• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic structure and spin-orbit coupling in ternary transition metal chalcogenides Cu2TlX2(X =Se,Te)

    2022-03-12 07:44:06NaQin秦娜XianDu杜憲YangyangLv呂洋洋LuKang康璐ZhongxuYin尹中旭JingsongZhou周景松XuGu顧旭QinqinZhang張琴琴RunzheXu許潤(rùn)哲WenxuanZhao趙文軒YidianLi李義典ShuhuaYao姚淑華YanfengChen陳延峰ZhongkaiLiu柳仲楷LexianYang楊樂(lè)仙andYulinChen陳宇林
    Chinese Physics B 2022年3期

    Na Qin(秦娜)Xian Du(杜憲)Yangyang Lv(呂洋洋)Lu Kang(康璐)Zhongxu Yin(尹中旭)Jingsong Zhou(周景松)Xu Gu(顧旭) Qinqin Zhang(張琴琴) Runzhe Xu(許潤(rùn)哲) Wenxuan Zhao(趙文軒) Yidian Li(李義典)Shuhua Yao(姚淑華) Yanfeng Chen(陳延峰) Zhongkai Liu(柳仲楷)Lexian Yang(楊樂(lè)仙) and Yulin Chen(陳宇林)

    1State Key Laboratory of Low Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing 100084,China

    2National Laboratory of Solid State Microstructures,Department of Materials Science and Engineering,Nanjing University,Nanjing 210093,China

    3School of Physical Science and Technology,ShanghaiTech University and CAS-Shanghai Science Research Center,Shanghai 201210,China

    4ShanghaiTech Laboratory for Topological Physics,Shanghai 200031,China

    5Frontier Science Center for Quantum Information,Beijing 100084,China

    6Department of Physics,Clarendon Laboratory,University of Oxford,Parks Road,Oxford OX1 3PU,UK

    Keywords: transition metal chalcogenides, spin-orbit coupling, electronic structure, angle-resolved photoemission spectroscopy(ARPES)

    1. Introduction

    Transition metal chalcogenides with quasi-twodimensional crystal structure exhibit various fascinating properties, such as superconductivity, charge-density wave, magnetism, novel topological phase, valleytronics, etc.,[1-14]which provide not only significant scientific implications but also great application potential in the next-generation electronic and spintronic devices. Recently, ternary transition metal chalcogenides (TTMCs) have attracted great attention.Compared with their binary counterparts, TTMCs show improved tunability and complexity, thus promising a rich platform to search for and study new physics,such as the interplay between magnetism and topology, giant anomalous Hall effect,and topological quantum properties.[15-21]

    It is well-known that spin-orbit coupling (SOC) plays a pivotal role in the novel properties of quantum materials. It serves as a fundamental tuning parameter to bridge different topological phases;[22-25]it is also essentially related to the large magnetoresistance[26]and magnetocrystalline anisotropy[27]in solid materials; from application perspective, it enables electrical manipulation of spins, which is of significant importance in the newly developed spintronics and valleytronics. Therefore, it is attractive to search for and investigate materials with large SOC.

    In this work, using high-resolution angle-resolved photoemission spectroscopy (ARPES) andab initiocalculation,we study the electronic structures of Cu2TlTe2and Cu2TlSe2,newly discovered ternary transition metal chalcogenides. Our calculation shows a semiconductor and semimetal phase in Cu2TlTe2and Cu2TlSe2,respectively,suggesting a tunability of the band gap with Se/Te composition. The band dispersions near the Fermi level(EF)are mainly from p orbitals,that is, 5p orbitals of Te and 4p orbitals of Se. With the help ofab initiocalculation, we identify strong SOC effect that lifts the band degeneracy and opens large energy gaps in the band structure. Moreover, we observe a band folding near theXpoint, suggesting a surface reconstruction or surface chargedensity wave. Our study provides insights into the SOC and electronic structure of TTMC materials Cu2TlX2, which may be an interesting and useful platform to search and study novel physics,particularly in their ultrathin films.

    2. Methods

    High-quality Cu2TlX2crystals were synthesized using Bridgeman method.[28]ARPES measurements were performed at beam line I05 of the Diamond Light Source(DLS,proposal No. SI20683-1),beam line 13U of the National Synchrotron Radiation Laboratory (NSRL), and Tsinghua University. Scienta R4000 (DA30) analyzer was used at DLS(NSRL). Measurements at Tsinghua University were performed using DA30L analyzer and VUV5050 helium lamp.Samples were cleaved and measured under ultrahigh vacuum better than 1×10-10mbar. The overall energy and angular resolutions were 15 meV and 0.2°, respectively.First-principles band structure calculations of Cu2TlX2(X=Se,Te) were performed using QUANTUM ESPRESSO code package[29]with a plane wave basis. The pseudopotentials suggested by Standard Solid State Pseudopotentials (SSSP)Precision v1.1[30]were chosen for all elements. The exchange and correlation energy was considered under Perdew-Burke-Ernzerhof(PBE)type generalized gradient approximation (GGA).[31]Both lattice constants and fractional atomic coordinates were set to the experimental values. The cutoff energy for the plane-wave basis was set to 560 eV in all calculations, which was sufficient to converge the total energy for a givenk-point sampling. AΓ-centered Monkhorst-Packk-point mesh of 16×16×16 (15×15×15) with a spacing of 0.15 °A-1was adopted for Cu2TlSe2(Cu2TlTe2) to get a self-consistent charge density. Both the conditions of excluding and including spin-orbit coupling were considered in the self-consistent calculations. The electronic minimization algorithm used for self-consistent calculations was a blocked Davidson algorithm. Surface-projected band structures were calculated with the WANNIERTOOLS package,[32]based on the tight-binding type Hamiltonian constructed from maximally localized Wannier functions (MLWF) supplied by the Wannier90 code,[33]by projecting theab initioconstructed(Kohn-Sham) Bloch states into the atomic-orbital like Wannier functions starting from a 9×9×9 uniformkgrid.

    3. Results and discussion

    Copper based ternary TTMCs Cu2TlX2(X= Se,Te)crystallize into a layered tetragonal ThCr2Si2-type structure with alternatively stacking Cu2X2and Tl layers, as shown in Fig. 1(a). Figure 1(b) shows the three-dimensional Brillouin zone of Cu2TlX2and its surface projection with highsymmetry points indicated. Our resistivity measurements in Fig.1(c)show prototypical metallic behaviors that can be well understood within Fermi-liquid theory.[28]We observe sharp peaks in single crystal x-ray diffraction measurements, suggesting a lattice constant ofc= 14.03 °A and 15.21 °A for Cu2TlSe2and Cu2TlTe2,respectively.

    Although the materials are quasi-two dimensional, our photon-energy dependent Fermi surface (FS) measurements on Cu2TlTe2in Fig.2(a)show resolvable variation. Using an inner potential of 13 eV,we can determine the high symmetry points alongkz, as shown in Figs. 2(a) and 2(b). We observe a strong dispersion between-0.95 eV and-0.5 eV alongΓ Z[white dashed line in Fig.2(b)], suggesting an important role of interlayer coupling in the electronic structure of Cu2TlTe2.TheΓandZpoints can be approached by 122 eV and 102 eV photons, respectively. Figures 2(c) and 2(d) show the evolution of the constant energy contour with binding energy on theΓ ΣXandZΣ1Y1planes, respectively. The measured Fermi surface consists of a four-fold symmetric hole pocket near theˉΓpoint, an electron pocket around the ˉMpoint, and a small hole pocket around the ˉXpoint,which evolves into a complex texture at high binding energies. The FS and constant energy contours at different binding energies are perfectly reproduced by ourab initiocalculation as shown in Fig.2(e).

    Fig.1.(a)Crystal structure of Cu2TlX2(X=Se,Te).(b)Three-dimensional Brillouin zone of Cu2TlX2 and its surface projection with high-symmetry points indicated. (c) Resistivity of Cu2TlX2 as a function of temperature.(d)Single-crystal x-ray diffraction data of Cu2TlSe2 and Cu2TlTe2.

    Figure 3 shows the band structure of Cu2TlTe2along high symmetry directions. We observe anisotropic dispersions alongΓ ΣandΓ X[Figs. 3(a)-3(c)]. NearEF, there exist mainly two bands,αandβcrossingEF. Theαband is nearly flat near theΓpoint, which may contribute high density of states nearEF. Theβband,on the other hand,shows a linear dispersion in a large energy range,as shown in Figs.3(b)and 3(c).The Fermi velocity of theβband is about 4.8 eV·°A alongΣX, about 60%of that of graphene.[16]The linear dispersion of theβband may contribute to the unsaturated magnetoresistance in Cu2TlTe2at high magnetic field.[28]The band structure of Cu2TlTe2is nicely reproduced by our calculation with SOC included [Figs. 3(d) and 3(e)], in which theαandβbands are shown by the blue and red curves,respectively. We emphasize that thekzdispersion observed in Fig. 2(b) is also captured by ourab initiocalculation.

    Fig.2. (a)Fermi surface of Cu2TlTe2 in the Γ ΣZ plane obtained by photon-energy dependent measurements. (b)The kz-dispersion along Γ Z. (c),(d)Evolution of the constant-energy-contours with binding energy on(c)Γ ΣX and(d)ZΣ1Y1 planes,respectively. (e)Calculated constant-energycontours of Cu2TlTe2. Data were taken at 10 K.

    Fig. 3. (a)-(c) ARPES measured band dispersions of Cu2TlTe2 along high symmetry directions. (d), (e) Band structures obtained by ab initio calculation with(d)and without(e)spin-orbit coupling(SOC).The red arrows indicate the band gaps induced by SOC.The red and blue circles indicate the band crossings with small energy gap. Data were taken with 122 eV photons at 10 K.

    By comparing our experiment with the calculations with and without SOC,we notice that the flat band nearΓis actually induced by the strong SOC in the system. Moreover,the SOC induces a band gap as large as 399(174)meV along theΓ X(Γ Σ) direction [red arrows in Fig. 3(e)], in good agreement with our experiment[red arrows in Figs.3(a)and 3(b)],suggesting strong SOC effect modulating the band structure of Cu2TlTe2. The SOC also lifts the band degeneracy alongΓ Z,inducing a band splitting as large as 380 meV.

    Figure 4 shows the band structure of Cu2TlSe2. Overall, the band structure of Cu2TlSe2is very similar to that of Cu2TlTe2. The Fermi surface is likewise mainly contributed by theαandβbands [Fig. 4(a)]. The flat band nearEFas in Cu2TlTe2is not observed since it locates slightly aboveEF, and such difference may be due to the non-stoichiometry of Cu2TlTe2.[28]However, we observe another flat band near 500 meV belowEFusing 21.2 eV photons [Figs. 4(b) and 4(c)]. The Fermi velocity of theβband along ˉΣˉXis about 2 eV·°A, much smaller than that in Cu2TlTe2. The band gap along ˉ?![red arrows in Figs. 4(c) and 4(f)] and the band splitting alongΓ Zinduced by SOC are also much smaller than those in Cu2TlTe2, suggesting a stronger SOC effect in Cu2TlTe2. The measured band structure of Cu2TlSe2and calculations along high symmetry directions are shown in Figs. 4(b)-4(f). Although the flat band near-500 meV is not in the calculation along high symmetry points, it can be reproduced by the calculation at akzposition betweenΓandZ, since the band below theαband shows an electron (hole)like dispersion alongΓ Σ(ZΣ1) in the calculation [Fig. 4(f)].Indeed,thekzvalue corresponding to 21.2 eV photons is estimated to be near the middle ofΓandZin the Brillouin zone.

    From the calculations in Figs.3(e)and 4(f),we note that Cu2TlSe2is a semiconductor with indirect band gap of about 226 meV, in contrast to the semi-metallic band structure of Cu2TlTe2, suggesting a tunability of the band gap by Se/Te composition in the Cu2TlX2materials. We further conducted orbital-projectedab-initiocalculation as shown in Fig.5. The band dispersions nearEFare mainly contributed by the 4p/5p orbital of the Se/Te atoms. Therefore, the change of Se/Te composition can efficiently tune the band gap of Cu2TlX2. It is worth noting that both of our Cu2TlX2samples are p-doped with the valence bands crossingEF. Further electron doping or the synthesis of intrinsic samples are required to establish the tunability of the band gap.

    In both Cu2TlTe2and Cu2TlSe2, there exist band crossings that are nearly gapless alongΓ Σ[red and blue circles in Figs. 3(d), 3(e), 4(e) and 4(f)]. According to our calculation,the hybridization gaps near these band crossings are less than 10 meV in Cu2TlTe2and less than 5 meV in Cu2TlSe2,which are immune to the SOC[red and blue circles in Figs.3(d),3(e),4(e)and 4(f)]. In Cu2TlSe2,we observe a Dirac-like band dispersion nearEF, consistent with our calculation [red circles in Figs. 4(b) and 4(f)]. It is likely that, with lighter atoms in the system, for example, in Cu2TlS2, a nearly gapless Dirac fermion can exist nearEF.

    Fig.4. (a)Measured(left)and calculated(right)Fermi surface of Cu2TlSe2. (b)-(d)ARPES measured band dispersions of Cu2TlSe2 along high symmetry directions. (e),(f)Band structure obtained by ab initio calculation with(e)and without(f)SOC.The red arrows indicate the band gaps induced by SOC.The red and blue circles indicate the band crossings with small energy gap. Data were collected with 21.2 eV photons delivered by a helium lamp at 68 K.

    Fig.5.Orbital-projected band structure calculations of Cu2TlX2 without SOC,in which the point size indicates the weight of the orbital contributions to band dispersions. (a),(b)Cu d and Te p states in Cu2TlTe2. (c),(d)Cu d and Se p states in Cu2TlSe2.

    Fig.6. (a)Fermi surface of Cu2TlTe2 measured with 80 eV photon energy.(b) Band dispersion of Cu2TlTe2 along ΣX, which is indicated by red line in (a), showing band folding from the Σ point to the X point. Data were collected at 10 K.

    Noticeably, in the Fermi surface and band dispersion alongΣXof Cu2TlTe2, we observe band folding fromΣtoX(Figs. 6(a) and 6(b)) using photon energy of 80 eV that is more surface-sensitive. The band folding fromΣtoΓis also resolvable in Fig.3(a),which complicates the band dispersion nearΓin Fig.3(a).Such band folding suggests a 2-fold reconstruction of the crystal structure. Since we do not observe any anomaly in temperature dependent resistivity measurements,the observed band folding is likely due to a surface reconstruction or surface charge-density wave,which requires further experimental investigations.

    4. Summary

    To sum up, we systematically measure the electronic structure of Cu2TlX2using high-resolution ARPES.The transition from a semiconductor in Cu2TlSe2to a semimetal in Cu2TlTe2, as indicated by ourab initiocalculation, suggests a tunability of the electronic structure and physical property of the materials with Se/Te composition. With the help ofab initiocalculation, we identify strong SOC effect in the band structure of Cu2TlTe2, which opens a band gap and lifts the band degeneracy alongΓ Z. We propose that a massless Dirac fermion may exist nearEFin the sibling Cu2TlX2crystal,i.e.,Cu2TlS2if it is successfully synthesized. Our results are helpful to understand the electronic properties of Cu2TlX2, and also provide a material platform to search for SOC-related physics.

    Acknowledgments

    This study was supported by the National Natural Science Foundation of China(Grant No.11774190). We thank for access to DLS beamline I05 and NSRL beamline 13U with help from S.W.Jung,C.Cacho,S.T.Cui,and Z.Sun.

    netflix在线观看网站| 操美女的视频在线观看| 9色porny在线观看| 看黄色毛片网站| 日本黄色视频三级网站网址| 日韩欧美一区视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久久九九精品影院| www.www免费av| 美女高潮喷水抽搐中文字幕| 国产xxxxx性猛交| 亚洲av电影在线进入| 亚洲人成电影观看| 久久人人爽av亚洲精品天堂| 国产精品免费视频内射| 精品一区二区三区视频在线观看免费| 免费无遮挡裸体视频| 国产成人免费无遮挡视频| 一级a爱视频在线免费观看| 美女免费视频网站| 免费人成视频x8x8入口观看| 亚洲精品国产一区二区精华液| 搡老熟女国产l中国老女人| 在线观看www视频免费| 国产男靠女视频免费网站| 亚洲精品在线美女| 91精品国产国语对白视频| 国产极品粉嫩免费观看在线| 日本撒尿小便嘘嘘汇集6| 制服丝袜大香蕉在线| 91精品三级在线观看| 黄色女人牲交| 日本精品一区二区三区蜜桃| 免费观看人在逋| 在线观看午夜福利视频| 午夜精品久久久久久毛片777| 91大片在线观看| 成年版毛片免费区| 亚洲国产看品久久| 欧美黄色片欧美黄色片| 欧美日本亚洲视频在线播放| 又紧又爽又黄一区二区| 少妇粗大呻吟视频| 成人免费观看视频高清| 欧美黄色淫秽网站| 淫妇啪啪啪对白视频| 亚洲中文日韩欧美视频| 欧美性长视频在线观看| 欧美激情久久久久久爽电影 | 变态另类丝袜制服| 69精品国产乱码久久久| 麻豆一二三区av精品| 99久久久亚洲精品蜜臀av| 久久精品aⅴ一区二区三区四区| 日日干狠狠操夜夜爽| 在线av久久热| 亚洲午夜精品一区,二区,三区| 国产在线观看jvid| 亚洲aⅴ乱码一区二区在线播放 | 桃色一区二区三区在线观看| 亚洲自偷自拍图片 自拍| 村上凉子中文字幕在线| 狠狠狠狠99中文字幕| 可以免费在线观看a视频的电影网站| 精品久久久精品久久久| 一级a爱片免费观看的视频| 免费女性裸体啪啪无遮挡网站| 国产区一区二久久| 一边摸一边抽搐一进一出视频| 日韩 欧美 亚洲 中文字幕| 狠狠狠狠99中文字幕| 欧美成人免费av一区二区三区| 一本大道久久a久久精品| 村上凉子中文字幕在线| 电影成人av| 欧美国产日韩亚洲一区| 一边摸一边做爽爽视频免费| 亚洲精品美女久久久久99蜜臀| 十八禁人妻一区二区| 级片在线观看| 老汉色∧v一级毛片| 99精品欧美一区二区三区四区| 欧美日韩乱码在线| 欧美黄色淫秽网站| 一级毛片精品| 午夜日韩欧美国产| 天天一区二区日本电影三级 | 成人18禁在线播放| 久久精品91蜜桃| 亚洲精品美女久久久久99蜜臀| 嫁个100分男人电影在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品电影一区二区三区| 搞女人的毛片| 亚洲专区国产一区二区| 一进一出抽搐gif免费好疼| 亚洲国产精品999在线| 制服丝袜大香蕉在线| 久久久国产成人精品二区| 色综合婷婷激情| 波多野结衣高清无吗| 女生性感内裤真人,穿戴方法视频| 色播亚洲综合网| 性少妇av在线| 色综合欧美亚洲国产小说| 天堂影院成人在线观看| 纯流量卡能插随身wifi吗| 久久久久久久午夜电影| 欧美日韩亚洲国产一区二区在线观看| 最新美女视频免费是黄的| netflix在线观看网站| 黑人操中国人逼视频| netflix在线观看网站| 色老头精品视频在线观看| 神马国产精品三级电影在线观看 | 久久久久亚洲av毛片大全| 亚洲精品美女久久久久99蜜臀| 操出白浆在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜日韩欧美国产| 国产真人三级小视频在线观看| 狠狠狠狠99中文字幕| 亚洲免费av在线视频| 国产在线精品亚洲第一网站| 亚洲专区中文字幕在线| 男女之事视频高清在线观看| 国产精品一区二区免费欧美| 人人妻人人澡欧美一区二区 | 久久精品91蜜桃| 国产一区二区在线av高清观看| 国产精品秋霞免费鲁丝片| 国产熟女xx| 美女免费视频网站| 久久中文字幕人妻熟女| 国产色视频综合| 国产精品亚洲av一区麻豆| 亚洲av电影不卡..在线观看| 麻豆久久精品国产亚洲av| 免费高清在线观看日韩| 伦理电影免费视频| 黑人巨大精品欧美一区二区蜜桃| 香蕉丝袜av| 亚洲精品国产一区二区精华液| 亚洲中文字幕日韩| 极品教师在线免费播放| 久久影院123| 老司机靠b影院| 亚洲中文av在线| 国产欧美日韩一区二区精品| 午夜福利成人在线免费观看| 欧美大码av| 精品久久久精品久久久| 久久精品aⅴ一区二区三区四区| 成人手机av| 成人18禁在线播放| 国产熟女xx| 精品福利观看| 国产精品一区二区在线不卡| 欧洲精品卡2卡3卡4卡5卡区| 一进一出抽搐动态| 久久影院123| 亚洲专区国产一区二区| 嫩草影视91久久| 国产亚洲精品久久久久5区| 亚洲第一电影网av| 久久久久亚洲av毛片大全| 久久人妻熟女aⅴ| 成人18禁在线播放| 国产三级在线视频| 成年人黄色毛片网站| 久久精品国产综合久久久| 啦啦啦免费观看视频1| 嫁个100分男人电影在线观看| 欧美最黄视频在线播放免费| 两个人免费观看高清视频| 男人的好看免费观看在线视频 | 多毛熟女@视频| 日本黄色视频三级网站网址| 亚洲欧美一区二区三区黑人| 中文字幕av电影在线播放| 少妇粗大呻吟视频| 日本 欧美在线| 亚洲欧美日韩高清在线视频| 国产又色又爽无遮挡免费看| 非洲黑人性xxxx精品又粗又长| 中文字幕精品免费在线观看视频| 天堂√8在线中文| 性欧美人与动物交配| 亚洲成人免费电影在线观看| 久久精品国产亚洲av高清一级| 亚洲天堂国产精品一区在线| 美女免费视频网站| 三级毛片av免费| 美女国产高潮福利片在线看| 露出奶头的视频| 亚洲国产精品久久男人天堂| 涩涩av久久男人的天堂| 麻豆国产av国片精品| 丝袜美足系列| 深夜精品福利| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| 国产高清有码在线观看视频 | 欧美色视频一区免费| av电影中文网址| 精品国产美女av久久久久小说| 女警被强在线播放| 在线观看免费视频日本深夜| 亚洲精品中文字幕一二三四区| xxx96com| 两个人免费观看高清视频| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费| 欧美在线一区亚洲| 美国免费a级毛片| 亚洲第一青青草原| 欧美另类亚洲清纯唯美| 国产精品久久久久久亚洲av鲁大| 大香蕉久久成人网| 成年版毛片免费区| 免费观看人在逋| 人人澡人人妻人| 91成人精品电影| a级毛片在线看网站| 波多野结衣巨乳人妻| 久久精品aⅴ一区二区三区四区| 国产国语露脸激情在线看| 成年版毛片免费区| 国产伦人伦偷精品视频| 亚洲av片天天在线观看| 亚洲精品美女久久久久99蜜臀| 欧美成人免费av一区二区三区| 99久久久亚洲精品蜜臀av| 人成视频在线观看免费观看| 午夜久久久在线观看| 亚洲一区中文字幕在线| 国产三级在线视频| 国产三级黄色录像| 一边摸一边抽搐一进一小说| 国产aⅴ精品一区二区三区波| av中文乱码字幕在线| 大香蕉久久成人网| 久久精品亚洲熟妇少妇任你| 久久精品aⅴ一区二区三区四区| 电影成人av| 日韩大码丰满熟妇| 免费看a级黄色片| 日韩欧美三级三区| 十八禁人妻一区二区| 精品国内亚洲2022精品成人| 在线观看www视频免费| 国产一区二区在线av高清观看| 极品人妻少妇av视频| 亚洲av片天天在线观看| 乱人伦中国视频| 免费人成视频x8x8入口观看| 老司机福利观看| 精品不卡国产一区二区三区| 美女高潮到喷水免费观看| 精品日产1卡2卡| 在线观看www视频免费| 黄色视频,在线免费观看| 亚洲av电影不卡..在线观看| 久久婷婷成人综合色麻豆| 99国产综合亚洲精品| 中文字幕色久视频| 搞女人的毛片| 日本欧美视频一区| 在线观看午夜福利视频| 99久久精品国产亚洲精品| 免费人成视频x8x8入口观看| 我的亚洲天堂| 亚洲国产精品999在线| 久久九九热精品免费| 精品久久久久久久人妻蜜臀av | 一进一出好大好爽视频| 女警被强在线播放| 亚洲中文日韩欧美视频| 啦啦啦免费观看视频1| 69av精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 9热在线视频观看99| 欧美在线黄色| 久久精品成人免费网站| 国产1区2区3区精品| 国产精品免费一区二区三区在线| 成熟少妇高潮喷水视频| 亚洲国产精品sss在线观看| 国产熟女午夜一区二区三区| 亚洲精品中文字幕在线视频| 在线观看免费日韩欧美大片| 亚洲av五月六月丁香网| 欧美日韩亚洲综合一区二区三区_| 我的亚洲天堂| 99精品欧美一区二区三区四区| 欧美中文综合在线视频| 亚洲国产看品久久| 成熟少妇高潮喷水视频| 中文字幕人成人乱码亚洲影| 欧美一级毛片孕妇| 亚洲国产精品sss在线观看| 99久久国产精品久久久| 大型黄色视频在线免费观看| 在线观看日韩欧美| 成人特级黄色片久久久久久久| 夜夜爽天天搞| 女性被躁到高潮视频| 成在线人永久免费视频| 国产成人免费无遮挡视频| 人人妻人人爽人人添夜夜欢视频| 9色porny在线观看| 岛国视频午夜一区免费看| svipshipincom国产片| 亚洲第一av免费看| 欧美成人免费av一区二区三区| 最好的美女福利视频网| 女人精品久久久久毛片| 涩涩av久久男人的天堂| 十分钟在线观看高清视频www| www.自偷自拍.com| 日韩有码中文字幕| 妹子高潮喷水视频| 两性夫妻黄色片| av免费在线观看网站| 狠狠狠狠99中文字幕| 亚洲一区二区三区不卡视频| 欧美日韩亚洲综合一区二区三区_| 亚洲中文日韩欧美视频| 国产一区二区三区在线臀色熟女| netflix在线观看网站| 国产亚洲欧美在线一区二区| 精品国产乱子伦一区二区三区| avwww免费| 可以在线观看的亚洲视频| 日日爽夜夜爽网站| 国产精华一区二区三区| 99久久99久久久精品蜜桃| 国产三级在线视频| 亚洲性夜色夜夜综合| 级片在线观看| 国产av在哪里看| 色播亚洲综合网| 看片在线看免费视频| 亚洲,欧美精品.| 可以免费在线观看a视频的电影网站| 国产视频一区二区在线看| 国产伦人伦偷精品视频| 欧美最黄视频在线播放免费| 亚洲第一av免费看| 一级片免费观看大全| 国产精品一区二区免费欧美| 国产精品久久久久久亚洲av鲁大| 亚洲国产欧美一区二区综合| 欧美一级a爱片免费观看看 | 国产成人欧美在线观看| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 亚洲自偷自拍图片 自拍| 欧美激情高清一区二区三区| 老司机深夜福利视频在线观看| 日韩视频一区二区在线观看| av电影中文网址| 久久人妻福利社区极品人妻图片| 亚洲自偷自拍图片 自拍| 精品国产乱码久久久久久男人| 欧美乱码精品一区二区三区| 性色av乱码一区二区三区2| 一本大道久久a久久精品| 91av网站免费观看| 亚洲自偷自拍图片 自拍| 亚洲九九香蕉| 女性被躁到高潮视频| 亚洲一码二码三码区别大吗| 欧美精品亚洲一区二区| 免费看十八禁软件| 国产午夜福利久久久久久| 嫁个100分男人电影在线观看| 精品不卡国产一区二区三区| 午夜福利在线观看吧| 欧美精品亚洲一区二区| 一级片免费观看大全| 国产精品98久久久久久宅男小说| 十八禁人妻一区二区| 成人特级黄色片久久久久久久| 一区二区三区精品91| 亚洲成人免费电影在线观看| 久9热在线精品视频| 不卡一级毛片| 精品欧美国产一区二区三| 亚洲精品在线美女| a在线观看视频网站| 日韩中文字幕欧美一区二区| 国产欧美日韩一区二区精品| 日韩精品青青久久久久久| 久久久精品国产亚洲av高清涩受| 亚洲成人精品中文字幕电影| 成人亚洲精品av一区二区| 在线观看免费视频网站a站| 欧洲精品卡2卡3卡4卡5卡区| 精品乱码久久久久久99久播| 国产激情欧美一区二区| 亚洲av电影在线进入| 女人爽到高潮嗷嗷叫在线视频| 99国产综合亚洲精品| 国产免费男女视频| 满18在线观看网站| 国产视频一区二区在线看| 给我免费播放毛片高清在线观看| 美女大奶头视频| 国产成人欧美在线观看| 婷婷六月久久综合丁香| 久久人妻av系列| 长腿黑丝高跟| 热re99久久国产66热| 久久中文字幕人妻熟女| 老熟妇乱子伦视频在线观看| 99riav亚洲国产免费| 成人特级黄色片久久久久久久| 精品欧美国产一区二区三| 精品电影一区二区在线| 首页视频小说图片口味搜索| 亚洲片人在线观看| 91老司机精品| 一个人免费在线观看的高清视频| 天天一区二区日本电影三级 | 亚洲一区二区三区色噜噜| 99香蕉大伊视频| 97碰自拍视频| 精品午夜福利视频在线观看一区| 亚洲激情在线av| 高清在线国产一区| 日韩精品青青久久久久久| 亚洲精品久久国产高清桃花| 每晚都被弄得嗷嗷叫到高潮| 欧美色欧美亚洲另类二区 | 久久人妻av系列| 变态另类丝袜制服| 国产伦一二天堂av在线观看| cao死你这个sao货| 在线观看www视频免费| 午夜精品在线福利| av天堂在线播放| 黄色片一级片一级黄色片| 韩国精品一区二区三区| 亚洲一区高清亚洲精品| 在线永久观看黄色视频| 看免费av毛片| 少妇裸体淫交视频免费看高清 | 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| 丝袜美足系列| 日韩av在线大香蕉| 国产一区二区三区视频了| 久9热在线精品视频| 久久欧美精品欧美久久欧美| 成人三级做爰电影| 1024香蕉在线观看| 男男h啪啪无遮挡| 免费看美女性在线毛片视频| 变态另类成人亚洲欧美熟女 | 午夜福利18| 欧洲精品卡2卡3卡4卡5卡区| 久久精品影院6| 欧美乱码精品一区二区三区| 日本 欧美在线| 欧美亚洲日本最大视频资源| 久久久久久亚洲精品国产蜜桃av| 久久婷婷人人爽人人干人人爱 | 久久人妻熟女aⅴ| 亚洲专区国产一区二区| 操出白浆在线播放| 美女午夜性视频免费| 亚洲天堂国产精品一区在线| 成人亚洲精品一区在线观看| 色老头精品视频在线观看| 男人的好看免费观看在线视频 | 999精品在线视频| 精品一区二区三区四区五区乱码| 午夜福利欧美成人| 久久人妻av系列| 露出奶头的视频| 亚洲午夜精品一区,二区,三区| 国产色视频综合| 婷婷精品国产亚洲av在线| 成熟少妇高潮喷水视频| 91精品三级在线观看| 国产熟女xx| 亚洲欧美一区二区三区黑人| 少妇熟女aⅴ在线视频| 搡老妇女老女人老熟妇| 脱女人内裤的视频| 十分钟在线观看高清视频www| 国产亚洲精品第一综合不卡| 中文字幕色久视频| 亚洲自拍偷在线| 日本撒尿小便嘘嘘汇集6| 波多野结衣高清无吗| 十分钟在线观看高清视频www| 波多野结衣av一区二区av| 欧美一级毛片孕妇| 中文字幕人成人乱码亚洲影| 精品日产1卡2卡| 亚洲国产精品sss在线观看| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久亚洲av鲁大| 可以在线观看的亚洲视频| 女人被躁到高潮嗷嗷叫费观| 真人一进一出gif抽搐免费| 亚洲 欧美 日韩 在线 免费| 国产精品 国内视频| 啦啦啦观看免费观看视频高清 | 麻豆av在线久日| 丝袜美足系列| 亚洲av日韩精品久久久久久密| 欧美日韩瑟瑟在线播放| 成年人黄色毛片网站| 久久国产乱子伦精品免费另类| 国产片内射在线| 美女高潮到喷水免费观看| 欧美激情久久久久久爽电影 | av天堂在线播放| 亚洲第一电影网av| 一个人免费在线观看的高清视频| 变态另类成人亚洲欧美熟女 | 日韩欧美一区视频在线观看| 国产精品电影一区二区三区| cao死你这个sao货| 精品电影一区二区在线| 日韩欧美在线二视频| 久久久久久国产a免费观看| 老熟妇乱子伦视频在线观看| 日本一区二区免费在线视频| 男人舔女人下体高潮全视频| 国产精品野战在线观看| 亚洲一码二码三码区别大吗| ponron亚洲| 国产精品久久电影中文字幕| 亚洲av成人av| 久久精品亚洲精品国产色婷小说| 欧美乱妇无乱码| 美女大奶头视频| 一级毛片女人18水好多| cao死你这个sao货| 好男人电影高清在线观看| 亚洲欧美激情综合另类| 国产精品,欧美在线| 国产熟女xx| 成人手机av| 国产又爽黄色视频| 日日爽夜夜爽网站| 中亚洲国语对白在线视频| 黑人巨大精品欧美一区二区蜜桃| 国产人伦9x9x在线观看| 国内毛片毛片毛片毛片毛片| 亚洲国产高清在线一区二区三 | 级片在线观看| 久久人妻福利社区极品人妻图片| 国产99白浆流出| 成人三级做爰电影| 国产一区二区激情短视频| 亚洲精品一卡2卡三卡4卡5卡| 精品无人区乱码1区二区| 国产私拍福利视频在线观看| 熟妇人妻久久中文字幕3abv| 久9热在线精品视频| 午夜a级毛片| 一区二区三区国产精品乱码| 麻豆av在线久日| 欧美日本亚洲视频在线播放| 国内精品久久久久精免费| 亚洲aⅴ乱码一区二区在线播放 | 久久婷婷成人综合色麻豆| 校园春色视频在线观看| 90打野战视频偷拍视频| 国产亚洲精品久久久久久毛片| 性欧美人与动物交配| 老汉色av国产亚洲站长工具| 激情在线观看视频在线高清| 黄色片一级片一级黄色片| 午夜免费观看网址| 国产免费男女视频| 中文字幕人妻熟女乱码| 少妇被粗大的猛进出69影院| 美国免费a级毛片| 后天国语完整版免费观看| 亚洲片人在线观看| 咕卡用的链子| 久久久国产成人免费| 国产主播在线观看一区二区| 91九色精品人成在线观看| 如日韩欧美国产精品一区二区三区| 久久国产乱子伦精品免费另类| 欧美最黄视频在线播放免费| 久久天躁狠狠躁夜夜2o2o| 无遮挡黄片免费观看| 日日夜夜操网爽| 亚洲精品久久国产高清桃花| 亚洲国产精品999在线| 黄色毛片三级朝国网站| 亚洲人成电影观看| 精品国产一区二区三区四区第35| 国产成人免费无遮挡视频| 黄片大片在线免费观看| 国产又色又爽无遮挡免费看| 黑人操中国人逼视频| 好男人在线观看高清免费视频 | 18禁裸乳无遮挡免费网站照片 | 日韩三级视频一区二区三区| 久久国产精品影院| 少妇的丰满在线观看| 久久久久久久午夜电影| 亚洲国产高清在线一区二区三 | 国产精品电影一区二区三区| 麻豆av在线久日| 97人妻精品一区二区三区麻豆 |