• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Balanced-switch-current-based modulation strategy for a three-level DC/DC converter with input-parallel-output-parallel structure

    2022-02-25 03:24:24LIUDongWUJiahuiCHENZhe
    長江大學學報(自科版) 2022年1期
    關鍵詞:曲線效率試驗

    LIU Dong, WU Jiahui, CHEN Zhe

    1.Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, United Kingdom2.Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark

    [Abstract]This paper first discussed the evolution of three-level (TL) DC/DC converters, then introduced the study focus changes from topics of soft switching techniques and the efficiency to the reliability performance of the converter.On this basis, a three-level DC/DC converter (TLDC) consisting of two four-switch half-bridge three-level (HBTL) DC/DC converters with an interleaving and input-parallel output-parallel (IPOP) connection structure was proposed and the topology, operation principle, characteristics, and performances of the proposed converter were analyzed in details.The IPOP structure can effectively reduce the current stresses of main power components, which makes the proposedconverter more applicable for higher power applications.More significantly, by combining the proposed topology with a corresponding periodically swapping modulation (PSM) strategy, not only the currents of two input capacitors can be balanced and greatly reduced, but also the currents of primary-side power switches can be balanced, thus the reliability performance of the converters can be improved.Finally, both simulation and experimental results were presented to verify the proposed converter with a PSM strategy.

    [Key words]balanced switch currents; input-parallel output-parallel (IPOP) structure; three-level DC/DC converter (TLDC)

    1 Introduction

    A three-level (TL)DC/DC converter (TLDC) was first proposed in ref.[1, 2] to reduce the voltage stresses on power switches for higher voltage applications in comparison with the two-level converter. So far, many studies have been conducted on TLDCs[3-6]. In 2004, a novel four-switch half-bridge three-level DC/DC converter (HBTL-DC) was proposed[7], which is more attractive for industrial applications due to its simpler structure and lower cost in comparison with the conventional diode-clamped TLDC[4]. Then, many studies have been conducted based on the four-switch HBTL-DC. Ref.[8] discusses several new solutions to achieve the wide range of soft switching. For high voltage applications, a zero-voltage-switching TLDC with a second-side phase-shift-control is proposed in ref.[9]. Also, to optimize the switching loss and increase the converter’s efficiency, a new zero-voltage and zero-current switching TLDC is proposed in ref.[10]. The above studies mainly focus on the topics of soft switching techniques and the efficiency of the converter.

    Recently, more and more studies pay attention to another important design index for the TLDC, i.e., the reliability performance. To ensure the voltages on two input capacitors balancing, a new modulation strategy is proposed for the four-switch HBTL-DC[11]. Ref.[12] proposes a new modulation strategy to balance the currents on input capacitors in four-switch HBTL-DC. In ref.[13], input-parallel output-parallel (IPOP) connected HBTL-DCs with an interleaving control strategy are proposed to improve the reliability of input capacitors by balancing and minimize the currents on them. However, the currents of primary-side power switches in the IPOP TLDCs are unbalanced, which thus causes the unequal distribution of power losses and thermal stresses among them.

    This paper proposes a TLDC with an IPOP structure and a corresponding periodically swapping modulation (PSM) strategy. The IPOP structure can effectively reduce the current stresses of main power components, which makes the proposed converter more applicable for higher power applications. More significantly, by combining the proposed topology with a corresponding PSM strategy, not only the currents of two input capacitors can be balanced and greatly reduced, but also the currents of primary-side power switches can be balanced. Finally, the proposed converter with a PSM strategy is validated by both simulation and experimentation results.

    2 Topology and operating principle of the proposed converter with a PSM strategy

    Fig. 1 shows the topology of the proposed TLDC, which consists of two four-switch HBTL DC/DC converters namely module-1 and module-2. In Fig.1,C1andC2are two sharing input capacitors to split the input voltageVininto two voltagesV1andV2andCois a sharing output filter capacitor. In the module-1,S1,S2,S7,S8andD1,D2,D7,D8are power switches and diodes;Tr1is the isolated transformer;Lr1is the leakage inductance ofTr1;Cb1is the DC-blocking capacitor;Dr1~Dr4are output rectifier diodes;Lo1is the output filter inductor. The structure of module-2 is the same as that of module-1. Besides, in Fig.1,iinis the input current;i1~i8are the currents flowing throughS1/D1~S8/D8;ic1andic2are currents onC1andC2;ip1andip2are currents throughTr1andTr2;iLo1andiLo2are currents throughLo1andLo2;Vcb1andVcb2are voltages onCb1andCb2;ioandVoare output current and voltage;n1andn2are turns ratios ofTr1andTr2.

    Fig. 2 presents typically operating waveforms of the proposed converter with a PSM strategy. In Fig. 2,drv1~drv8are driving signals ofS1~S8,d1is a duty ratio in one switching period,Tsis one switching period,Vadis the voltage from pointatod,Vcbis the voltage between pointcandb. Besides, (S1,S2), (S3,S4), (S5,S6), and (S7,S8) are complementary switch pairs. (S1,S3), (S2,S4), (S5,S7), and (S6,S8) are switch pairs having the same driving signal.

    Fig. 1 The structure of the proposed IPOP TL DC/DC converters

    Fig. 2 The main operating waveforms with a PSM strategy

    To simplify the following analysis, some assumptions are made:

    1)Lo1andLo2are large enough to be regarded as the current sources;

    2) two modules are identical, i.e.,n1=n2=n;Lr1=Lr2=Lr;ip1= -ip2=ip;

    3)iinis regarded as a constant value.

    Fig. 3 presents equivalent circuits to illustrate the operating principle of the proposed converter with a corresponding PSM strategy shown in Fig. 2.

    Fig. 3 Equivalent circuits

    Stage 0[Beforet7]:S1S3,S6, andS8are all in on-state. For module-I, the power from the input source transfers to the output throughTr1,Dr1, andDr4. For module-II, the power fromCb2transfers to the output throughTr2,Dr6, andDr7. During this stage, the primary currentsip1andip2areio/2nand -io/2n, respectively; and the absolute values ofic1andic2are both |ip1|-|iin|.

    Stage 1 [t7~t8]:Att7,S6andS8are switched off. The parasitic capacitorsC6,C8begin to be charged and the parasitic capacitorsC5,C7begin to be discharged. Also,VadandVcbstart to decrease and increase, respectively. During this stage,ip1andip2are kept atio/2nand -io/2n, respectively; and the absolute values ofic1andic2are both |iin|.

    Stage 2 [t8~t9]:Att8,C6,C8andC5,C7are charged and discharged toVin/2 and 0, respectively. Also,Vaddecreases toVin/2 andVcbincreases toVin/2. Then, bothD5andD7conduct. Thus,ip1andip2flow throughLr1,Tr1,Lr2,Tr2,S1,S3,D5, andD7. During this stage,ip1andip2remainio/2nand -io/2n, respectively; and the absolute values ofic1andic2are still |iin|.

    Stage 3 [t9~t10]:Att9,S1andS3are switched off.C1,C3are charged and the parasitic capacitorsC2,C4are discharged.VadandVcbcontinue to decrease and increase, respectively. Besides,ip1andip2start to decrease and increase linearly, respectively. And they are not enough to provideio, soDr1~Dr8conduct simultaneously. The absolute values ofic1andic2change to |iin|+|ip2|. During this stage, the equations forip1andip2can be expressed as (1) and (2):

    (1)

    (2)

    Stage 4 [t10~t11]:Att10,C1,C3andC2,C4are charged and discharged toVin/2 and 0, respectively. Also,Vaddecreases to 0 andVcbincreases toVin. Then,D2andD4conduct. Thus, in the primary-side,ip1flows throughLr1,Tr1,D2,D7andip2flows throughLr2,Tr2,D4,D5. During this stage,ip1andip2still decrease and increase linearly, respectively; and the absolute values ofic1andic2remain |iin|+|ip2|.

    Stage 5 [t11~t12]: Att11,S2S4,S5, andS7are switched on at zero-voltage. Then,ip1andip2flow throughS2,S7andS4,S5, respectively, instead ofD2,D7andD4,D5.

    Stage 6 [t12~t13]: Att12,ip1andip2decrease and increase to 0, respectively. Then,ip1andip2change their current directions, i.e., become negative and positive respectively. During this stage, the absolute value ofic1andic2change to |ip2|-|iin|.

    Stage 7 [t13~t14]: Att13,ip1andip2decrease and increase to -io/2nandio/2n, respectively. Then,Dr1,Dr4,Dr6, andDr7become off-state. For module-I, the power from the input source transfers to the output throughTr1,Dr2, andDr3. For module-II, the power fromCb2transfers to the output throughTr2,Dr5, andDr8. During this stage,ip1andip2are kept at -io/2nandio/2n, respectively; and the absolute values ofic1andic2are still |ip2|-|iin|.

    The analysis of the following half switching period [t14~t21] is similar to that of the half-period [t7~t14], which is not repeated here. It should be mentioned that a corresponding PSM strategy is utilized for the proposed converter, i.e., duty ratios for switches pairsS1,S3,S5,S7and for switches pairsS2,S4,S6,S8are swapped in every switching frequency. Accordingly, the currents on the switchesS1~S8can be balanced in every two switching periods, whose detailed analysis are presented in Section 3.

    3 Performances and characteristics

    3.1 Voltage stresses on power switches

    The voltage stresses onS1~S8are only half of the input voltage (Vin/2) in steady states thanks to the TL structure.

    3.2 Duty cycle loss

    The duty cycle loss nameddlossin one switching periodTscan be obtained by:

    (3)

    3.3 Output voltage characteristics

    After considering the effect ofdlosson the output voltageVo,Vocan be calculated by:

    (4)

    where:d1is the duty ratio in one switching period.

    3.4 Currents on primary-side power switches

    Fig. 4 presents typical waveforms of the currents onS1/D1~S8/D8in the proposed converter with a corresponding PSM strategy.

    From Fig. 4, it can be seen thati1~i8are balanced in every two switching periods. Here, only the expression ofi1in two switching periods [t2~t30] is provided as (5):

    (5)

    According to (5), the root-mean-square (RMS) values ofi1~i8in the proposed converter namelyi1_rms-i8_rmscan be calculated by (6):

    (6)

    Note: i1~i8 are currents flowing through S1/D1 ~S8/D8, and ic1, ic2 are currents flowing through C1 and C2.Fig. 4 Tyical waveforms of i1~i8 and ic1, ic2

    3.5 Currents on input capacitors

    In Fig. 4, typical waveforms ofic1andic2are presented. It can be observed from Fig. 4 that the frequencies ofic1andic2are twice the switching frequency thanks to the interleaving control.

    According to Fig. 4,ic1andic2in a half switching period can be expressed as:

    (7)

    Because of utilizing the interleaving control,ip1andip2are just opposite as shown in Fig. 2.ip1andip2in a half switching period can be given as:

    Fig. 5 The simulation results

    (8)

    Time period [t2~t6] can be calculated as:

    (9)

    According to (7) ~ (9), RMS values ofic1andic2namelyic1_rmsandic2_rmscan be obtained as:

    (10)

    4 Simulation and experimental verification

    4.1 Simulation verification

    A simulation model is built in PLECS to verify the proposed converter with a corresponding PSM strategy. Its circuit parameters are presented in the Appendix.

    Fig. 5 presents simulation results includingVin,Vad,Vcb,Vo,iin,ip1,ip2,io,i1,i2,i3,i4,i5,i6,i7,i8,ic1andic2. From Fig. 5, it can be observed thati1~i8are balanced in every two switching periods, and the frequencies ofic1andic2are twice the switching frequency. Besides, the RMS values ofi1~i8are the same (i.e., 4.58A) and RMS values ofic1andic2are also the same (i.e., 3.49A).

    4.2 Experimental verification

    To verify the proposed converter with a corresponding PSM strategy, a 2kW experimental prototype is also established. Its circuit parameters are listed in Appendix.

    Fig. 6 shows the experimental results includingVin,Vo,ip1andip2. From Fig. 6, it can be observed thatip1andip2are just opposite because of the interleaving control.Fig. 7 shows the experimental results includingVad,Vcb,ic1andic2, in which it can be observed thatic1andic2are almost the same and relatively small.

    Fig. 6 The experimental results including Fig. 7 The experimental results including Vin, Vo, ip1 and ip2 Vad, Vcb, ic1and ic2

    The experimental results ofi1,i2,i7, andi8are shown in Fig. 8, in which it can be observed that their RMS values are almost the same.Fig. 9 shows the efficiencies of the proposed converter, in which the peak efficiency can reach 94.6%.

    In summary, the experimental results above are consistent with the theoretical analysis and simulation results, which verify that the proposed converter with a PSM strategy can achieve high efficiencies and effectively balance the currents among the primary-side power switches.

    Fig. 8 The experimental results including Fig. 9 The efficiencies results when i1, i2, i7 and i8 Vin = 550V and Vo= 50V 圖8 i1, i2, i7和i8試驗結果 圖9 當Vin=550V和Vo= 50V (逆變器)的效率曲線

    5 Conclusion

    In this paper, a new TLDC with a corresponding PSM strategy is proposed. The proposed converter is composed of two IPOP connected four-switch HBTL-DCs. Thus, the current stresses of the main power components in the proposed converter can be reduced due to the IPOP structure. Besides, the proposed converter with a corresponding PSM strategy has the following merits: balancing and minimizing the currents on two input capacitors, and balancing the currents among primary-side power switches. Consequently, the improved reliability performances can be achieved. Finally, the effectiveness and validities of the proposed converter with a PSM strategy are verified by both simulation and experimental results.

    猜你喜歡
    曲線效率試驗
    未來訪談:出版的第二增長曲線在哪里?
    出版人(2022年8期)2022-08-23 03:36:50
    幸福曲線
    英語文摘(2020年6期)2020-09-21 09:30:40
    提升朗讀教學效率的幾點思考
    甘肅教育(2020年14期)2020-09-11 07:57:42
    沿平坦凸曲線Hilbert變換的L2有界性
    CS95
    世界汽車(2017年8期)2017-08-12 04:39:15
    C-NCAP 2016年第八號試驗發(fā)布
    汽車與安全(2016年5期)2016-12-01 05:22:16
    試驗
    太空探索(2016年12期)2016-07-18 11:13:43
    多穗柯扦插繁殖試驗
    夢寐以求的S曲線
    Coco薇(2015年10期)2015-10-19 12:42:05
    跟蹤導練(一)2
    久久精品人人爽人人爽视色| 国产成人啪精品午夜网站| 久久人妻福利社区极品人妻图片| 国产高清激情床上av| 自线自在国产av| 中文亚洲av片在线观看爽 | 亚洲国产av影院在线观看| 男女免费视频国产| 国产伦理片在线播放av一区| 国产精品麻豆人妻色哟哟久久| www日本在线高清视频| 欧美日韩亚洲国产一区二区在线观看 | 精品久久久精品久久久| 国产成人免费观看mmmm| 国产精品自产拍在线观看55亚洲 | 亚洲欧美一区二区三区久久| 人人妻人人爽人人添夜夜欢视频| 美女福利国产在线| 69av精品久久久久久 | 亚洲av美国av| 在线 av 中文字幕| 精品国产一区二区久久| 在线观看免费视频网站a站| 青青草视频在线视频观看| 俄罗斯特黄特色一大片| 天堂中文最新版在线下载| 亚洲成人国产一区在线观看| 日本五十路高清| 婷婷成人精品国产| 国产精品久久久久久精品电影小说| 少妇猛男粗大的猛烈进出视频| 国产精品欧美亚洲77777| 久久精品国产99精品国产亚洲性色 | 亚洲少妇的诱惑av| 韩国精品一区二区三区| 精品人妻1区二区| 一本综合久久免费| 午夜福利视频精品| 美女扒开内裤让男人捅视频| 无人区码免费观看不卡 | 窝窝影院91人妻| 两人在一起打扑克的视频| 久久免费观看电影| 国产在线免费精品| 一区福利在线观看| 999久久久国产精品视频| 超碰成人久久| 正在播放国产对白刺激| aaaaa片日本免费| av网站免费在线观看视频| 欧美激情极品国产一区二区三区| 少妇丰满av| 国产真人三级小视频在线观看| 国产又色又爽无遮挡免费看| 精品人妻1区二区| 18禁观看日本| 久久欧美精品欧美久久欧美| 五月伊人婷婷丁香| ponron亚洲| 老司机在亚洲福利影院| 一级毛片精品| 看免费av毛片| 19禁男女啪啪无遮挡网站| 精品日产1卡2卡| 国产亚洲欧美98| 国产v大片淫在线免费观看| 亚洲成a人片在线一区二区| 欧美+亚洲+日韩+国产| 国产精品电影一区二区三区| 亚洲成av人片在线播放无| 亚洲成av人片在线播放无| 超碰成人久久| 国产亚洲精品综合一区在线观看| 美女被艹到高潮喷水动态| 美女被艹到高潮喷水动态| 亚洲成av人片在线播放无| 国产伦一二天堂av在线观看| 亚洲最大成人中文| 欧美日韩精品网址| 国语自产精品视频在线第100页| 欧美不卡视频在线免费观看| 免费av不卡在线播放| 国产午夜福利久久久久久| 国产精品一区二区精品视频观看| 人人妻人人看人人澡| 国产久久久一区二区三区| 欧美成人免费av一区二区三区| av女优亚洲男人天堂 | 91麻豆av在线| 黑人欧美特级aaaaaa片| 99国产精品99久久久久| 欧美日韩瑟瑟在线播放| 不卡av一区二区三区| 亚洲一区二区三区不卡视频| 国产精品野战在线观看| 精品国产乱子伦一区二区三区| 高潮久久久久久久久久久不卡| 热99re8久久精品国产| 国产成人影院久久av| 91久久精品国产一区二区成人 | 亚洲 欧美 日韩 在线 免费| 激情在线观看视频在线高清| 国产免费男女视频| 99国产精品99久久久久| 精品国产乱子伦一区二区三区| 国产精品一区二区免费欧美| 亚洲国产看品久久| 12—13女人毛片做爰片一| 亚洲 欧美 日韩 在线 免费| 成人特级黄色片久久久久久久| 免费无遮挡裸体视频| 亚洲午夜理论影院| 看片在线看免费视频| 怎么达到女性高潮| 男女那种视频在线观看| 黄色丝袜av网址大全| 欧美极品一区二区三区四区| 首页视频小说图片口味搜索| 亚洲成a人片在线一区二区| 国产美女午夜福利| 亚洲一区高清亚洲精品| 国产激情久久老熟女| 中出人妻视频一区二区| 色视频www国产| 精品无人区乱码1区二区| 国产淫片久久久久久久久 | 午夜激情福利司机影院| 男人的好看免费观看在线视频| 夜夜爽天天搞| 丝袜人妻中文字幕| 在线观看午夜福利视频| 国产亚洲精品久久久com| 亚洲欧美日韩卡通动漫| 亚洲av免费在线观看| 香蕉av资源在线| 亚洲av美国av| 国产一区二区激情短视频| 欧美性猛交╳xxx乱大交人| 国产成人精品久久二区二区91| а√天堂www在线а√下载| 欧美在线一区亚洲| 亚洲欧美日韩卡通动漫| 日本 欧美在线| 国产精品亚洲av一区麻豆| 中文字幕久久专区| 亚洲熟女毛片儿| av中文乱码字幕在线| 久久精品国产亚洲av香蕉五月| 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 久久久久亚洲av毛片大全| 精品国产亚洲在线| 一区二区三区激情视频| 久久久久久九九精品二区国产| 亚洲专区中文字幕在线| 婷婷精品国产亚洲av在线| 久久久久亚洲av毛片大全| 亚洲精品一区av在线观看| 2021天堂中文幕一二区在线观| 99国产极品粉嫩在线观看| 婷婷精品国产亚洲av在线| 国产三级在线视频| 亚洲美女黄片视频| 美女免费视频网站| 国产精品香港三级国产av潘金莲| 亚洲欧美日韩无卡精品| 亚洲欧美日韩无卡精品| 国产精品香港三级国产av潘金莲| 久久精品夜夜夜夜夜久久蜜豆| 国产高清激情床上av| 九九久久精品国产亚洲av麻豆 | 亚洲片人在线观看| 亚洲美女视频黄频| 国产午夜精品久久久久久| а√天堂www在线а√下载| 非洲黑人性xxxx精品又粗又长| 国产成人av激情在线播放| 91九色精品人成在线观看| 伊人久久大香线蕉亚洲五| 亚洲精品粉嫩美女一区| tocl精华| 很黄的视频免费| 99热这里只有是精品50| 麻豆成人av在线观看| 99re在线观看精品视频| 国内揄拍国产精品人妻在线| 天堂√8在线中文| 香蕉丝袜av| 亚洲国产精品成人综合色| 国产亚洲精品久久久com| 国产视频内射| 欧美另类亚洲清纯唯美| 亚洲国产日韩欧美精品在线观看 | 99久久99久久久精品蜜桃| 中文亚洲av片在线观看爽| 久久久国产欧美日韩av| 免费av毛片视频| 90打野战视频偷拍视频| 国产成人影院久久av| 又爽又黄无遮挡网站| 黑人欧美特级aaaaaa片| 欧美乱色亚洲激情| 搡老熟女国产l中国老女人| 天天一区二区日本电影三级| 免费无遮挡裸体视频| 身体一侧抽搐| 少妇人妻一区二区三区视频| 国产真人三级小视频在线观看| 国产精品,欧美在线| 99精品欧美一区二区三区四区| 女生性感内裤真人,穿戴方法视频| 亚洲九九香蕉| 国产精品 国内视频| 麻豆成人午夜福利视频| 色视频www国产| 亚洲avbb在线观看| 九色国产91popny在线| 窝窝影院91人妻| 香蕉久久夜色| 精品福利观看| 精品一区二区三区视频在线观看免费| 久久久久亚洲av毛片大全| 国产私拍福利视频在线观看| 99在线人妻在线中文字幕| 极品教师在线免费播放| 一边摸一边抽搐一进一小说| tocl精华| 久久草成人影院| 亚洲人成网站高清观看| 成人精品一区二区免费| 亚洲欧美日韩东京热| 国产精品久久久久久久电影 | 成人国产综合亚洲| 91字幕亚洲| 久久精品国产清高在天天线| 狠狠狠狠99中文字幕| 一夜夜www| 给我免费播放毛片高清在线观看| aaaaa片日本免费| 成人亚洲精品av一区二区| 一本精品99久久精品77| 国产激情偷乱视频一区二区| 国产伦在线观看视频一区| 手机成人av网站| 日韩欧美国产一区二区入口| 国产精品香港三级国产av潘金莲| 亚洲av美国av| 狠狠狠狠99中文字幕| 很黄的视频免费| 18禁观看日本| 亚洲精品456在线播放app | 这个男人来自地球电影免费观看| 无人区码免费观看不卡| 国产精品亚洲av一区麻豆| 精品一区二区三区av网在线观看| 好看av亚洲va欧美ⅴa在| 一级黄色大片毛片| 999久久久国产精品视频| 男人舔女人下体高潮全视频| 亚洲精品美女久久久久99蜜臀| 舔av片在线| 母亲3免费完整高清在线观看| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久成人av| 成人欧美大片| 激情在线观看视频在线高清| 国产高潮美女av| 午夜福利欧美成人| 男女床上黄色一级片免费看| 少妇裸体淫交视频免费看高清| 俺也久久电影网| 国产单亲对白刺激| 国产激情欧美一区二区| 精品福利观看| 精品电影一区二区在线| 国产精品久久久久久精品电影| 亚洲中文av在线| 99国产精品一区二区蜜桃av| 久99久视频精品免费| 91麻豆av在线| 国产伦在线观看视频一区| 国产精品影院久久| 亚洲无线在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲人成网站高清观看| 岛国在线观看网站| 欧美又色又爽又黄视频| 哪里可以看免费的av片| 91久久精品国产一区二区成人 | 精品国产三级普通话版| 久久中文字幕人妻熟女| 男插女下体视频免费在线播放| 精品午夜福利视频在线观看一区| 91在线观看av| 人妻夜夜爽99麻豆av| 男女做爰动态图高潮gif福利片| 最近视频中文字幕2019在线8| 真人一进一出gif抽搐免费| 成人18禁在线播放| 天天一区二区日本电影三级| 日本五十路高清| 亚洲熟妇熟女久久| 日韩高清综合在线| 久久久国产成人精品二区| 亚洲国产欧美网| 亚洲熟妇熟女久久| 国产精品 国内视频| 久久草成人影院| 9191精品国产免费久久| av国产免费在线观看| 免费观看人在逋| 亚洲国产色片| 午夜成年电影在线免费观看| 老司机深夜福利视频在线观看| 欧美一区二区精品小视频在线| 色吧在线观看| 18禁美女被吸乳视频| bbb黄色大片| 怎么达到女性高潮| 亚洲欧美精品综合一区二区三区| 最好的美女福利视频网| 他把我摸到了高潮在线观看| 免费观看人在逋| 欧美日韩福利视频一区二区| 久久人妻av系列| 成年版毛片免费区| 久久久久久九九精品二区国产| 久久这里只有精品中国| 在线观看美女被高潮喷水网站 | 国产单亲对白刺激| 亚洲av中文字字幕乱码综合| 亚洲中文字幕日韩| 久久99热这里只有精品18| 免费大片18禁| 国产成人精品久久二区二区91| 久久性视频一级片| 日韩有码中文字幕| 国产视频内射| 国产又黄又爽又无遮挡在线| 夜夜躁狠狠躁天天躁| 午夜日韩欧美国产| 老熟妇乱子伦视频在线观看| 日本成人三级电影网站| ponron亚洲| 国产精品香港三级国产av潘金莲| 国产一区二区激情短视频| 亚洲欧美一区二区三区黑人| www.www免费av| 99在线视频只有这里精品首页| xxx96com| 一区二区三区激情视频| 美女高潮喷水抽搐中文字幕| 嫁个100分男人电影在线观看| 亚洲天堂国产精品一区在线| 小说图片视频综合网站| 狠狠狠狠99中文字幕| 色综合站精品国产| 三级毛片av免费| 99国产精品99久久久久| 日韩免费av在线播放| 琪琪午夜伦伦电影理论片6080| 免费在线观看成人毛片| 国产成人精品久久二区二区免费| 国产男靠女视频免费网站| а√天堂www在线а√下载| 99久久成人亚洲精品观看| 午夜两性在线视频| 中文字幕人妻丝袜一区二区| 亚洲人成电影免费在线| 欧美乱码精品一区二区三区| 日本与韩国留学比较| 两个人视频免费观看高清| 又爽又黄无遮挡网站| 手机成人av网站| 国产精品久久久人人做人人爽| a在线观看视频网站| 亚洲在线观看片| 亚洲av成人不卡在线观看播放网| 欧美性猛交╳xxx乱大交人| 又爽又黄无遮挡网站| 成年版毛片免费区| 国产蜜桃级精品一区二区三区| 欧美成狂野欧美在线观看| 亚洲国产日韩欧美精品在线观看 | 又黄又爽又免费观看的视频| 久久亚洲精品不卡| 两性夫妻黄色片| 色综合婷婷激情| 久久精品夜夜夜夜夜久久蜜豆| 丝袜人妻中文字幕| 丁香六月欧美| 亚洲成人精品中文字幕电影| 久久久久国内视频| 99精品在免费线老司机午夜| 亚洲美女黄片视频| 毛片女人毛片| 又黄又粗又硬又大视频| 日本 av在线| 给我免费播放毛片高清在线观看| 天堂网av新在线| 婷婷亚洲欧美| 亚洲片人在线观看| 露出奶头的视频| 三级毛片av免费| 国产精品乱码一区二三区的特点| 久久精品夜夜夜夜夜久久蜜豆| a在线观看视频网站| 可以在线观看毛片的网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美一区二区综合| 精品国产乱子伦一区二区三区| 国产三级在线视频| 69av精品久久久久久| 日韩欧美国产在线观看| 成人av一区二区三区在线看| 18禁美女被吸乳视频| 男女那种视频在线观看| 久久久久亚洲av毛片大全| 日本a在线网址| 亚洲在线自拍视频| 久久久久亚洲av毛片大全| 精品久久久久久久末码| 脱女人内裤的视频| 日韩欧美精品v在线| 亚洲精华国产精华精| 免费电影在线观看免费观看| 狂野欧美白嫩少妇大欣赏| netflix在线观看网站| 成人三级黄色视频| 中国美女看黄片| 亚洲国产欧美网| 国产主播在线观看一区二区| 一级作爱视频免费观看| 老司机深夜福利视频在线观看| 国产精品av视频在线免费观看| 成年人黄色毛片网站| 国产成人精品久久二区二区免费| 男女下面进入的视频免费午夜| 给我免费播放毛片高清在线观看| netflix在线观看网站| 亚洲片人在线观看| 国产成人aa在线观看| 岛国在线观看网站| 亚洲18禁久久av| 首页视频小说图片口味搜索| 欧美日韩综合久久久久久 | 亚洲熟女毛片儿| or卡值多少钱| 国产精品 欧美亚洲| 欧美+亚洲+日韩+国产| 黄频高清免费视频| 久久午夜综合久久蜜桃| 欧美又色又爽又黄视频| 国产精品久久视频播放| 中文字幕av在线有码专区| 男女下面进入的视频免费午夜| 一本一本综合久久| 久久精品亚洲精品国产色婷小说| 男女床上黄色一级片免费看| 美女被艹到高潮喷水动态| 亚洲人成网站在线播放欧美日韩| 久久伊人香网站| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 久久久久免费精品人妻一区二区| 变态另类丝袜制服| 脱女人内裤的视频| 亚洲精品色激情综合| 国产精品亚洲av一区麻豆| 久久人人精品亚洲av| 免费在线观看亚洲国产| 麻豆久久精品国产亚洲av| 在线观看日韩欧美| 亚洲成人精品中文字幕电影| 欧美极品一区二区三区四区| 美女黄网站色视频| 啦啦啦韩国在线观看视频| 最近视频中文字幕2019在线8| 在线国产一区二区在线| 国产精品av久久久久免费| 日本熟妇午夜| 高清毛片免费观看视频网站| 男人舔女人的私密视频| 成年女人毛片免费观看观看9| 久久精品国产亚洲av香蕉五月| 欧美大码av| 欧美黑人欧美精品刺激| 国产亚洲精品av在线| 日韩欧美免费精品| 欧美日韩综合久久久久久 | 99久国产av精品| 色噜噜av男人的天堂激情| 中文在线观看免费www的网站| 天堂动漫精品| 欧美日韩国产亚洲二区| 欧美成人一区二区免费高清观看 | 好男人在线观看高清免费视频| 婷婷精品国产亚洲av| 在线观看午夜福利视频| 999久久久国产精品视频| 两人在一起打扑克的视频| 巨乳人妻的诱惑在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲熟妇熟女久久| 国产亚洲精品一区二区www| 日韩av在线大香蕉| 欧美三级亚洲精品| 久久久久性生活片| 午夜福利欧美成人| 男女那种视频在线观看| 噜噜噜噜噜久久久久久91| 757午夜福利合集在线观看| 日韩高清综合在线| 亚洲 国产 在线| 亚洲av电影不卡..在线观看| 日韩欧美三级三区| 在线观看舔阴道视频| 给我免费播放毛片高清在线观看| 国产亚洲精品久久久久久毛片| 最近在线观看免费完整版| 亚洲 国产 在线| 狂野欧美激情性xxxx| 国产精品一及| 久久久久久久久中文| 日韩欧美免费精品| 国产精品久久久久久久电影 | 国产激情欧美一区二区| 免费看美女性在线毛片视频| 国产黄片美女视频| 一级作爱视频免费观看| 精华霜和精华液先用哪个| 在线播放国产精品三级| 亚洲中文av在线| 欧美日韩瑟瑟在线播放| 亚洲五月婷婷丁香| 日本五十路高清| 亚洲天堂国产精品一区在线| АⅤ资源中文在线天堂| 9191精品国产免费久久| 亚洲国产欧美一区二区综合| 国产高潮美女av| 首页视频小说图片口味搜索| 一级a爱片免费观看的视频| 最近最新中文字幕大全电影3| 久久久水蜜桃国产精品网| 韩国av一区二区三区四区| 嫩草影院入口| 此物有八面人人有两片| 人妻久久中文字幕网| 宅男免费午夜| 99久久99久久久精品蜜桃| cao死你这个sao货| 12—13女人毛片做爰片一| 成人三级做爰电影| 丰满人妻一区二区三区视频av | 欧美不卡视频在线免费观看| 真人一进一出gif抽搐免费| 国产一区二区在线观看日韩 | 一本综合久久免费| 久久久久国内视频| 18禁观看日本| 精品午夜福利视频在线观看一区| 一二三四社区在线视频社区8| 国产伦在线观看视频一区| 久久天躁狠狠躁夜夜2o2o| 亚洲专区中文字幕在线| 久久伊人香网站| 九九热线精品视视频播放| 国产乱人伦免费视频| 欧美日韩福利视频一区二区| 一级a爱片免费观看的视频| 怎么达到女性高潮| 成人午夜高清在线视频| 午夜福利在线观看免费完整高清在 | 欧美日韩精品网址| 久9热在线精品视频| 日韩成人在线观看一区二区三区| 国产综合懂色| 日日干狠狠操夜夜爽| 久久久久久人人人人人| 国产精品久久电影中文字幕| 精品久久久久久久毛片微露脸| 国产乱人伦免费视频| 午夜激情福利司机影院| 丰满的人妻完整版| 波多野结衣巨乳人妻| 母亲3免费完整高清在线观看| 18禁观看日本| 亚洲国产精品久久男人天堂| 国产精品一区二区三区四区久久| 日韩国内少妇激情av| 一边摸一边抽搐一进一小说| 又粗又爽又猛毛片免费看| 色尼玛亚洲综合影院| 日韩欧美免费精品| 国产午夜福利久久久久久| 国产视频内射| АⅤ资源中文在线天堂| 色老头精品视频在线观看| 可以在线观看的亚洲视频| 黄色女人牲交| 亚洲中文日韩欧美视频| 18禁裸乳无遮挡免费网站照片| 人人妻,人人澡人人爽秒播| 国内久久婷婷六月综合欲色啪| 一个人免费在线观看的高清视频| 麻豆成人av在线观看| 18禁黄网站禁片午夜丰满| 日韩欧美一区二区三区在线观看| 国产熟女xx| 亚洲五月婷婷丁香| 99re在线观看精品视频| 99久久99久久久精品蜜桃| 一本久久中文字幕| 欧美在线黄色|