本在线观看视频| 黄色女人牲交| 亚洲avbb在线观看| 99国产精品免费福利视频| 精品欧美国产一区二区三| 九色亚洲精品在线播放| 少妇裸体淫交视频免费看高清 | 深夜精品福利| 高清在线国产一区| 国产精品久久久av美女十八| 一卡2卡三卡四卡精品乱码亚洲| 麻豆久久精品国产亚洲av| 18禁黄网站禁片午夜丰满| aaaaa片日本免费| 日本五十路高清| 国产熟女午夜一区二区三区| 91成人精品电影| 99香蕉大伊视频| 欧美日本亚洲视频在线播放| 操出白浆在线播放| 久久国产精品男人的天堂亚洲| bbb黄色大片| 丁香欧美五月| 国产欧美日韩综合在线一区二区| 免费少妇av软件| svipshipincom国产片| avwww免费| 黄片播放在线免费| 丰满的人妻完整版| 夜夜躁狠狠躁天天躁| 一区二区日韩欧美中文字幕| 我的亚洲天堂| 免费高清视频大片| 国产精品亚洲美女久久久| 国产成人精品在线电影| 精品福利观看| 亚洲七黄色美女视频| 亚洲欧美激情在线| 又大又爽又粗| 日韩欧美国产一区二区入口| 18美女黄网站色大片免费观看| 少妇粗大呻吟视频| 国产精华一区二区三区| 女人高潮潮喷娇喘18禁视频| 18禁美女被吸乳视频| 亚洲人成网站在线播放欧美日韩| 大陆偷拍与自拍| 日日爽夜夜爽网站| 久久狼人影院| 亚洲一区高清亚洲精品| 91麻豆精品激情在线观看国产| 法律面前人人平等表现在哪些方面| 亚洲av成人av| 啦啦啦观看免费观看视频高清 | 久久久久久久久免费视频了| 国产精品二区激情视频| 91大片在线观看| 一个人免费在线观看的高清视频| 亚洲中文日韩欧美视频| 两个人视频免费观看高清| 看黄色毛片网站| 啪啪无遮挡十八禁网站| 亚洲午夜精品一区,二区,三区| 亚洲精品久久国产高清桃花| 日韩精品青青久久久久久| 99香蕉大伊视频| 亚洲欧美日韩无卡精品| 国产97色在线日韩免费| 免费av毛片视频| 欧美中文综合在线视频| 国产亚洲欧美在线一区二区| 一边摸一边抽搐一进一出视频| 最近最新中文字幕大全免费视频| 精品国产超薄肉色丝袜足j| 又大又爽又粗| 日韩免费av在线播放| 亚洲av电影不卡..在线观看| 丁香欧美五月| 国内精品久久久久精免费| 制服丝袜大香蕉在线| 亚洲国产日韩欧美精品在线观看 | 搡老妇女老女人老熟妇| 国产精品一区二区精品视频观看| 亚洲aⅴ乱码一区二区在线播放 | 久久亚洲真实| 亚洲午夜精品一区,二区,三区| 欧美人与性动交α欧美精品济南到| 丝袜美足系列| 亚洲精品久久国产高清桃花| 免费在线观看视频国产中文字幕亚洲| 51午夜福利影视在线观看| 不卡一级毛片| 国产熟女午夜一区二区三区| 午夜福利欧美成人| 亚洲在线自拍视频| 国产亚洲欧美在线一区二区| av免费在线观看网站| 露出奶头的视频| 久久国产精品影院| aaaaa片日本免费| 婷婷精品国产亚洲av在线| 国产人伦9x9x在线观看| 久久久精品欧美日韩精品| 国产成+人综合+亚洲专区| 青草久久国产| 12—13女人毛片做爰片一| 一卡2卡三卡四卡精品乱码亚洲| 在线天堂中文资源库| 中文字幕久久专区| 免费人成视频x8x8入口观看| 9热在线视频观看99| 99精品久久久久人妻精品| avwww免费| 国产精品永久免费网站| 成在线人永久免费视频| 国产视频一区二区在线看| 制服诱惑二区| av在线播放免费不卡| 午夜久久久在线观看| 亚洲av成人av| 午夜激情av网站| 国产亚洲精品久久久久5区| 精品少妇一区二区三区视频日本电影| 桃色一区二区三区在线观看| 人人妻人人澡欧美一区二区 | 久久精品亚洲精品国产色婷小说| 在线观看免费日韩欧美大片| 国产av在哪里看| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区二区在线av高清观看| 少妇的丰满在线观看| 亚洲精品美女久久av网站| 9热在线视频观看99| 久久亚洲真实| 国产av在哪里看| 狂野欧美激情性xxxx| 欧美黄色片欧美黄色片| 色婷婷久久久亚洲欧美| 高清黄色对白视频在线免费看| 亚洲专区中文字幕在线| 亚洲国产精品久久男人天堂| 亚洲激情在线av| 女人爽到高潮嗷嗷叫在线视频| 亚洲av电影在线进入| 日本黄色视频三级网站网址| www国产在线视频色| 亚洲精品在线美女| 亚洲成av人片免费观看| 国产成人欧美| 国内久久婷婷六月综合欲色啪| 免费高清在线观看日韩| 色播在线永久视频| 午夜福利视频1000在线观看 | 高清黄色对白视频在线免费看| 老熟妇仑乱视频hdxx| 国产精华一区二区三区| 一级a爱片免费观看的视频| 两个人看的免费小视频| 老汉色av国产亚洲站长工具| 成人精品一区二区免费| 亚洲第一青青草原| 亚洲 欧美一区二区三区| 成人免费观看视频高清| 性欧美人与动物交配| 午夜a级毛片| 好看av亚洲va欧美ⅴa在| 欧美乱妇无乱码| 成人av一区二区三区在线看| 久久精品国产99精品国产亚洲性色 | 国产男靠女视频免费网站| 免费不卡黄色视频| 国产精品一区二区三区四区久久 | 桃红色精品国产亚洲av| 美女免费视频网站| 午夜日韩欧美国产| 禁无遮挡网站| 亚洲精品国产区一区二| 亚洲国产中文字幕在线视频| 精品久久久久久久毛片微露脸| 亚洲精品中文字幕在线视频|