• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inferring interactions of time-delayed dynamic networks by random state variable resetting

    2022-03-12 07:47:44ChangbaoDeng鄧長寶WeinuoJiang蔣未諾andShihongWang王世紅
    Chinese Physics B 2022年3期

    Changbao Deng(鄧長寶), Weinuo Jiang(蔣未諾), and Shihong Wang(王世紅)

    School of Sciences,Beijing University of Posts and Telecommunications,Beijing 100876,China

    Keywords: time delays,network reconstruction,random state variable resetting

    1. Introduction

    Complex dynamic networks are used to model interacting individuals in interdisciplinary research.[1-6]Due to the limited propagation speed of signals, time delays play a significant role and exist extensively in real systems.[7-11]Detecting the interactions in networks is helpful for understanding the collective behaviors of complex systems. However,due to systematic nonlinearity,noises,a lack of information,time delays,and so on,inferring the interactions in dynamic networks is complicated and challenging.Some methods have been proposed for inferring the interactions without time delays. Typical statistical methods,such as cross correlation,[12]Granger causality,[13]mutual information,[14]and transfer entropy,[15]are usually used to define functional connections, which provide limited information for interacting nodes.In recent years,researchers have explored approaches to inferring the interactions by solving ordinary differential equations (ODEs).Some detection methods can be used to reconstruct a linear dynamic network,[16-19]while expanding basis[20-24]and expanding variable[25,26]methods are proposed to detect a general nonlinear dynamic network. These methods not only reveal connections, but also provide information on local dynamics and coupling functions.For these methods,[20-26]solving ODEs requires the output data of the whole network. The existence of noises increases the difficulty of network reconstruction, sometimes, also leading to new approaches.[27,28]In Refs. [27,28], the injection of noise into the nodes enhances the target interaction and weakens the effect of hidden nodes and variables. In addition, there are some proactive methods, such as driving-response controlling,[3]copysynchronization,[3]and random phase resetting.[29]

    For time-delayed dynamic networks, accurately identifying delays is the prerequisite for network reconstruction. There are several existing methods for identification of time delays, such as parameter estimation,[30]adaptive synchronization,[31,32]model-fitting approaches,[30,31]perturbation methods,[32,33]the permutation-information-theory approach,[34]and cross map evaluation.[35]However,most of these methods are appropriate in a single dynamic system. In a dynamic network, a large number of time-delayed interactions make network reconstruction extremely difficult. Recently, Zhanget al.proposed a new method to detect time delays and the average coupling strengths through the correlations induced by fast-varying noises(here called FVN).[36]

    The random state variable resetting(RSVR)[37,38]method proposed by Shiet al.,as an active control method,can be used to detect the interactions in dynamical networks. By randomly resetting the state variable of a driving node, the influence of other nodes and variables on a response node can be simplified as background average and fluctuations, and then the equivalent coupling function of a driving node to a response node can be reconstructed using only the data of two related nodes.In this paper, we introduce the RSVR method to reconstruct time-delayed dynamic networks. Based on the output data after randomly resetting, we define the nearest neighbor correlation (NNC) function for a given time delay. According to the increment of the defined NNC at the actual time delay,we can identify the time delay accurately.The error of determined time delays only depends on the sampling time interval. Compared with the FVN method,[36]the NNC function defined through RSVR is effective even for a relatively low sampling frequency. After the time delay is determined, the equivalent directed time-delayed coupling function can be reconstructed from measurable data. By arbitrarily resetting the variable of a driving node, the RSVR method can infer the time delays and equivalent directed time-delayed coupling functions of the driving node to the other response nodes. In actual networks,some nodes and variables are not measurable.This reconstruction method is applicable to networks with hidden nodes and variables.

    2. Method

    To determine the time delay of nodejto nodeiin Eq.(1),we first define the nearest neighbor correlation (NNC) function with the time delayτas

    3. Simulation results

    3.1. Time-delayed coupled Lorenz networks

    First, consider a time-delayed coupled Lorenz network[39]

    We assume that variablexiis measurable and variablesyiandziare unmeasurable. We randomly reset variablex1distributed uniformly within [-20,20] and acquire the data Eq.(4).Resetting time intervalsτresetare uniformly distributed in[1,2]. Our task is to use these data to infer the time delaysτi1and coupling coefficientsWi1. Selectingi=5,τ51=0.308 is the time delay of node 1 to node 5,andW51=0.944 is the coupling coefficient of node 1 to node 5. Given a sampling interval Δt=0.006,thenτ51=51.33Δt,and thus the discrete delayn51=51. Choosingτ=nΔt, we calculate ˙xi(tm+τ)from measured data by the forward difference ˙xi(tm+τ) =[xi(tm+τ+Δt)-xi(tm+τ)]/Δt. Then we smooth these results via Eq.(9)withM=5×105andd=0.4. The smoothing curves of ˙x5(x1,τ)whenτ=0,0.300(50Δt),0.306(51Δt),0.312(52Δt)are plotted in Figs.1(a)-1(d). In Fig.1(a)(τ=0)and Fig.1(b)(τ=50Δt), the smoothed data display randomness, i.e., no dependence. In fact, whenτranges from 0 to 50Δt,node 5 has not been affected by node 1 due to the time delay; ˙x5(x1,τ)maintains such randomness. Whenτ=51Δt(Fig. 1(c))and 52Δt(Fig.1(d)), the smoothed data display a linear dependence.In Fig.1(c),the graph representsτ=51Δt,you may observe the calculated ˙x5(x1,τ)has already been affected by the reset variablex1. The reason for that is because we are using forward difference. Thus,the affection looks like happen before the real time delayτ51=51.33Δt.

    Fig.1. Simulation results of Eq.(22)with linear diffusion coupling functions hij(xi(t),x j(t-τij))=Wij(xj(t-τij)-xi(t)). Data volume M=5×105 and sampling interval Δt =0.006. The actual time delay of node 1 to node 5 τ51=0.308,τ51=51.33Δt,and the discrete time delay n51=51. Left: Smoothing curves ˙x5(x1,τ)for (a) τ =0, (b) τ =0.300 (50Δt), (c) τ =0.306 (51Δt), (d) τ =0.312 (52Δt)vs. the state variable x1. The curves have no dependence on x1 (a), (b) and a linear dependence (c), (d). Right: (e) Dependence of NNC51 on discrete time delay n. The dashed line marks the actual time delay τ51/Δt =51.33. (f) Dependence of NNC41 on n. (g) Reconstructed discrete delays ?ni1 plotted against the actual discrete delays ni1. (h) Reconstructed coupling ?Wi1 plotted against the actual Wi1. (i)Reconstructed ?nij plotted against the actual nij. (j)Reconstructed ?Wij plotted against the actual Wi j.

    We calculate NNC51(n)via Eq.(13),wheren=/Δt」,and the results (circles) are shown in Fig. 1(e). In Fig. 1(e),the dashed line marks the actual time delayτ51/Δt=51.33,which is located between the first non-zero point (n= 51)and the second non-zero point (n= 52). We can observe that NNC51(50)=0, and NNC51(51) and NNC51(52) have a significant increment. The increments originate from the effect of the delay and the forward difference calculation of ˙x5(tm+τ). Here we choose the larger of the two non-zero values,i.e., ?n51=52 as the reconstructed discrete delay. Ifτij/Δtis not an integer,the maximal error of reconstructed time delay ?τi j= ?ni jΔtis a sampling interval, where ?ni jis the numerical discrete delay of nodejto nodei. For comparison,we select node 4 and calculate NNC41(n),and the results are presented in Fig. 1(f). Due to no link of node 1 to node 4, the values of NNC41(n)are near to zero and there is no significant increment point. Comparing Fig.1(e)with Fig. 1(f), we conclude that we can determine time delays by random variable resetting via Eq.(13).

    In Fig. 1(g), we plot the curve of numerical ?ni1against the actualni1. The results show that the numerical ?ni1values are consistent with the actual values. After determining the time delays, we can select suitable basesL=[1,x1]Taccording to the linear dependence shown in Fig.1(d),and then coefficientsAi1,1of variablex1are used as estimates of the coupling coefficients ?Wi1, which also show good agreement with the actual coupling coefficientsWi1as in Fig.1(h). Then we randomly selected 20 nodes in the network to reset, and the inferred time delays ?ni jand coupling coefficients ?Wijof these 20 nodes to all nodes are shown against the actual valuesnijandWi jin Figs. 1(i) and 1(j). We can observe that the numerical ?nijvalues are consistent with the actual valuesni j,but there is some deviation in the numerical coupling coefficients ?Wij. Because of discrete time sampling,the error of detected time delays depends on the sampling interval Δt. The error of detected time delays can cause deviations of interactions and the deviations further make reconstructed coupling coefficients decrease or increase. Therefore,the deviations of determined coupling coefficients depend on specific coupling functions,state variables,and the error of time delays.

    We will discuss how the number of resetsMand the sampling interval Δtaffect the reconstruction results. We use the root-mean-square errorsEτandEWto evaluate the reconstruction results ?τijand ?Wi j,

    Figure 2 represents the errors of the calculated time delaysEτ(Fig.2(a))and the calculated coupling coefficientsEW(Fig.2(b)).In Fig.2(a),due to the influence of fluctuationsrij,the errors of time delaysEτare greater for a relatively small number of resetsM. AsMincreases,the reconstruction errorEτreduces until it reaches saturation,which depends on sampling interval Δt. This is because when the amount of data is large enough,the errors of time delays are determined by sampling interval Δtand the maximum deviation of a time delay is less than Δt.In Fig.2(b),we can observe that,as the amount of data increases, the errors of the coupling coefficient decrease until a saturation state is reached. The errors of coupling coefficients mainly originate from sampling interval Δt,thus,to reduce the errors of coupling coefficients,decreasing sampling interval Δtis more effective than increasing the amount of dataM.

    In Eq.(22),nonlinear interactions,hi j(xi(t),xj(t-τij))=Wijx2j(t-τij),are considered and the numerical results are represented in Fig. 3. To avoid system divergence, we decrease the coupling coefficientsWi jand they are reduced to one tenth of the original values. We plot the curve of ˙x5(x1,τ) againstx1shown in Fig. 3(a), whileτ=52Δt. NNC51(n) are calculated by using Eq.(13)and the results are shown in Fig.3(b).Figure 3(b)is similar to Fig.1(e),and we can observe that the actual time delayτ51/Δt=51.33 is smaller than the second non-zero point and greater than the first non-zero point. We select the second non-zero point as the numerical discrete delay,i.e., ?n51=52. Similarly,after determining the time delayτij,we select basisL=[1,x2j]Tand solve the coupling coefficient ?Wij.The curves of Figs.3(c)and 3(d)are similar to those of Figs.1(i)and 1(j).

    Fig.2. The root-mean-square error Eτ of reconstruction time delays and the root-mean-square error EW of coupling coefficients are shown in(a)and(b),respectively. (a) Dependence of Eτ on M for Δt =0.002,0.006,0.010, and 0.020. (b)Dependence of EW on M.

    Fig. 3. Simulation results of Eq. (22) with nonlinear coupling functions hij(xj(t-τij),xi(t))=Wijx2j(t-τij). M =5×105 and Δt =0.006,τ51 =0.308. (a) Smoothing curves of ˙x5(x1,τ) plotted against x1 at τ =0.312 (52Δt). (b) Dependence of NNC51 on n. The dashed line marks the actual time delay τ51/Δt=51.33.(c)Numerical ?ni j plotted against the actual nij. (d)Numerical ?Wij plotted against the actual Wij.

    3.2. Time-delayed Hodgkin-Huxley neural network

    We consider time-delayed Hodgkin-Huxley[40]neural network dynamics,

    where the coupling coefficientsWijare uniformly distributed in [0.04,0.2] and [-0.2,-0.04] for excitatory and inhibitory synapses, respectively, andWij=0 for no links. The ratio of excitatory synapses to inhibitory synapses is 4:1. The time delaysτijare uniformly distributed in [0,1.0]. The structure of this network is exactly the same as that of Eq. (22). The parametersVrev=110 mV,Vth=100 mV,andσ=0.01. Gate variablesmi,hi,niare expressed by

    Without loss of generality, we arbitrarily reinitialize the membrane potential of node 1,V1∈[-30,110] withτreset∈[30,40].We set the sampling interval Δt=0.008 and the number of resetsM=105. In Fig.4(a), we plot the curves of the smoothed ˙V5(V1,τ) withτ=0.616 (77Δt). The actual time delay of node 1 to node 5τ51=0.6161 (77.0125Δt). When and only when variableV1exceedsVth=100 mV,neuron 1 has a significant effect on the postsynaptic neuron 5. Similar to as in Fig.3(b),we plot the curves of NNC51(n). The dashed line marks the actual time delayτ51/Δt=77.0125, which is near to the first non-zero point(?n51=77). By resetting every node,we infer all discrete delays ?ni jand the results are shown in Fig.4(c).We can see that the reconstructed time delays display satisfactory results. Selecting[1,1/(1+e-(Vj-Vth)/σ)]Tas the basis, estimated coupling coefficients of 1/(1+e-(Vj-Vth)/σ)are ?W′ij=WijCm,i〈Vrev-Vi〉, with ?Wi j= ?W′i j/(Cm,i〈Vrev-Vi〉)as the estimates of actualWi j. The results are represented in Fig.4(d). Similar to as in Fig.3(d),the numerical coefficients also have deviation.

    Fig. 4. Simulation results of a time-delayed Hodgkin-Huxley neural network. Set sampling interval Δt =0.008 and the reset number M =105.The actual time delay of node 1 to node 5 τ51 =0.6161 (77.0125Δt). (a)˙V5(V1,τ)plotted against V1 at τ=0.616(77Δt).(b)NNC51 plotted against n. The dashed line marks the actual time delay τ51/Δt =77.0125. (c)Numerical ?nij plotted against the actual nij. (d)Numerical ?Wij plotted against the actual Wij.

    4. Discussion

    We can detect the equivalent coupling functions of timedelayed dynamic networks by the random state variable resetting method. To determine the time delayτijof nodejto nodei, we define the nearest neighbor correlation function NNCij(τ),and calculate NNCij(τ)from measurable data,

    whereτ=nΔt,n=0,1,2,...,nmax.Based on the increment of NNCij(τ)at the actual time delay,we can well determine the time delayτij.The error of the reconstructed time delay is less than a sampling interval. After the time delay is determined,the equivalent coupling function can further be reconstructed from measurable data. This method can acquire all the time delays and all the equivalent coupling functions of the entire network by arbitrarily resetting the state variables of all the nodes in the network. Because the reconstruction of any timedelayed interaction in the network can be achieved only with the data of two related nodes,this method is applicable to networks with hidden variables and nodes.

    In Ref. [36], Zhanget al.proposed a method to detect time delays through fast-varying noises (FVN). Ideal fastvarying noises are white noises. Under the condition of discrete sampling,to infer the time delayτijof nodejto nodei,we define a correlation function[36]

    represents the average coupling strength of nodejto nodeiandQjis the intensity of the white noise injected to nodej. In Eq.(27),the contribution of other factors can be simplified as the second termHij(n)Δt.

    In Eq.(27), we can observe, if Δt →0,Rij(n)is discontinuous atn=nijandn=nij-1. Based on this discontinuity,we can determine the time delayτij=nijΔt. Furthermore,Jijcan be estimated via ?Jij=[Δij(nij)+Δij(nij+1)]/Qj,whereQjis calculated through ?Qj=〈˙xj(t)xj(t+Δt)〉-〈˙xj(t)xj(t)〉.

    We utilize the FVN method to analyze Eq. (22) with a linearly coupled Lorenz network. The results are illustrated in Figs. 5(a)-5(c), where the actual time delayτ51=0.308.We calculateR51(n) for Δt=0.002 (Fig. 5(a)), Δt=0.010(Fig. 5(b)) and Δt=0.020 (Fig. 5(c)). We can observe that in Fig.5(a), there exist significant increments atn=153 andn=154. However,as we increase Δtto 0.010 and 0.020,this method fails. The reconstructed results using our method are represented in Figs.5(d)(Δt=0.002),5(e)(Δt=0.010),and 5(f) (Δt=0.020). It can be seen that our method can accurately identify the time delay even when the sampling interval is relatively large.

    We further calculate the time delays and coupling strengths by using the FVN method and our method (RSVR). The numerical discrete delays ?ni1and coupling strengths ?Wi1for sampling interval Δt=0.002 are illustrated in Figs.6(a)and 6(b).We can see the numerical time delays for the two reconstruction methods display satisfactory results and the numerical coupling strengths have some deviations. Comparing with Fig.1(j)(Δt=0.006),since sampling interval Δt=0.002 has decreased,the deviations clearly decrease.

    Fig.5. Comparison of our method and the FVN method[36] for the example of a linearly coupled Lorenz network as in Eq.(22). All the dashed lines represent the actual time delay nij,τij =nijΔt. (a)Δt=0.002 and the amount of data Ndata=109. (b)Δt=0.010 and Ndata=2×108. (c)Δt=0.010 and Ndata=108. (d)Δt=0.002. (e)Δt=0.010. (f)Δt=0.020. The number of resets M=5×104 in(d)-(f).

    Fig.6. The numerical discrete delays ?ni1 and coupling coefficients ?Wi1 for the FVN method and our method(RSVR).Δt =0.002. (a)The numerical ?ni1 plotted against the actual ni1. (b)The numerical ?Wi1 plotted against the actual Wi1.

    Both our method and the FVN[36]method can reconstruct time-delayed interactions of dynamic networks with noises,hidden variables and nodes. For these two methods,detection of the interaction between two nodes only needs the output of these two nodes, so network sizes and structures do not affect the calculated results significantly. Only average coupling strength can be inferred through the FVN method,[36]while our method can reconstruct the equivalent coupling function no matter whether it is linear as in Fig.1(d)or nonlinear as in Figs. 3(a) and 4(a). Moreover, our method has better robustness for sampling intervals.

    Finally, we consider weak couplings. For a very weak coupling, ifWij →0, the equivalent coupling functionh′ij(xj,τij)→0 and ~hi j(xj,τ)→0 (Eq. (16)). According to Eq.(17),NNCij(τij)→0,and we cannot observe a significant increment for NNCij(τij).Thus we cannot identify actual time delayτij,and thenWijis also not available.

    5. Conclusion

    In this paper,we introduced a random state variable resetting method to detect the coupling functions of time-delayed dynamic networks. The nearest neighbor correlation function has been defined and calculated for measurable data by arbitrarily resetting the variable ofj. The time delay of nodejto nodeican be determined by utilizing the increment of the nearest neighbor correlation at the actual time delay. The error of a reconstructed time delay only depends on the sampling interval. Our proposed method has satisfactory reconstruction results for time delays even if the sampling interval is relatively large. Based on the determined time delays, the equivalent coupling functions can be estimated. Simulation results demonstrated that the random state variable resetting method and the nearest neighbor correlation function proposed can be used to detect the interactions of time-delayed dynamic networks.

    欧美成人a在线观看| a级一级毛片免费在线观看| 小说图片视频综合网站| 免费电影在线观看免费观看| 最近手机中文字幕大全| 国产又黄又爽又无遮挡在线| 精品不卡国产一区二区三区| 国产精品久久久久久精品电影| 一个人免费在线观看电影| 51国产日韩欧美| 成人美女网站在线观看视频| 国产白丝娇喘喷水9色精品| 最好的美女福利视频网| 中国国产av一级| 可以在线观看的亚洲视频| 久久久久久久久久久丰满| 国产精品一区二区三区四区免费观看 | 亚洲国产精品sss在线观看| 一级毛片电影观看 | 欧美精品国产亚洲| 亚洲欧美中文字幕日韩二区| 观看免费一级毛片| 日本一本二区三区精品| 精品久久久久久久久久免费视频| 久久久久久伊人网av| 精品久久国产蜜桃| 亚洲av熟女| 男女之事视频高清在线观看| 男女视频在线观看网站免费| 欧美色视频一区免费| 99热6这里只有精品| 夜夜夜夜夜久久久久| 蜜桃亚洲精品一区二区三区| 国产单亲对白刺激| 成熟少妇高潮喷水视频| 亚洲精品乱码久久久v下载方式| 亚洲国产精品国产精品| 中文在线观看免费www的网站| 国产精品永久免费网站| 男女那种视频在线观看| 成人一区二区视频在线观看| 色5月婷婷丁香| 免费无遮挡裸体视频| 免费在线观看影片大全网站| 色综合亚洲欧美另类图片| 国产精品久久久久久av不卡| 真实男女啪啪啪动态图| av在线蜜桃| 深夜精品福利| 简卡轻食公司| 搡老熟女国产l中国老女人| av天堂在线播放| 91久久精品国产一区二区三区| 精品人妻熟女av久视频| 国产亚洲精品综合一区在线观看| 成人三级黄色视频| 一区二区三区免费毛片| 午夜精品一区二区三区免费看| 国产成人精品久久久久久| 亚洲18禁久久av| 亚洲最大成人手机在线| 欧美一级a爱片免费观看看| 欧美三级亚洲精品| 午夜精品一区二区三区免费看| 三级经典国产精品| 国产精品人妻久久久影院| 国产亚洲精品久久久com| 男女那种视频在线观看| 神马国产精品三级电影在线观看| 中国国产av一级| 国产69精品久久久久777片| 亚洲成av人片在线播放无| 人人妻,人人澡人人爽秒播| 舔av片在线| 久久99热6这里只有精品| 色5月婷婷丁香| 精品人妻视频免费看| 91在线精品国自产拍蜜月| 女的被弄到高潮叫床怎么办| 三级男女做爰猛烈吃奶摸视频| 99久久精品热视频| 亚洲国产精品成人久久小说 | 伊人久久精品亚洲午夜| 免费电影在线观看免费观看| 久久国内精品自在自线图片| 国产精品人妻久久久久久| 日日啪夜夜撸| 99久久无色码亚洲精品果冻| 久久精品影院6| 一级av片app| 久久久久九九精品影院| 免费无遮挡裸体视频| 黄色视频,在线免费观看| 一边摸一边抽搐一进一小说| 国产欧美日韩一区二区精品| 成年av动漫网址| 亚洲无线观看免费| av中文乱码字幕在线| av免费在线看不卡| 欧美日韩乱码在线| 国产真实乱freesex| 国产在视频线在精品| 亚洲精华国产精华液的使用体验 | 日日摸夜夜添夜夜添av毛片| 悠悠久久av| 亚洲自拍偷在线| 美女黄网站色视频| 国国产精品蜜臀av免费| 午夜福利在线观看吧| 最近中文字幕高清免费大全6| 麻豆精品久久久久久蜜桃| 中文字幕久久专区| 久久久久国产精品人妻aⅴ院| 亚洲av中文av极速乱| 嫩草影视91久久| 看非洲黑人一级黄片| 日韩精品有码人妻一区| 国产亚洲91精品色在线| 欧美性猛交黑人性爽| 噜噜噜噜噜久久久久久91| av在线天堂中文字幕| 久久午夜福利片| 精品无人区乱码1区二区| 老司机福利观看| 精品国内亚洲2022精品成人| 国语自产精品视频在线第100页| 国产精品久久久久久久电影| 蜜臀久久99精品久久宅男| 久久久久久久久大av| 我要看日韩黄色一级片| 性色avwww在线观看| 亚洲欧美精品综合久久99| 成人一区二区视频在线观看| 亚洲欧美日韩无卡精品| 国产亚洲av嫩草精品影院| 国产精品野战在线观看| 在线观看一区二区三区| 亚洲国产精品成人久久小说 | 日韩一本色道免费dvd| 超碰av人人做人人爽久久| 亚洲人成网站在线播| 高清午夜精品一区二区三区 | 亚洲av免费高清在线观看| 国产欧美日韩精品一区二区| 精品人妻视频免费看| 一区二区三区免费毛片| 精品国内亚洲2022精品成人| 久久精品久久久久久噜噜老黄 | 欧美在线一区亚洲| 啦啦啦韩国在线观看视频| 婷婷精品国产亚洲av在线| 亚洲欧美日韩卡通动漫| 天堂av国产一区二区熟女人妻| 亚洲美女黄片视频| 日韩欧美精品免费久久| 亚洲成av人片在线播放无| 午夜a级毛片| 性色avwww在线观看| 国产激情偷乱视频一区二区| 最好的美女福利视频网| 给我免费播放毛片高清在线观看| 美女被艹到高潮喷水动态| 成年女人看的毛片在线观看| 人妻久久中文字幕网| 好男人在线观看高清免费视频| 别揉我奶头~嗯~啊~动态视频| 99热全是精品| 亚洲国产精品久久男人天堂| 亚洲人成网站高清观看| 国产黄片美女视频| 国产精品无大码| 国产精品一区二区三区四区久久| 欧美激情在线99| 亚洲成a人片在线一区二区| 精品久久久久久久久久久久久| 伊人久久精品亚洲午夜| 久久热精品热| 亚州av有码| а√天堂www在线а√下载| 午夜激情欧美在线| 丝袜喷水一区| 欧美日韩一区二区视频在线观看视频在线 | 人人妻人人澡人人爽人人夜夜 | www日本黄色视频网| 白带黄色成豆腐渣| 亚洲精品在线观看二区| 国产国拍精品亚洲av在线观看| 一个人观看的视频www高清免费观看| 99热这里只有精品一区| 精品少妇黑人巨大在线播放 | 久久久色成人| 男女那种视频在线观看| 伊人久久精品亚洲午夜| 人人妻人人澡人人爽人人夜夜 | 男女视频在线观看网站免费| 麻豆成人午夜福利视频| 欧美另类亚洲清纯唯美| 午夜日韩欧美国产| 亚洲电影在线观看av| av国产免费在线观看| 综合色av麻豆| 国产亚洲精品久久久com| 欧美高清性xxxxhd video| 熟妇人妻久久中文字幕3abv| 欧美一区二区精品小视频在线| 我的女老师完整版在线观看| 久久6这里有精品| 久久久久性生活片| 老女人水多毛片| 熟女电影av网| 国产一区二区三区在线臀色熟女| 久久人妻av系列| 亚洲成人精品中文字幕电影| 国产片特级美女逼逼视频| 伊人久久精品亚洲午夜| 狂野欧美激情性xxxx在线观看| 久久精品国产鲁丝片午夜精品| 久久欧美精品欧美久久欧美| 一区二区三区免费毛片| 91在线观看av| 91麻豆精品激情在线观看国产| 99热这里只有是精品在线观看| 夜夜看夜夜爽夜夜摸| 日韩欧美免费精品| 赤兔流量卡办理| 日韩制服骚丝袜av| 麻豆av噜噜一区二区三区| 夜夜看夜夜爽夜夜摸| 日韩成人av中文字幕在线观看 | 国产一区二区亚洲精品在线观看| 日韩亚洲欧美综合| 成年免费大片在线观看| 狂野欧美激情性xxxx在线观看| 欧美成人一区二区免费高清观看| 99热6这里只有精品| 日韩一区二区视频免费看| 一个人看的www免费观看视频| 日韩中字成人| 欧美zozozo另类| 精品久久久久久成人av| 老熟妇乱子伦视频在线观看| 欧美bdsm另类| 一区二区三区四区激情视频 | 非洲黑人性xxxx精品又粗又长| 欧美高清成人免费视频www| 国产高潮美女av| 97在线视频观看| aaaaa片日本免费| 特级一级黄色大片| 日韩中字成人| 午夜亚洲福利在线播放| 一级毛片aaaaaa免费看小| 婷婷六月久久综合丁香| 色av中文字幕| 日韩欧美精品v在线| 在线免费十八禁| 亚洲成人av在线免费| 免费大片18禁| 欧美高清成人免费视频www| 亚洲一级一片aⅴ在线观看| 国产一区二区在线观看日韩| 亚洲一区高清亚洲精品| 亚洲激情五月婷婷啪啪| 在线免费十八禁| 亚洲成人av在线免费| 欧美日韩乱码在线| 在线国产一区二区在线| 国产男人的电影天堂91| 观看免费一级毛片| 精品一区二区免费观看| 中文字幕免费在线视频6| 男人舔奶头视频| 亚洲四区av| 三级经典国产精品| 亚洲av一区综合| 成人欧美大片| 少妇的逼好多水| 亚洲国产精品国产精品| 久久这里只有精品中国| 亚洲av电影不卡..在线观看| 久久国产乱子免费精品| a级毛色黄片| 一区二区三区高清视频在线| 1024手机看黄色片| 精品一区二区三区视频在线观看免费| av视频在线观看入口| 国产精品不卡视频一区二区| 淫秽高清视频在线观看| 小蜜桃在线观看免费完整版高清| 国产一区二区激情短视频| av在线老鸭窝| 国产精品一及| 日韩欧美国产在线观看| 在线观看一区二区三区| 欧美极品一区二区三区四区| 亚洲成人中文字幕在线播放| 啦啦啦啦在线视频资源| 亚洲乱码一区二区免费版| 国产美女午夜福利| 你懂的网址亚洲精品在线观看 | 亚洲av一区综合| 国产av麻豆久久久久久久| 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| www日本黄色视频网| 国产视频内射| 婷婷精品国产亚洲av在线| 成人性生交大片免费视频hd| 麻豆久久精品国产亚洲av| 一个人观看的视频www高清免费观看| 国产伦一二天堂av在线观看| 我要看日韩黄色一级片| 天堂av国产一区二区熟女人妻| www.色视频.com| 国产成人a∨麻豆精品| 国产伦精品一区二区三区视频9| 我的女老师完整版在线观看| 欧美zozozo另类| 日韩欧美国产在线观看| 精品不卡国产一区二区三区| 亚洲av免费在线观看| 国产精品一二三区在线看| 国产精品乱码一区二三区的特点| 3wmmmm亚洲av在线观看| 免费搜索国产男女视频| 午夜激情欧美在线| 色5月婷婷丁香| 久久精品国产自在天天线| 久久久久九九精品影院| 欧美潮喷喷水| 亚洲成人中文字幕在线播放| 国产精华一区二区三区| 在线播放无遮挡| 精品一区二区免费观看| 能在线免费观看的黄片| 黄色配什么色好看| 国产亚洲91精品色在线| 在线免费观看不下载黄p国产| 日本一本二区三区精品| 中文字幕av成人在线电影| 床上黄色一级片| 在现免费观看毛片| 久久久久国产精品人妻aⅴ院| 少妇裸体淫交视频免费看高清| 久久亚洲国产成人精品v| 成年女人永久免费观看视频| 看黄色毛片网站| 亚洲国产欧美人成| 亚洲精华国产精华液的使用体验 | 男女视频在线观看网站免费| 欧美最新免费一区二区三区| 99久久无色码亚洲精品果冻| 国语自产精品视频在线第100页| 欧美zozozo另类| 人妻制服诱惑在线中文字幕| 日韩av在线大香蕉| av天堂中文字幕网| 亚洲精品久久国产高清桃花| 熟女电影av网| 国产亚洲av嫩草精品影院| av福利片在线观看| 成人漫画全彩无遮挡| 天天躁日日操中文字幕| 长腿黑丝高跟| 国产精品嫩草影院av在线观看| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲av涩爱 | 国产午夜精品论理片| 亚洲精品日韩在线中文字幕 | 男女下面进入的视频免费午夜| 国产亚洲精品久久久com| 免费人成在线观看视频色| 婷婷色综合大香蕉| 国产人妻一区二区三区在| 亚洲色图av天堂| 乱人视频在线观看| 欧美一级a爱片免费观看看| 男人舔女人下体高潮全视频| 别揉我奶头~嗯~啊~动态视频| 看十八女毛片水多多多| 深爱激情五月婷婷| 99热精品在线国产| 九九久久精品国产亚洲av麻豆| 国产亚洲欧美98| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 级片在线观看| 国产 一区精品| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 国产一区二区三区在线臀色熟女| 校园春色视频在线观看| 看免费成人av毛片| 3wmmmm亚洲av在线观看| 一个人观看的视频www高清免费观看| 欧美成人免费av一区二区三区| 欧美激情久久久久久爽电影| avwww免费| 日韩欧美精品免费久久| 国产精品一区二区免费欧美| 亚洲欧美精品自产自拍| 亚洲av一区综合| 欧美中文日本在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 18禁在线播放成人免费| 乱码一卡2卡4卡精品| 国产精品福利在线免费观看| 久久天躁狠狠躁夜夜2o2o| 成人综合一区亚洲| 男女下面进入的视频免费午夜| 国产美女午夜福利| 国产精品1区2区在线观看.| 国产蜜桃级精品一区二区三区| 一级黄片播放器| 午夜福利在线观看免费完整高清在 | 久久久成人免费电影| 久久人人爽人人片av| 亚洲一区二区三区色噜噜| 男女视频在线观看网站免费| 国产成人一区二区在线| 波多野结衣高清作品| 午夜精品国产一区二区电影 | 亚洲国产精品国产精品| 91av网一区二区| 午夜激情欧美在线| 色哟哟哟哟哟哟| 精品久久久久久久末码| 国产精品乱码一区二三区的特点| 综合色av麻豆| 国产精品电影一区二区三区| 亚洲av.av天堂| 性欧美人与动物交配| 国产女主播在线喷水免费视频网站 | 午夜福利高清视频| 久久午夜福利片| 免费观看在线日韩| 午夜激情欧美在线| 国产一区二区在线观看日韩| 久久久久精品国产欧美久久久| 五月玫瑰六月丁香| 亚洲欧美成人精品一区二区| 淫秽高清视频在线观看| 国产成人a区在线观看| eeuss影院久久| 老司机影院成人| 少妇高潮的动态图| 国产精品日韩av在线免费观看| 国产精品99久久久久久久久| 五月伊人婷婷丁香| 久久精品国产鲁丝片午夜精品| 日日撸夜夜添| 十八禁国产超污无遮挡网站| 男女下面进入的视频免费午夜| 可以在线观看的亚洲视频| 国产黄片美女视频| 精品午夜福利在线看| 国产精品伦人一区二区| 成年版毛片免费区| 欧美日韩乱码在线| 亚洲中文日韩欧美视频| 婷婷六月久久综合丁香| 日本撒尿小便嘘嘘汇集6| 国产午夜福利久久久久久| 成人午夜高清在线视频| 伦精品一区二区三区| 日韩强制内射视频| 成人欧美大片| 亚洲av成人av| 亚洲在线观看片| 国产蜜桃级精品一区二区三区| 欧美一级a爱片免费观看看| 国产精品爽爽va在线观看网站| 久久久久国产网址| 在现免费观看毛片| 蜜臀久久99精品久久宅男| 午夜精品国产一区二区电影 | 亚洲无线在线观看| 免费无遮挡裸体视频| 春色校园在线视频观看| 午夜福利在线观看免费完整高清在 | 久久久久久九九精品二区国产| 一区二区三区免费毛片| 亚洲,欧美,日韩| 天堂动漫精品| 欧美成人免费av一区二区三区| 午夜福利在线在线| 亚洲va在线va天堂va国产| 大香蕉久久网| 免费看美女性在线毛片视频| 日韩欧美国产在线观看| 久久久久久久久大av| 欧美另类亚洲清纯唯美| 亚洲欧美日韩无卡精品| 一级黄片播放器| 久久欧美精品欧美久久欧美| 精品人妻熟女av久视频| 国产高潮美女av| 别揉我奶头~嗯~啊~动态视频| 1000部很黄的大片| 国产亚洲欧美98| 亚洲综合色惰| 日韩欧美在线乱码| 欧美成人a在线观看| 国产高清视频在线播放一区| 一级av片app| 97超视频在线观看视频| 真人做人爱边吃奶动态| 噜噜噜噜噜久久久久久91| 国产精品不卡视频一区二区| 亚洲精品国产成人久久av| 国产成人a区在线观看| 91麻豆精品激情在线观看国产| 久久精品国产99精品国产亚洲性色| 嫩草影视91久久| 国产美女午夜福利| 1000部很黄的大片| 亚洲欧美中文字幕日韩二区| 三级国产精品欧美在线观看| 精品一区二区三区视频在线| 国产女主播在线喷水免费视频网站 | 亚洲美女搞黄在线观看 | 男女那种视频在线观看| 久久中文看片网| 真实男女啪啪啪动态图| 两性午夜刺激爽爽歪歪视频在线观看| 日本成人三级电影网站| 亚洲婷婷狠狠爱综合网| 免费观看在线日韩| 亚洲精品国产av成人精品 | 我要搜黄色片| 伦理电影大哥的女人| 欧美成人a在线观看| 高清午夜精品一区二区三区 | 欧美另类亚洲清纯唯美| 我的女老师完整版在线观看| 一级毛片aaaaaa免费看小| 我要看日韩黄色一级片| 久久久久国产精品人妻aⅴ院| videossex国产| 99视频精品全部免费 在线| 99在线视频只有这里精品首页| 22中文网久久字幕| 国产人妻一区二区三区在| 国内少妇人妻偷人精品xxx网站| 国产黄色视频一区二区在线观看 | 国产aⅴ精品一区二区三区波| 美女黄网站色视频| 黄色欧美视频在线观看| 久久久久久国产a免费观看| 免费一级毛片在线播放高清视频| 狂野欧美激情性xxxx在线观看| 成人亚洲欧美一区二区av| 欧美色欧美亚洲另类二区| 丰满人妻一区二区三区视频av| 国产成人一区二区在线| 亚洲av免费高清在线观看| 五月伊人婷婷丁香| 免费一级毛片在线播放高清视频| 亚洲五月天丁香| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全电影3| 欧美日韩乱码在线| 12—13女人毛片做爰片一| 成人亚洲精品av一区二区| 女生性感内裤真人,穿戴方法视频| 国语自产精品视频在线第100页| 在线免费观看不下载黄p国产| 国产精品一及| 一个人看视频在线观看www免费| 亚洲欧美日韩高清专用| 日韩精品有码人妻一区| 国产精品人妻久久久久久| 日韩制服骚丝袜av| 联通29元200g的流量卡| 淫秽高清视频在线观看| 久久精品国产亚洲av涩爱 | 亚洲,欧美,日韩| 搡老妇女老女人老熟妇| 日韩精品中文字幕看吧| 男人的好看免费观看在线视频| 永久网站在线| 亚洲最大成人手机在线| 在线观看av片永久免费下载| 干丝袜人妻中文字幕| 免费av毛片视频| 精品久久久噜噜| 久久人人爽人人爽人人片va| 国产欧美日韩精品一区二区| 国产一区二区激情短视频| 国产精品不卡视频一区二区| 亚洲七黄色美女视频| 成人亚洲欧美一区二区av| 欧美色视频一区免费| av在线观看视频网站免费| 99热这里只有精品一区| 深夜精品福利| 免费av观看视频| 亚洲av熟女| 精品熟女少妇av免费看| 熟女人妻精品中文字幕| 亚洲欧美日韩无卡精品| 欧美成人免费av一区二区三区| 18禁黄网站禁片免费观看直播| 欧美中文日本在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 国产探花在线观看一区二区| 69人妻影院| 免费在线观看影片大全网站| 热99re8久久精品国产| 国产精品福利在线免费观看| 日韩欧美国产在线观看| 亚洲内射少妇av| a级一级毛片免费在线观看| 国产精品精品国产色婷婷| 精品福利观看|