• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers

    2022-03-12 07:48:12ZhuangZhuangZhao趙壯壯MengXun荀孟GuanZhongPan潘冠中YunSun孫昀JingTaoZhou周靜濤andDeXinWu吳德馨
    Chinese Physics B 2022年3期

    Zhuang-Zhuang Zhao(趙壯壯), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中),Yun Sun(孫昀), Jing-Tao Zhou(周靜濤), and De-Xin Wu(吳德馨)

    Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: 808-nm VCSEL,InGaAlAs/AlGaAs quantum wells,thermal property

    1. Introduction

    Vertical cavity surface emitting lasers (VCSELs) have significant advantages such as circular output beams, low threshold currents, single longitudinal modes, high speed modulations, slow wavelength shift ratesversustemperature,and easy two-dimensional integrations.[1-6]The VCSELs have been widely used in data communication and short-distance optical interconnection.[7-11]In recent years, the VCSELs have been greatly developed and widely used in the fields of three-dimensional face recognition,hand gesture recognition,and laser radar.[12]

    The wavelength of 808 nm is a very important wavelength in high-power laser applications. For example, the 808-nm laser source can be used as a pump source of solidstate laser (Nd:YAG or Nd:YVO4) used for material cutting,marking,printing,etc.[13-15]The 808-nm pulsed laser sources are also used in the medical field for skin-care related cosmetic applications such as hair removal,[16]and they also used as industrial and military infra-red illumination sources.[17,18]Compared with the conventional 808-nm edge-emitting semiconductor lasers,VCSELs have good wavelength stability for varying environment temperatures. The VCSELs also exhibit a small divergence angle and circular output beam, which is conducive to the collimation or focusing.

    To date, there have been not many reports on 808-nm VCSELs. These reports focused mainly on how to solve the heat dissipation problem in order to increase the output power in practical applications. Because of strong GaAs absorption at 808 nm, a bottom-emitting configuration cannot be used for efficient heat dissipations. Seurinet al.demonstrated 3 mm×3 mm arrays and 5 mm×5 mm arrays with the GaAs substrate completely removed from and mounted on diamond submounts. These arrays emit more than 50 W and 120 W,respectively, and exhibit a maximum power conversion efficiency of 42%.[19]Zhonget al.improved thermal stability of 808-nm VCSEL arrays by arranging the mesa distribution within the array in a nonlinear configuration.[20]Besides exploring heat dissipation measurement, it is also important to reduce the self-heating of the device for improving the temperature stability of the device. In VCSELs,the quantum well material is critical for differential gain and temperature stability. Zhanget al.numerically simulated GaAs/Al0.3Ga0.7As,GaAsxP1-x/Al0.3Ga0.7As and In1-x-yGaxAlyAs/Al0.3Ga0.7As quantum-well active regions. The output characteristics of the three designed quantum-well VCSELs were also calculated and compared.[21]

    In this work, we design and fabricate two kinds of 808-nm VCSELs with In0.13Ga0.75Al0.12As/Al0.3Ga0.7As and Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells,respectively.The temperature characteristics of the two kinds of quantum wells are investigated mainly by theory. Then the output power characteristics and temperature characteristics of the fabricated VCSELs are analyzed in detail. The strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells exhibit higher material gain and better temperature stability than Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells. The tested results are in good agreement with the calculations. The VCSELs with strained InAlGaAs quantum wells are more suitable for high temperature operation.

    2. Design and fabrication

    The 808-nm top emitting laser layers to be examined here were grown by metal-organic chemical vapor deposition (MOCVD) on an N-type GaAs substrate. The bottom mirror consisted of 41.5 pairs of Ndoped Al0.25Ga0.75As/Al0.9Ga0.1As distributed Bragg reflectors (DBRs). The top mirror was composed of 23.5 pairs of P-doped Al0.25Ga0.75As/Al0.9Ga0.1As DBRs. The active region contained three pairs of 6-nm-thick In0.13Ga0.75Al0.12As quantum wells surrounded by 8-nm-thick Al0.3Ga0.7As barrier layers. Another kind of active region containing three pairs of 6-nm-thick Al0.05Ga0.95As quantum wells surrounded by 8-nm-thick Al0.3Ga0.7As barrier layers was also designed for contrast.

    The fabrication procedure is as follows. Firstly,Ti/Pt/Au electrode was deposited at the periphery of output aperture.The P-DBRs were etched by inductively coupled plasma(ICP)reactive ion etching to expose the Al0.98Ga0.02As layer. The oxide aperture was formed by the selective wet oxidation of Al0.98Ga0.02As into AlxOyat temperature of 420°C. A 200-nm-thick SiN layer was deposited on the surface of the VCSEL for electric isolation. After Ti/Au seed layer was sputtered, thick Au is electroplated to improve heat dissipation.Then,the substrate was thinned to 150 μm. The N-type electrode was evaporated on the substrate.Finally,the contacts are rapidly annealed in a nitrogen(N2)ambient.Figure 1(a)shows a microscopic image of the fabricated 808-nm VCSELs. Figure 1(b) shows the cross-section diagram of the 808-nm VCSEL along the A-A′direction in Fig.1(a).

    Fig. 1. (a) Microscopic image of actual device, and (b) cross-section diagram of device along A-A′ direction.

    3. Results and discussion

    The gains of In0.13Ga0.75Al0.12As/Al0.3Ga0.7As and Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells at different ambient temperatures are calculated by the standard 8-bandk· ptheory,[22]and the results are shown in Figs. 2(a)and 2(b). At the same ambient temperature, the gain of In0.13Ga0.75Al0.12As quantum wells is higher than that of Al0.05Ga0.95As quantum wells. This is because the strain of In0.13Ga0.75Al0.12As quantum wells increases the curvature of the valence band structure,thereby greatly reducing the effective mass. The strain can reduce the valence band effective mass allowing the quasi-Fermi levels to separate more symmetrically. So not only does the material turns transparent faster, but also the gain increases faster with carrier density increasing.[23,24]

    Fig. 2. (a) Curves of gain versus wavelength of three pairs of 6-nmthick In0.13Ga0.75Al0.12As quantum wells surrounded by 8-nm-thick Al0.3Ga0.7As barrier layers at different temperatures, and (b) curves of gain versus wavelength of three pairs of 6-nm-thick Al0.05Ga0.95As quantum wells surrounded by 8-nm-thick Al0.3Ga0.7As barrier layers at different temperatures.

    Owing to increased leakage carriers at high temperatures,the gains of these two kinds of quantum wells decrease as the ambient temperature increases. The variation of the extracted peak gain with ambient temperature is shown in Fig.3(a). The drop rate of Al0.05Ga0.95As quantum wells’peak gain decreasing with ambient temperature increasing is 19.18 cm-1/°C which is faster than that of In0.13Ga0.75Al0.12As quantum wells, 17.26 cm-1/°C. In addition, the gain curves of these two kinds of quantum wells are redshifted as the ambient temperature increases. The red shift rate of the peak wavelength of In0.13Ga0.75Al0.12As quantum wellsversustemperature increasing is 0.220 nm/°C which is slower than that of Al0.05Ga0.95As quantum wells, 0.275 nm/°C as indicated in Fig. 3(b). The above calculation results show that the In0.13Ga0.75Al0.12As quantum wells exhibit higher material gain and better high-temperature stability than Al0.05Ga0.95As quantum wells.

    In addition, the gains of Al0.05Ga0.95As and In0.13Ga0.75Al0.12As quantum wells with 4 nm and 8 nm in widths are also calculated at different ambient temperatures as shown in Fig. 4. The barrier material is still Al0.3Ga0.7As with 8 nm in width. Obviously, the gains of the In0.13Ga0.75Al0.12As quantum wells with 4 nm and 8 nm in widths are significantly greater than those of the Al0.05Ga0.95As quantum wells at the same ambient temperature.This trend agrees with the result of 6-nm quantum well in Fig.2. From Figs.2 and 4,the difference in gain between the two quantum wells turns smaller as the well width increases from 4 nm to 8 nm at the same temperature. As the well width is 4 nm, 6 nm, and 8 nm, the corresponding gain difference between the In0.13Ga0.75Al0.12As and Al0.05Ga0.95As quantum wells is 2239.8 cm-1, 1418.9 cm-1, and 834.9 cm-1at temperature of 30°C.

    Fig.3. Plots of(a)peak gain and(b)peak wavelength versus ambient temperature of Al0.05Ga0.95As and In0.13Ga0.75Al0.12As quantum wells with 6-nm width.

    Fig.4. Plots of gain versus wavelength of Al0.05Ga0.95As quantum wells with(a)4-nm and(d)8-nm widths at different temperatures. Plots of gain versus wavelength of In0.13Ga0.75 Al0.12As quantum wells with(b)4-nm and(d)8-nm widths. Plots of peak gain versus ambient temperature of Al0.05Ga0.95As and In0.13Ga0.75 Al0.12As quantum wells with(c)4-nm and(f)8-nm widths.

    When the quantum well width is 4 nm, the peak-gain-dropping rate with temperature increasing for In0.13Ga0.75Al0.12As quantum wells and Al0.05Ga0.95As quantum wells are 28.09 cm-1/°C and 28.66 cm-1/°C, respectively. When the quantum well width is 8 nm, the peak-gain-dropping rate of In0.13Ga0.75Al0.12As quantum wells and Al0.05Ga0.95As quantum wells are 13.38 cm-1/°C and 13.71 cm-1/°C,respectively. Therefore,the In0.13Ga0.75Al0.12As is surely more stable than Al0.05Ga0.95As quantum wells with the temperature varying. It is also found that the quantum well with larger width exhibits more stable temperature performance. However,the gain decreases as the quantum well width increases. Therefore,the 6-nm well width is very suitable in terms of both gain and temperature stabilities.

    Fig.5. Plots of(a)output power,(b)PCE,and(c)maximum PCE versus current of the Al0.05Ga0.95As quantum wells VCSELs with 10-μm oxide aperture in a temperature range of 30 °C-130 °C,and plots of(d)output power,(e)PCE,and(f)maximum PCE versus ambient temperature of In0.13Ga0.75Al0.12As quantum wells VCSELs with 10-μm oxide aperture in a temperature range of 30 °C-130 °C.

    The VCSELs with different oxide aperture diameters are fabricated and tested. TheL-Icharacteristics of the 10-μm VCSELs with both Al0.05Ga0.95As quantum wells and In0.13Ga0.75Al0.12As quantum wells at ambient temperatures ranging from 30°C to 130°C are shown in Figs. 5(a)and 5(b). It can be found that the output power of the In0.13Ga0.75Al0.12As quantum wells VCSELs is greater than that of the Al0.05Ga0.95As quantum wells VCSELs at the same ambient temperature and injection current.The maximum output power of In0.13Ga0.75Al0.12As quantum wells VCSELs is 22.88 mW at 30°C. As the ambient temperature increases,the output power gradually decreases. The maximum output power is 15.82 mW at 70°C and 1.52 mW at 130°C. The maximum power of Al0.05Ga0.95As quantum wells VCSELs is 21.37 mW at 30°C,13.35 mW at 70°C,and only 0.031 mW at 130°C. The output power of In0.13Ga0.75Al0.12As quantum wells VCSELs decreases more slowly with the increase of ambient temperature. Therefore, the In0.13Ga0.75Al0.12As quantum wells VCSELs exhibit better high-temperature performances than Al0.05Ga0.95As quantum wells VCSELs.

    The power conversion efficiency (PCE) of the VCSELs with two kinds of quantum wells under different ambient temperatures are shown in Figs. 5(b) and 5(e). As the ambient temperature is 30°C, the maximum power conversion efficiency (PCE) of In0.13Ga0.75Al0.12As quantum wells VCSELs can reach 43.82% which is higher than that of Al.05Ga0.95As quantum wells VCSELs, 41.33%. As the ambient temperature increases to 130°C, the maximum PCE for In0.13Ga0.75Al0.12As quantum wells VCSELs and Al0.05Ga0.95As quantum wells VCSELs decrease to 8.35%and 3.36%, respectively. The plots of maximum PCE of the two devicesversusambient temperature are shown in Figs. 5(c)and 5(d). Obviously,the maximum PCE of the Al.05Ga0.95As quantum wells VCSELs decreases faster with the increase of ambient temperature. Under the same operation condition,the In0.13Ga0.75Al0.12As quantum wells VCSELs have higher output power and higher power conversion efficiency than the Al0.05Ga.95As quantum wells VCSELs, showing better hightemperature stability. The experimental results are consistent with the calculations.

    Figure 6(a)shows the plots of peak output powerversusambient temperature of In0.13Ga0.75Al0.12As quantum wells VCSELs with six oxide aperture diameters in a range of 2 μm-25 μm. The peak output power of VCSELs with the same oxide aperture decreases almost linearly with ambient temperature increasing. The extracted drop rate of peak output power increasing with oxide aperture increasing is shown in Fig.6(b).The drop rate of the peak output power of the VCSELs with an oxide aperture diameter of 2 μm, 10 μm, and 25 μm are 0.0471 mW/°C, 0.1901 mW/°C, and 0.4996 mW/°C, respectively. This is because larger active region area produces more heat, which will introduce more serious heat crosstalk.The heat dissipation in large aperture VCSELs is more difficult than that in small aperture VCSELs. As the ambient temperature increases,the phenomenon turns more serious,which accelerates the temperature rise. Therefore,the small aperture VCSELs exhibit more stable temperature characteristics.

    Fig.6. (a)Plots of peak output power versus ambient temperature of In0.13Ga0.75Al0.12As quantum wells VCSELs with 2-μm-25-μm oxide apertures,and(b)plot of drop rate of peak output power versus oxide aperture.

    Fig.7.(a)Rollover current and(b)rollover current density versus ambient temperature of 808-nm In0.13Ga0.75Al0.12As quantum wells VCSELs with 2-μm-25-μm oxide apertures.

    The rollover current of VCSELs with an oxide aperture diameter of 2 μm and 25 μm at 30°C are 9.4 mA and 69 mA,respectively. When the ambient temperature rises to 110°C,the rollover currents become 5 mA and 27.5 mA,respectively,as shown in Fig. 7(a). It is noted that VCSELs with a larger oxide aperture have higher rollover currents. As the ambient temperature increases,the rollover current of the VCSELs with large oxide aperture decreases more quickly than that of the VCSELs with small oxide aperture. Figure 7(b) shows that the plots of rollover current density of VCSELsversuscurrent density for different oxide apertures. The rollover current density of 2-μm and 25-μm VCSELs at 30°C are 299.21 kA/cm2and 14.06 kA/cm2, respectively. As the temperature increases to 110°C, the rollover current density decreases to 159.15 kA/cm2and 5.60 kA/cm2,respectively.It indicates that the rollover current density of VCSELs with larger oxide aperture is smaller.With the increase of ambient temperature, the rollover current density of the VCSELs with small oxide aperture decreases faster than that of the VCSELs with large oxide aperture.

    The plots of the output power of the In0.13Ga0.75Al0.12As quantum wells VCSELsversusinjection current are shown in Fig.8(a). The changes of output power of VCSELs with different oxide apertures are basically the same under small injection currents. As the injection current increases, the output power of the VCSELs with small oxide aperture decreases faster because the VCSELs with small oxide aperture has a small rollover current. Figure 8(b) shows the change of the output power of the In0.13Ga0.75Al0.12As quantum wells VCSELs with injection current density as the ambient temperature increases from 30°C to 90°C. Under the same current density, the change of output power increases with the augment of the oxide aperture diameter. This is because the rollover current density of VCSELs with large oxide aperture is lower than that of VCSELs with small oxide aperture. Obviously,the VCSELs with small oxide aperture have more excellent high-temperature stability than large oxide aperture VCSELs.

    To investigate the thermal characteristics of In0.13Ga0.75Al0.12As quantum wells VCSELs,the thermal resistance is also calculated according to the emission spectra and the dissipated power. Thermal resistance can be determined experimentally from the following equation:[25]

    where Δλ/ΔPdissis calculated by the variation of the wavelength shift with the dissipated power. The dissipation power is calculated by the input power subtracting the output power. Figure 9(a) shows that the value of Δλ/ΔPdissof In0.13Ga0.75Al0.12As quantum wells VCSELs with 10-μm oxide aperture at 30°C, 50°C, 70°C, 90°C, and 110°C are 0.1325 nm/mW,0.1366 nm/mW,0.1434 nm/mW,0.1525 nm/mW, and 0.1615 nm/mW, respectively. Δλ/ΔThsis calculated by the peak wavelength shift rateversusambient temperature,and its value is 0.0602 nm/°. At the ambient temperatures of 30°C,50°C,70°C,90°C,and 110°C,the thermal resistances are 2.201 K/mW,2.269 K/mW,2.382 K/mW,2.533 K/mW, and 2.683 K/mW, respectively, as shown in Fig.9(b).

    Fig.8. Plots of output power of In0.13Ga0.75Al0.12As quantum wells VCSELs versus(a)injection current and(b)injection current density as ambient temperature increases from 30 °C to 90 °C.

    Fig. 9. (a) The Δλ/ΔPdiss of In0.13Ga0.75Al0.12As quantum wells VCSELs with 10-μm oxide aperture versus dissipated power at different ambient temperatures,and(b)Δλ/ΔThs and thermal resistance versus ambient temperature.

    4. Conclusions

    In conclusion, the theoretical calculations show that the strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells possess higher material gain and lower temperature sensitivity than the Al0.05Ga0.95As/Al0.3Ga0.7As quantum wells. The 808-nm vertical cavity surface emitting lasers with various oxide apertures are fabricated and characterized in this paper. It is demonstrated that the vertical cavity surface emitting lasers with strained In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells exhibit higher power conversion efficiency (PCE) and better temperature stability. Such the vertical cavity surface emitting laser of 808-nm In0.13Ga0.75Al0.12As/Al0.3Ga0.7As quantum wells will be preferred for high power applications.The maximum PCE of 43.8%for 10-μm VCSELs is achieved at the ambient temperature of 30°C. The output power and spectra of the VCSELs under different ambient temperatures are tested. We find that the smaller oxide aperture VCSELs exhibit more stable temperature performance. The thermal resistances at different temperatures are also presented.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61804175), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences(Grant No. ZDBS-LY-JSC031), and the China Postdoctoral Science Foundation(Grant No.BX20200358).

    中文亚洲av片在线观看爽| 级片在线观看| 亚洲欧美精品综合久久99| 欧美3d第一页| 国产麻豆成人av免费视频| 久久九九热精品免费| 岛国视频午夜一区免费看| 精品久久久久久,| 女人高潮潮喷娇喘18禁视频| 久久国产乱子伦精品免费另类| 在线视频色国产色| 无遮挡黄片免费观看| 成人国产一区最新在线观看| 国产午夜福利久久久久久| 不卡av一区二区三区| 麻豆一二三区av精品| 国产成人av激情在线播放| 一级毛片女人18水好多| 伦理电影免费视频| 美女被艹到高潮喷水动态| 精品人妻一区二区三区麻豆| 成人二区视频| 色视频www国产| 午夜爱爱视频在线播放| 校园人妻丝袜中文字幕| 日本av手机在线免费观看| 国产精品爽爽va在线观看网站| 日日撸夜夜添| 久久亚洲精品不卡| 深夜a级毛片| 亚洲精品久久久久久婷婷小说 | 少妇高潮的动态图| 国产 一区 欧美 日韩| 国产精品蜜桃在线观看| 国产人妻一区二区三区在| 嫩草影院新地址| 国产国拍精品亚洲av在线观看| 久久久久久久久大av| 亚洲av成人精品一二三区| 亚洲av中文av极速乱| 亚洲精品日韩av片在线观看| 国产精品久久久久久精品电影| 欧美精品国产亚洲| 热99在线观看视频| 午夜a级毛片| 色综合亚洲欧美另类图片| 国产私拍福利视频在线观看| 久久精品影院6| 变态另类丝袜制服| 成人特级av手机在线观看| av又黄又爽大尺度在线免费看 | 在线观看一区二区三区| 欧美日韩在线观看h| 国产真实伦视频高清在线观看| 村上凉子中文字幕在线| 日韩欧美精品v在线| 乱人视频在线观看| 久久久精品94久久精品| 亚洲av电影在线观看一区二区三区 | 18禁在线无遮挡免费观看视频| 99九九线精品视频在线观看视频| 欧美性猛交╳xxx乱大交人| 日产精品乱码卡一卡2卡三| 日本黄大片高清| 免费人成在线观看视频色| 国产成人a区在线观看| 亚洲国产精品国产精品| 国产精品永久免费网站| 99久久成人亚洲精品观看| 国产在视频线在精品| 国产亚洲av片在线观看秒播厂 | 一级黄色大片毛片| 国产一级毛片七仙女欲春2| 日产精品乱码卡一卡2卡三| 99热网站在线观看| 97在线视频观看| 日本免费a在线| videossex国产| 简卡轻食公司| 欧美丝袜亚洲另类| 国产视频内射| 免费黄网站久久成人精品| 国产色爽女视频免费观看| 在线播放国产精品三级| 色尼玛亚洲综合影院| 老师上课跳d突然被开到最大视频| 国产又黄又爽又无遮挡在线| 久久这里有精品视频免费| 欧美人与善性xxx| 看十八女毛片水多多多| 亚洲精品aⅴ在线观看| 国产三级在线视频| 在线观看一区二区三区| 亚洲国产欧美在线一区| 亚洲精品国产成人久久av| 国产成人a∨麻豆精品| 亚洲最大成人手机在线| 色视频www国产| 欧美成人午夜免费资源| 亚洲在线观看片| 一个人看视频在线观看www免费| 尾随美女入室| 国产老妇女一区| 只有这里有精品99| 少妇丰满av| 久久亚洲精品不卡| 久久人人爽人人爽人人片va| 国产亚洲最大av| 成人午夜高清在线视频| 狠狠狠狠99中文字幕| 日本av手机在线免费观看| 国内精品宾馆在线| 国产麻豆成人av免费视频| 桃色一区二区三区在线观看| 在线免费十八禁| 免费观看的影片在线观看| 能在线免费观看的黄片| 最近2019中文字幕mv第一页| 18禁动态无遮挡网站| 国产免费又黄又爽又色| 亚洲,欧美,日韩| 欧美激情国产日韩精品一区| 伦理电影大哥的女人| 欧美区成人在线视频| 国产精品综合久久久久久久免费| 精品久久久久久久久亚洲| 激情 狠狠 欧美| 久久国内精品自在自线图片| 能在线免费看毛片的网站| 超碰97精品在线观看| 午夜精品一区二区三区免费看| 国产伦在线观看视频一区| 最近中文字幕2019免费版| 免费观看在线日韩| 26uuu在线亚洲综合色| 国产精品国产三级国产av玫瑰| 床上黄色一级片| 亚洲av一区综合| 六月丁香七月| 人妻少妇偷人精品九色| 亚洲精品一区蜜桃| 亚洲,欧美,日韩| 纵有疾风起免费观看全集完整版 | 欧美日本视频| 亚洲av二区三区四区| 日韩精品青青久久久久久| 国产一区亚洲一区在线观看| 免费搜索国产男女视频| 1024手机看黄色片| 精品久久久久久久久久久久久| 赤兔流量卡办理| 精品国产露脸久久av麻豆 | 国产伦精品一区二区三区四那| 黄色配什么色好看| 精品人妻偷拍中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 日日干狠狠操夜夜爽| 国产精品熟女久久久久浪| 亚洲一区高清亚洲精品| 国产欧美日韩精品一区二区| 一个人看的www免费观看视频| 插逼视频在线观看| 欧美日韩在线观看h| АⅤ资源中文在线天堂| 91在线精品国自产拍蜜月| 嘟嘟电影网在线观看| 国产色爽女视频免费观看| 国产成人一区二区在线| 亚洲经典国产精华液单| 亚洲精品日韩av片在线观看| 国产亚洲91精品色在线| 亚洲精品国产av成人精品| 蜜桃亚洲精品一区二区三区| 国产成人午夜福利电影在线观看| 欧美三级亚洲精品| 久久婷婷人人爽人人干人人爱| 久久99热这里只频精品6学生 | 日本黄色片子视频| av专区在线播放| 国产老妇女一区| 亚洲欧美日韩无卡精品| 国产成人福利小说| 国产高清有码在线观看视频| 青春草国产在线视频| 国产精品野战在线观看| 亚洲第一区二区三区不卡| 久久久久精品久久久久真实原创| 淫秽高清视频在线观看| 亚洲欧美日韩高清专用| 嘟嘟电影网在线观看| 在线播放无遮挡| 精品国产露脸久久av麻豆 | 欧美+日韩+精品| 22中文网久久字幕| 免费不卡的大黄色大毛片视频在线观看 | 3wmmmm亚洲av在线观看| 偷拍熟女少妇极品色| 人妻系列 视频| 国产在线男女| av.在线天堂| 婷婷色综合大香蕉| 久久人人爽人人爽人人片va| 一区二区三区乱码不卡18| 亚洲国产精品国产精品| 最近中文字幕2019免费版| 日日撸夜夜添| 日本爱情动作片www.在线观看| 桃色一区二区三区在线观看| 久久久久免费精品人妻一区二区| 日日啪夜夜撸| 国产精品三级大全| 亚洲精品国产av成人精品| 亚洲av电影不卡..在线观看| 日本一本二区三区精品| 亚洲色图av天堂| www日本黄色视频网| 天美传媒精品一区二区| 蜜桃亚洲精品一区二区三区| 国产伦一二天堂av在线观看| 免费看a级黄色片| 久久久精品94久久精品| 99在线视频只有这里精品首页| 亚洲精品乱码久久久v下载方式| 久久久久国产网址| 日韩精品有码人妻一区| 成人午夜高清在线视频| 成人鲁丝片一二三区免费| 中文字幕av在线有码专区| 国内精品美女久久久久久| 亚洲精品日韩av片在线观看| 国产高清国产精品国产三级 | 美女cb高潮喷水在线观看| 直男gayav资源| 亚洲在久久综合| 神马国产精品三级电影在线观看| av免费在线看不卡| 综合色丁香网| 成人鲁丝片一二三区免费| 日韩成人伦理影院| 男人舔奶头视频| 亚洲内射少妇av| 国产精品熟女久久久久浪| 中文在线观看免费www的网站| 一个人看的www免费观看视频| 黄片无遮挡物在线观看| 舔av片在线| 午夜老司机福利剧场| 精品久久久久久久久久久久久| 看免费成人av毛片| 亚洲成人精品中文字幕电影| 久久久久久大精品| 热99re8久久精品国产| 联通29元200g的流量卡| 免费av不卡在线播放| 日本色播在线视频| 天美传媒精品一区二区| 桃色一区二区三区在线观看| 久久久欧美国产精品| 又粗又爽又猛毛片免费看| 国产亚洲最大av| 麻豆精品久久久久久蜜桃| 国产精品电影一区二区三区| 国产午夜福利久久久久久| 精品午夜福利在线看| 性色avwww在线观看| 亚洲国产精品国产精品| 在线天堂最新版资源| 久久99热这里只有精品18| 免费观看人在逋| 欧美丝袜亚洲另类| 欧美变态另类bdsm刘玥| 国产成人91sexporn| 一级毛片电影观看 | 天堂影院成人在线观看| 国内精品美女久久久久久| av在线天堂中文字幕| 亚洲图色成人| .国产精品久久| 深夜a级毛片| 亚洲最大成人av| 女的被弄到高潮叫床怎么办| 看十八女毛片水多多多| 亚洲av成人精品一二三区| 一区二区三区乱码不卡18| 国产在视频线在精品| 国产精品一区二区在线观看99 | 在线观看66精品国产| 热99在线观看视频| 一区二区三区免费毛片| 久久久久久久久久久丰满| 99久久九九国产精品国产免费| 美女国产视频在线观看| 六月丁香七月| 久久久久久久亚洲中文字幕| av在线蜜桃| 男女边吃奶边做爰视频| 最近2019中文字幕mv第一页| 久久这里有精品视频免费| 麻豆久久精品国产亚洲av| 一级毛片电影观看 | 国产伦精品一区二区三区四那| 国内少妇人妻偷人精品xxx网站| 国产成人福利小说| 欧美色视频一区免费| 国产激情偷乱视频一区二区| 国产极品天堂在线| 69人妻影院| 99热6这里只有精品| av专区在线播放| 欧美三级亚洲精品| 成人特级av手机在线观看| 又爽又黄无遮挡网站| 国产伦理片在线播放av一区| 3wmmmm亚洲av在线观看| 午夜福利在线观看吧| 国产av一区在线观看免费| 少妇高潮的动态图| 美女大奶头视频| 亚洲aⅴ乱码一区二区在线播放| 国产精品蜜桃在线观看| 91狼人影院| 少妇人妻一区二区三区视频| 卡戴珊不雅视频在线播放| 午夜精品国产一区二区电影 | 2022亚洲国产成人精品| 亚洲精品乱久久久久久| 最后的刺客免费高清国语| av线在线观看网站| 永久免费av网站大全| 日本猛色少妇xxxxx猛交久久| 99热全是精品| 免费无遮挡裸体视频| 亚州av有码| 99热这里只有是精品在线观看| 亚洲色图av天堂| 黑人高潮一二区| 国产精品久久久久久精品电影小说 | 一夜夜www| 亚洲精品456在线播放app| 免费看光身美女| 国产精品av视频在线免费观看| 女人十人毛片免费观看3o分钟| 一级av片app| 国产毛片a区久久久久| 中文精品一卡2卡3卡4更新| 1024手机看黄色片| 日韩成人伦理影院| 搡女人真爽免费视频火全软件| 精品久久久久久久末码| av黄色大香蕉| 国产免费福利视频在线观看| 国产精品一及| 国产成人免费观看mmmm| 中文字幕熟女人妻在线| 欧美zozozo另类| 麻豆乱淫一区二区| 夜夜爽夜夜爽视频| 亚洲精品亚洲一区二区| 亚洲欧洲日产国产| 久久人人爽人人片av| 国产伦理片在线播放av一区| 看非洲黑人一级黄片| 亚洲va在线va天堂va国产| 国产激情偷乱视频一区二区| 国产午夜福利久久久久久| 精品久久久久久电影网 | 一级爰片在线观看| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区三区| 日韩一区二区三区影片| 亚洲欧美成人精品一区二区| 97人妻精品一区二区三区麻豆| 狠狠狠狠99中文字幕| 九九爱精品视频在线观看| 亚洲成人av在线免费| 国产精品三级大全| 麻豆av噜噜一区二区三区| 熟女电影av网| 国产成人91sexporn| 亚洲欧美一区二区三区国产| 亚洲国产日韩欧美精品在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产在视频线精品| 免费av观看视频| 蜜臀久久99精品久久宅男| 最后的刺客免费高清国语| 国产精品电影一区二区三区| 看非洲黑人一级黄片| 性色avwww在线观看| 欧美日韩国产亚洲二区| 色噜噜av男人的天堂激情| 在现免费观看毛片| 少妇高潮的动态图| 青春草亚洲视频在线观看| 一级爰片在线观看| 黄片无遮挡物在线观看| 老司机影院成人| 国产午夜精品论理片| 国产成人免费观看mmmm| 亚洲国产精品成人久久小说| 国产伦理片在线播放av一区| 国产午夜精品久久久久久一区二区三区| 精品久久久久久久末码| 成人一区二区视频在线观看| 日本午夜av视频| 能在线免费观看的黄片| 欧美激情国产日韩精品一区| 国产精品,欧美在线| 国产精品国产三级国产专区5o | 久久人人爽人人爽人人片va| 99久久人妻综合| 亚洲av中文av极速乱| 69av精品久久久久久| 真实男女啪啪啪动态图| 午夜日本视频在线| 一级毛片我不卡| 亚洲无线观看免费| 久久婷婷人人爽人人干人人爱| 国产视频内射| 身体一侧抽搐| 亚洲精品影视一区二区三区av| 亚洲成av人片在线播放无| 亚洲精品色激情综合| 亚洲欧美一区二区三区国产| 九草在线视频观看| 偷拍熟女少妇极品色| 久久这里有精品视频免费| 亚洲av免费在线观看| 国产精品蜜桃在线观看| 2022亚洲国产成人精品| 久久久国产成人免费| 人体艺术视频欧美日本| 岛国在线免费视频观看| 久久亚洲国产成人精品v| 亚洲欧洲日产国产| 内地一区二区视频在线| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 国产高清不卡午夜福利| 青青草视频在线视频观看| 欧美97在线视频| 亚洲美女视频黄频| 亚洲精品456在线播放app| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡免费网站照片| av专区在线播放| 国产一区亚洲一区在线观看| 亚洲人成网站在线播| 美女大奶头视频| 午夜激情福利司机影院| 国产精品一区二区性色av| 嫩草影院入口| 内射极品少妇av片p| 亚洲精品国产成人久久av| 成人美女网站在线观看视频| 久久久成人免费电影| 日产精品乱码卡一卡2卡三| 亚洲国产最新在线播放| 亚洲最大成人中文| 狂野欧美激情性xxxx在线观看| 亚洲人成网站高清观看| 免费av毛片视频| 国产精品蜜桃在线观看| 欧美日本亚洲视频在线播放| 乱系列少妇在线播放| 亚洲欧美精品自产自拍| 美女内射精品一级片tv| 精品酒店卫生间| 成人午夜高清在线视频| 国产伦在线观看视频一区| 日本猛色少妇xxxxx猛交久久| 99热这里只有是精品50| 精品久久久久久电影网 | 精品一区二区三区人妻视频| 观看免费一级毛片| 久久久午夜欧美精品| 听说在线观看完整版免费高清| 久久精品国产亚洲av天美| 国产精品无大码| 桃色一区二区三区在线观看| 国产爱豆传媒在线观看| 亚洲国产色片| 国产午夜福利久久久久久| 亚洲精品国产av成人精品| 精品国产一区二区三区久久久樱花 | 一边摸一边抽搐一进一小说| 久久久久久久亚洲中文字幕| 久久久成人免费电影| 久热久热在线精品观看| 国产三级在线视频| 波多野结衣高清无吗| 美女内射精品一级片tv| 欧美变态另类bdsm刘玥| 99久久精品热视频| 亚洲国产精品国产精品| 国产精品av视频在线免费观看| 99热这里只有是精品在线观看| 久久欧美精品欧美久久欧美| 国产真实乱freesex| 纵有疾风起免费观看全集完整版 | 久久亚洲精品不卡| 秋霞在线观看毛片| 久久久午夜欧美精品| 国产黄色视频一区二区在线观看 | 岛国在线免费视频观看| 久久久久久久久久成人| 久久综合国产亚洲精品| 国产又色又爽无遮挡免| 国产亚洲最大av| 欧美变态另类bdsm刘玥| 综合色av麻豆| 少妇的逼水好多| 国产亚洲午夜精品一区二区久久 | 国产亚洲午夜精品一区二区久久 | 亚洲精品影视一区二区三区av| h日本视频在线播放| 久久韩国三级中文字幕| 成人亚洲欧美一区二区av| 午夜福利视频1000在线观看| 三级国产精品欧美在线观看| 国产精华一区二区三区| 亚洲第一区二区三区不卡| 午夜免费激情av| 中文亚洲av片在线观看爽| 成人无遮挡网站| 国产精品乱码一区二三区的特点| 日本av手机在线免费观看| 免费看光身美女| 两个人视频免费观看高清| 亚洲欧美成人精品一区二区| 九色成人免费人妻av| 精品久久久噜噜| 黑人高潮一二区| 麻豆一二三区av精品| 久久久精品94久久精品| 成人午夜精彩视频在线观看| 久久精品综合一区二区三区| 国产午夜精品一二区理论片| 男女国产视频网站| 亚洲成av人片在线播放无| 成人漫画全彩无遮挡| 中文资源天堂在线| 听说在线观看完整版免费高清| 欧美+日韩+精品| 亚洲精品国产成人久久av| 成人一区二区视频在线观看| 又粗又硬又长又爽又黄的视频| 青春草视频在线免费观看| 床上黄色一级片| 久久精品熟女亚洲av麻豆精品 | 午夜福利在线在线| 最近手机中文字幕大全| 久久鲁丝午夜福利片| 天美传媒精品一区二区| 少妇熟女aⅴ在线视频| 天美传媒精品一区二区| 一个人看视频在线观看www免费| 免费看美女性在线毛片视频| 日韩成人伦理影院| 日本av手机在线免费观看| 黄色配什么色好看| 亚洲五月天丁香| 网址你懂的国产日韩在线| 大香蕉97超碰在线| 中文字幕av成人在线电影| 免费在线观看成人毛片| 亚洲精品乱码久久久久久按摩| 麻豆精品久久久久久蜜桃| 久久久午夜欧美精品| 成年免费大片在线观看| 91av网一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区在线观看日韩| 亚洲图色成人| 日韩欧美三级三区| 国产伦精品一区二区三区四那| 精品久久国产蜜桃| 亚洲丝袜综合中文字幕| 狂野欧美激情性xxxx在线观看| 午夜免费男女啪啪视频观看| 国产精品一及| 亚洲在线自拍视频| a级毛片免费高清观看在线播放| 久久久久免费精品人妻一区二区| 两个人视频免费观看高清| 精品国产一区二区三区久久久樱花 | 波野结衣二区三区在线| 日本爱情动作片www.在线观看| 亚洲欧美日韩东京热| 69av精品久久久久久| 国语自产精品视频在线第100页| 插阴视频在线观看视频| 亚洲第一区二区三区不卡| 亚洲国产精品成人久久小说| 国产精品国产三级专区第一集| 亚洲av不卡在线观看| 久久亚洲精品不卡| 丝袜喷水一区| 国产精品日韩av在线免费观看| 日韩在线高清观看一区二区三区| 亚洲av一区综合| 成人高潮视频无遮挡免费网站| 久久韩国三级中文字幕| 99视频精品全部免费 在线| av国产久精品久网站免费入址| 你懂的网址亚洲精品在线观看 | 国产精品一区二区性色av| 一本久久精品| 中文字幕av成人在线电影| 韩国高清视频一区二区三区| 成人国产麻豆网| 精品久久久久久久久久久久久| 精品午夜福利在线看| 美女被艹到高潮喷水动态| 国产成人精品婷婷|