路鵬,李文海,牛金璨,Batbayar Javkhlan,張樹(shù)蘭,楊學(xué)云
不同有機(jī)碳水平下土磷的有效性及無(wú)機(jī)磷形態(tài)轉(zhuǎn)化
路鵬,李文海,牛金璨,Batbayar Javkhlan,張樹(shù)蘭,楊學(xué)云
西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院/農(nóng)業(yè)農(nóng)村部西北植物營(yíng)養(yǎng)與農(nóng)業(yè)環(huán)境重點(diǎn)實(shí)驗(yàn)室,陜西楊凌 712100
【】在土壤Olsen-P和全磷含量基本接近但土壤有機(jī)碳水平呈梯度的陜西省關(guān)中平原土上,研究有機(jī)碳對(duì)土壤各形態(tài)無(wú)機(jī)磷有效性及其形態(tài)轉(zhuǎn)化的影響,為合理培肥土壤,有效利用土壤累積態(tài)磷提供理論依據(jù)。采集并選取了陜西省關(guān)中平原小麥-玉米種植體系下土Olsen-P含量相近(平均含量范圍17.41—18.72 mg·kg-1),不同有機(jī)碳水平(有機(jī)碳平均含量分別為6.38、8.34、10.17、11.95、13.64和15.74 g·kg-1)的土壤樣品,采用蔣柏藩-顧益初改進(jìn)的Chang和Jackson的石灰性土壤無(wú)機(jī)磷分級(jí)方法分別對(duì)土壤中各磷組分(二鈣磷(Ca2-P)、八鈣磷(Ca8-P)、鋁結(jié)合態(tài)磷(Al-P)、鐵結(jié)合態(tài)磷(Fe-P)、閉蓄態(tài)磷(O-P)和十鈣磷(Ca10-P))含量進(jìn)行測(cè)定。在陜西關(guān)中平原小麥-玉米種植區(qū)土中,有機(jī)碳對(duì)土壤各形態(tài)磷素水平及形態(tài)轉(zhuǎn)化起重要作用。隨著有機(jī)碳含量的增加,土壤中Ca2-P、Ca8-P、Al-P、Fe-P、O-P、緩效磷庫(kù)(Ca8-P、Al-P和Fe-P)和難利用磷庫(kù)(O-P和Ca10-P)含量均顯著增加(≤0.05),Ca10-P相對(duì)穩(wěn)定。有機(jī)碳含量與土壤活性磷庫(kù)(Ca2-P)、緩效磷庫(kù)(主要為Al-P)的相對(duì)含量(占無(wú)機(jī)磷總量的比例)呈極顯著正相關(guān)關(guān)系,與難利用磷庫(kù)(主要是Ca10-P)呈極顯著負(fù)相關(guān)關(guān)系。土壤Olsen-P含量與難利用磷庫(kù)含量呈顯著正相關(guān)關(guān)系。在Olsen-P相近,全磷也基本相似的條件下,土壤有機(jī)碳促進(jìn)了土壤中難溶態(tài)磷酸鹽向緩效態(tài)磷庫(kù)和活性態(tài)磷庫(kù)的轉(zhuǎn)化,提高了有效磷源占無(wú)機(jī)磷總量的比例,從而提高了土壤磷素有效性。研究結(jié)果表明可通過(guò)合理的措施培肥土壤,從而有效地促進(jìn)土壤累積態(tài)磷的活化利用。
無(wú)機(jī)磷分組;小麥-玉米體系;土;磷有效性;無(wú)機(jī)磷轉(zhuǎn)化
【研究意義】磷是植物生長(zhǎng)發(fā)育所必需的大量營(yíng)養(yǎng)元素之一,參與植物各種生理代謝過(guò)程,增強(qiáng)作物的抗性,在作物產(chǎn)量和品質(zhì)形成中具有不可替代的作用[1-2]。磷素在土壤中移動(dòng)性差,易發(fā)生化學(xué)固定,由水溶性磷酸一鈣轉(zhuǎn)化為難溶性磷酸鹽而殘留在土壤中,導(dǎo)致磷肥當(dāng)季利用率只有10%—25%[3]。據(jù)報(bào)道,全球約有30% 耕地土壤缺磷[4],施磷肥是提高土壤磷素水平和保障作物產(chǎn)量的重要措施。為了追求更高的產(chǎn)量,農(nóng)戶往往會(huì)投入更多的磷肥。調(diào)查結(jié)果顯示,陜西關(guān)中平原小麥-玉米種植區(qū)35% 的農(nóng)戶存在過(guò)量施用磷肥的問(wèn)題[5]。長(zhǎng)期過(guò)量施用磷肥不僅浪費(fèi)了資源,也會(huì)增加磷素通過(guò)地表徑流等造成水體富營(yíng)養(yǎng)化的風(fēng)險(xiǎn)[6]。因此,合理施用磷肥對(duì)該地區(qū)節(jié)約磷肥資源,減少環(huán)境污染,提高作物產(chǎn)量十分必要?!厩叭搜芯窟M(jìn)展】土壤磷素有效性主要由磷的形態(tài)決定[7],以往的研究認(rèn)為在石灰性土壤中Ca2-P易被作物吸收,是有效磷庫(kù);Ca8-P、Al-P 和 Fe-P的有效性低于Ca2-P,可作為作物的第二有效磷源,即緩效磷庫(kù);Ca10-P和O-P在短時(shí)期內(nèi)不易被作物吸收利用,是作物難利用的潛在磷庫(kù)[8-10]。其中難利用磷庫(kù)含量最高,約占土壤無(wú)機(jī)磷總量的80%左右[10]。英國(guó)洛桑試驗(yàn)站115年耗竭試驗(yàn)結(jié)果表明, 施入土壤中的磷進(jìn)入活性磷庫(kù)的不足50%,一半以上的磷進(jìn)入難利用磷庫(kù)[11]。長(zhǎng)期施用磷肥可導(dǎo)致土壤無(wú)機(jī)磷形態(tài)發(fā)生改變,從而影響作物磷素有效性[12]。石灰性土壤中磷主要以無(wú)機(jī)磷形態(tài)存在,其形態(tài)分布及之間的轉(zhuǎn)化對(duì)磷素有效性有重要影響。研究表明,盡管土壤中各形態(tài)無(wú)機(jī)磷對(duì)作物營(yíng)養(yǎng)的貢獻(xiàn)不同[13],但它們之間始終處于一個(gè)動(dòng)態(tài)平衡過(guò)程,相互影響和制約,任何形態(tài)無(wú)機(jī)磷的變化都會(huì)或多或少地引起有效磷水平的波動(dòng)。李若楠等[8]研究了不同有效磷水平石灰性土無(wú)機(jī)磷形態(tài),結(jié)果表明土壤磷有效性的提高主要通過(guò)增加高有效性形態(tài)磷的比例,如Ca2-P和緩效磷如Ca8-P、Al-P的比例,降低土壤中有效性極低的Ca10-P的比例來(lái)實(shí)現(xiàn)的。土壤中磷的形態(tài)變化也會(huì)受土壤有機(jī)質(zhì)、pH、全氮、堿解氮等因素影響[14]。其中有機(jī)質(zhì)對(duì)磷形態(tài)的影響尤為明顯。土壤有機(jī)質(zhì)的快速提升主要依賴于大量有機(jī)物料施入,有機(jī)物料能夠減少土壤對(duì)化肥磷的固定,在增加土壤碳源的同時(shí)能夠增加土壤中的有效磷源,從而提高土壤磷的生物有效性[15-16]。周寶庫(kù)等[17]在黑土長(zhǎng)期肥料定位試驗(yàn)中發(fā)現(xiàn),長(zhǎng)期施入馬糞可以提高土壤中活性磷(Ca2-P)和緩效態(tài)磷(Ca8-P、A1-P和Fe-P)的含量,而對(duì)作物難利用的潛在磷源Ca10-P的影響較小。王永和[18]添加豬糞、紫云英等有機(jī)物料的室內(nèi)培養(yǎng)試驗(yàn)也得到了相似的結(jié)果。WU等[19]通過(guò)室內(nèi)培養(yǎng)試驗(yàn)研究了添加葡萄糖及水稻秸稈對(duì)紅壤磷轉(zhuǎn)化的影響,結(jié)果顯示,添加有機(jī)物料增加了土壤微生物對(duì)磷素的吸收,同時(shí)還促進(jìn)了緩效磷A1-P和Fe-P的活化。另一個(gè)短期培養(yǎng)模擬試驗(yàn)中,安志裝等[20]研究了有機(jī)物料對(duì)石灰性土壤無(wú)機(jī)磷形態(tài)轉(zhuǎn)化的影響,結(jié)果表明隨腐殖酸用量的增加,土壤中Ca2-P和Ca8-P顯著增加。在4個(gè)月的培養(yǎng)時(shí)間內(nèi)Ca2-P一直穩(wěn)定在一個(gè)較高的水平,Ca8-P的含量增加,F(xiàn)e-P、Al-P含量下降,而難利用態(tài)O-P呈輕微下降,Ca10-P變化不明顯。很顯然,研究結(jié)果并不一致,甚至相反。需要指出的是,有機(jī)肥的大量施入在快速提高土壤有機(jī)質(zhì)的同時(shí)也不可避免地施入了大量磷素。亦即,通常的研究中有機(jī)質(zhì)的提升總是和土壤磷的增加相伴。在此條件下,隨有機(jī)物帶入的磷和土壤反應(yīng)的中間產(chǎn)物轉(zhuǎn)化可能歷時(shí)很久[21],因此,在此條件下研究不同有機(jī)質(zhì)水平下各形態(tài)磷對(duì)有效磷的貢獻(xiàn)可能有一定的不確定性。短期培養(yǎng)試驗(yàn)也有同樣的問(wèn)題。研究土壤有機(jī)質(zhì)對(duì)土壤磷形態(tài)轉(zhuǎn)化的影響最可靠的方法應(yīng)該是在土壤磷素水平盡可能一致的條件下進(jìn)行?!颈狙芯壳腥朦c(diǎn)】到目前為止,據(jù)我們所知,在Olsen-P含量相近,全磷的含量也基本相近,在土壤有機(jī)碳水平呈梯度的土壤上研究有機(jī)碳對(duì)土壤無(wú)機(jī)磷各組分影響及轉(zhuǎn)化及對(duì)土壤有效磷影響的研究很少。同時(shí),作物難利用的無(wú)機(jī)磷含量相對(duì)較高,向其他形態(tài)轉(zhuǎn)化進(jìn)行得極慢,磷素有效性較低?!緮M解決的關(guān)鍵問(wèn)題】本研究采集了陜西關(guān)中平原小麥-玉米種植區(qū)大量土樣本,并從中選擇了Olsen-P含量相近但有機(jī)碳含量不同的土壤樣品進(jìn)行磷組分測(cè)定,研究不同有機(jī)碳含量土壤中不同形態(tài)磷分布和變化及其對(duì)土壤有效磷的貢獻(xiàn),旨在研究是否有機(jī)碳的提升可以促進(jìn)難利用態(tài)磷的活化,為有機(jī)肥及磷肥的合理施用提供理論依據(jù)。
研究區(qū)域?yàn)殛兾魇≈胁筷P(guān)中平原一年兩熟的冬小麥-夏玉米種植區(qū),該區(qū)為暖溫帶半濕潤(rùn)氣候,年平均降水量約為500—650 mm。冬小麥一般于10月初播種,次年6月中旬收獲,小麥?zhǔn)斋@后即時(shí)播種玉米,當(dāng)年9月底10月初收獲。該區(qū)域主要土壤是土(土墊旱耕人為土),各種養(yǎng)分的平均含量分別為土壤有機(jī)質(zhì)16.8 g·kg-1、全氮1.13 g·kg-1、堿解氮95.8 mg·kg-1、有效磷20.2 mg·kg-1、有效鉀169.2 mg·kg-1。
土壤樣品采集時(shí)間為2011年8—10月,選取了陜西關(guān)中地區(qū)具有代表性的3個(gè)地(市)的10個(gè)縣(區(qū)),每個(gè)縣(區(qū))選擇4—18個(gè)鄉(xiāng)(鎮(zhèn)),每個(gè)鄉(xiāng)(鎮(zhèn))選擇3—10個(gè)村,每個(gè)村選擇4—5個(gè)地塊為采樣區(qū)(點(diǎn)),每個(gè)采樣區(qū)(點(diǎn))為0.5—0.8 hm2。采用直徑為2.8 cm土鉆,按照棋盤格采樣法采集0—20 cm耕層土樣,共20鉆,并將其混合均勻,放入布袋帶回實(shí)驗(yàn)室,剔除石礫和動(dòng)植物殘?bào)w,風(fēng)干后過(guò)2 mm及100目篩備用。共采集土壤樣品458個(gè),經(jīng)過(guò)測(cè)定土壤有機(jī)碳、有效磷、pH和全磷等基本化學(xué)性質(zhì),從中選取了6組土壤樣品(S1、S2、S3、S4、S5和S6),其有效磷含量為17.41—18.72 mg·kg-1,有機(jī)碳含量6.38—15.74 g·kg-1,具體分別為6.38、8.34、10.17、11.95、13.64和15.74 g·kg-1(表1)。每個(gè)SOC水平土壤選擇2—4個(gè)SOC含量基本相等(變異系數(shù)CV<10.03%)的土壤樣本作重復(fù)(S4組選擇了4個(gè)土壤樣本作為重復(fù),S6組選擇了2個(gè)土壤樣本作為重復(fù),S1、S2、S3、S5組均選擇了3個(gè)土壤樣本作為重復(fù))共計(jì)18個(gè)土壤樣品。
采用 0.5 mol·L-1NaHCO3提取-鉬銻抗比色法測(cè)定土壤有效磷(Olsen-P)含量;K2Cr2O7外加熱-FeSO4滴定法測(cè)定土壤有機(jī)碳含量;土壤全磷采用H2SO4- HClO4消煮-鉬銻抗比色法;pH測(cè)定采用1﹕2.5(土﹕水)比,pH計(jì)測(cè)定[22]。采用蔣柏藩-顧益初提出的石灰性土壤無(wú)機(jī)磷形態(tài)的分級(jí)方法[23],分別測(cè)定土壤樣品的二鈣磷(Ca2-P)、八鈣磷(Ca8-P)、鋁結(jié)合態(tài)磷(Al-P)、鐵結(jié)合態(tài)磷(Fe-P)、閉蓄態(tài)磷(O-P),十鈣磷(Ca10-P)等各形態(tài)無(wú)機(jī)磷含量。無(wú)機(jī)磷按對(duì)作物的有效性可分為活性磷庫(kù)(Labile P,指Ca2-P)、緩效磷庫(kù)(moderately labile P,為Ca8-P、Al-P和Fe-P之和)和難利用磷庫(kù)(stable P,為Ca10-P和O-P之和)[9-10]。供試土壤基本化學(xué)性質(zhì)見(jiàn)表1。
表1 陜西關(guān)中平原供試土基本化學(xué)性質(zhì)
Table 1 Some soil chemical properties of investigated tier soil collected in Guanzhong Plain of Shaanxi Province
表1 陜西關(guān)中平原供試土基本化學(xué)性質(zhì)
土壤樣品Soil sample有機(jī)碳含量SOC (g·kg-1)有效磷含量Olsen-P (mg·kg-1)酸度(1﹕2.5土﹕水)pH全磷含量Total P (g·kg-1) S1 6.38f17.41a7.160.857 S2 8.34e17.52a7.541.030 S310.17d17.55a7.571.014 S411.95c17.20a7.610.990 S513.64b18.10a7.851.012 S615.74a18.72a7.941.067
同列數(shù)字后不同小寫字母代表土壤樣品間差異顯著(≤0.05)
Different lower-case letters in the same column represent significant difference between soil samples at≤0.05 level
采用SPSS軟件進(jìn)行單因素方差分析,方差分析達(dá)到顯著水平(≤0.05)時(shí),采用LSD法進(jìn)行多重比較。Excel 2019 軟件作圖。
圖1為不同土壤有機(jī)碳梯度土中各形態(tài)無(wú)機(jī)磷含量。有機(jī)碳含量從6.38 g·kg-1增加到15.74 g·kg-1,土壤無(wú)機(jī)磷總量平均為720.17 mg·kg-1(變異系數(shù)CV=10.85%)。除Ca10-P外,其他各形態(tài)無(wú)機(jī)磷均有增加趨勢(shì)。Ca2-P平均含量為15.62 mg·kg-1,變幅10.66—23.10 mg·kg-1;Ca8-P平均109.77 mg·kg-1,變幅84.13—125.96 mg·kg-1;Ca10-P平均含量為377.69 mg·kg-1,變幅352.05—401.68 mg·kg-1;Al-P平均含量為86.65 mg·kg-1,變幅48.96—143.40 mg·kg-1;Fe-P平均含量42.75 mg·kg-1,變幅34.60—50.39 mg·kg-1;O-P平均含量87.69 mg·kg-1,變幅74.31—105.16 mg·kg-1;緩效磷庫(kù)(moderately labile P)平均含量為239.17 mg·kg-1,變幅167.69—317.14 mg·kg-1,是活性磷庫(kù)(Ca2-P)的10—20倍;難利用磷庫(kù)(stable P)平均含量為465.38 mg·kg-1,變幅426.36—506.85 mg·kg-1,大致為緩效磷庫(kù)的2倍??傮w上,土壤樣品S1—S4各無(wú)機(jī)磷含量順序?yàn)镃a10-P>Ca8-P>O-P>Al-P>Fe-P>Ca2-P,S5和S6樣品Al-P>Ca8-P>O-P(圖1)。
圖中柱上不同小寫字母表示同一形態(tài)磷在不同有機(jī)碳梯度土壤樣品間差異達(dá)顯著(5%)。Moderately labile P為Ca8-P, Al-P和Fe-P之和;Stable P 指Ca10-P和Occluded P (O-P)之和。圖2、圖3、圖4同
Ca2-P含量隨著有機(jī)碳濃度的升高顯著增加,土壤SOC為15.74 g·kg-1(S6)的Ca2-P含量最大,為22.10 mg·kg-1,且Ca2-P含量S3—S5土樣間無(wú)差異,S1與S2間無(wú)差異,但前者顯著高于后者。S6土樣的Ca8-P含量為125.96 mg·kg-1,顯著高于其他土壤樣品,其含量依其顯著性依次為S6≥S4≥S2≥S3≥S5>S1土樣。S6樣品的Al-P含量也顯著高于其他土壤樣品,含量為143.40 mg·kg-1,依其含量顯著性依次為S6>S5>S4≥S3≥S2≥S1土樣。Fe-P含量最高的樣品為S4,依其顯著性依次為S4≥S6≥S3≥S5≥S2≥S1土樣。O-P在S5和S6樣品中含量無(wú)差異且均顯著高于其他土壤樣品,S4高于S1和S2,后二者無(wú)顯著差異。Ca10-P含量在各個(gè)土壤樣品間均無(wú)差異。緩效磷庫(kù)含量隨著有機(jī)碳濃度的升高顯著增加,S6含量最高,為317.14 mg·kg-1,S3—S5樣品間無(wú)顯著差異,但顯著高于S1。難利用磷庫(kù)含量在S1—S6中呈升高趨勢(shì),除S1顯著低于S5、S6外,其他土壤樣品間無(wú)顯著差異(圖1)。
圖2為等Olsen-P含量條件下土壤有機(jī)碳含量與各形態(tài)無(wú)機(jī)磷和不同磷(形態(tài))庫(kù)含量及相對(duì)含量(占無(wú)機(jī)磷總量的比例)之間的關(guān)系??梢钥闯龈麑樱?—20 cm)土壤SOC含量和Ca2-P、Ca8-P、Al-P、Fe-P、O-P之間均呈顯著(≤0.05)或極顯著(≤0.001)正相關(guān)關(guān)系,其決定系數(shù)2分別為0.85、0.41、0.84、0.41、0.82,土壤SOC含量?jī)H與Ca10-P無(wú)相關(guān)關(guān)系,同時(shí)緩效磷庫(kù)和難利用磷庫(kù)含量也均隨SOC升高而顯著提高(圖2)。
圖2 等Olsen-P不同含量有機(jī)碳水平土各無(wú)機(jī)磷組分含量及不同磷(形態(tài))庫(kù)與有機(jī)碳含量的關(guān)系
隨著土壤有機(jī)碳含量升高,活性磷庫(kù)(Ca2-P)、緩效磷庫(kù)相對(duì)含量顯著增加,難利用磷庫(kù)相對(duì)含量則線性降低(圖3)。緩效磷庫(kù)中只有Al-P的相對(duì)含量顯著升高;而難利用磷庫(kù)中只有Ca10-P相對(duì)含量顯著降低,其他形態(tài)磷均無(wú)顯著變化(圖3)。
為探討各無(wú)機(jī)磷庫(kù)對(duì)土壤有效磷含量的貢獻(xiàn),對(duì)土壤Olsen-P含量和活性磷庫(kù)(Ca2-P)、緩效磷庫(kù)和難利用磷庫(kù)做散點(diǎn)圖(圖4),可以看出耕層(0—20 cm)土壤Olsen-P含量和難利用磷庫(kù)呈顯著正相關(guān)關(guān)系(≤0.05),決定系數(shù)2為0.24,與活性磷庫(kù)和緩效磷庫(kù)相關(guān)性不顯著。
圖3 土各形態(tài)無(wú)機(jī)磷及不同磷(形態(tài))庫(kù)相對(duì)含量與有機(jī)碳的關(guān)系
圖中Labile P指Ca2-P Labile P refers to Ca2-P
從表2可見(jiàn),各形態(tài)無(wú)機(jī)磷之間及其與土壤基本性質(zhì)之間多存在相關(guān)關(guān)系。Ca10-P與各形態(tài)無(wú)機(jī)磷均無(wú)顯著相關(guān)關(guān)系,Ca2-P、Ca8-P、O-P與除Ca10-P外的其他各形態(tài)無(wú)機(jī)磷均呈顯著或極顯著正相關(guān)關(guān)系,Al-P和Fe-P之間相關(guān)性不顯著。除Ca10-P與SOC相關(guān)性不顯著外,Ca2-P、Ca8-P、Al-P、Fe-P、O-P與SOC均呈極顯著正相關(guān)關(guān)系,Olsen-P則與各形態(tài)無(wú)機(jī)磷均無(wú)顯著的相關(guān)關(guān)系。Ca10-P和Al-P與土壤全磷呈顯著正相關(guān)關(guān)系。所有形態(tài)的無(wú)機(jī)磷與pH的相關(guān)性都不顯著。
表2 不同有機(jī)碳水平土各組分無(wú)機(jī)磷含量與土壤基本性質(zhì)的關(guān)系
Table 2 The correlation between the soil chemical properties and different forms of inorganic phosphorus in soils with a gradient organic carbon level of a tier soil
表2 不同有機(jī)碳水平土各組分無(wú)機(jī)磷含量與土壤基本性質(zhì)的關(guān)系
Ca2-PCa8-PCa10-PAl-PFe-PO-PSOCOlsen-PTotal PpH Ca2-P 10.624**0.3630.841**0.652**0.827**0.923**0.3880.3440.356 Ca8-P 10.2370.591**0.621**0.469*0.639**0.1140.4660.208 Ca10-P 10.4380.0770.3960.3960.4640.749**-0.015 Al-P 10.4120.854**0.854**0.3920.470*0.439 Fe-P 10.585*0.639**0.0490.1990.278 O-P 10.907**0.3260.3070.410 SOC 10.4010.3140.453 Olsen-P 10.103-0.008 Total P 10.015 pH1
*表示顯著相關(guān)(≤0.05);**表示顯著相關(guān)(≤0.01)
*Indicates a significant correlation at≤0.05 probability level; ** Indicates a significant correlation at≤0.01 probability level
在本研究中,土壤Ca2-P、Ca8-P、Al-P、Fe-P、O-P或活性磷庫(kù)、緩效磷庫(kù)及難利用磷庫(kù)均隨SOC含量增加而增加,呈顯著正相關(guān)(圖1,圖2)。與韓曉日等[24]報(bào)道的26年定位試驗(yàn)結(jié)果相似,長(zhǎng)期施用有機(jī)肥顯著增加了棕壤中Ca2-P、Ca8-P、Al-P、Fe-P和O-P含量,Ca10-P含量卻在耕層減少。作者認(rèn)為這可能是由于長(zhǎng)期施用有機(jī)肥使土壤中有機(jī)質(zhì)積累,有機(jī)肥所含的磷被礦化成為有效態(tài)的無(wú)機(jī)磷。同時(shí),有機(jī)肥在分解過(guò)程中產(chǎn)生有機(jī)絡(luò)合劑,把磷從一些不溶性磷酸鹽中釋放出來(lái),導(dǎo)致土壤Ca10-P含量減少,Ca2-P、Ca8-P、Al-P、Fe-P含量增加,無(wú)機(jī)磷總量增加。土壤O-P含量增加可能是由于有機(jī)肥帶入的磷遠(yuǎn)高于作物吸收利用的磷,使積累的磷一部分緩慢地轉(zhuǎn)化成O-P[25],也可能是部分有效性較高的磷素形態(tài)轉(zhuǎn)變?yōu)殚]蓄態(tài)磷[26]。本研究中,土壤Ca10-P含量隨著有機(jī)碳含量升高無(wú)明顯變化,可能是因?yàn)橛袡C(jī)質(zhì)可以減弱磷素的固定,或者是在磷素較低的條件下,磷向Ca10-P轉(zhuǎn)化量極低。同時(shí),有機(jī)質(zhì)分解過(guò)程中產(chǎn)生的有機(jī)酸對(duì)難溶性鈣磷有活化釋放作用,但由于其釋放量小,絕對(duì)含量高,短時(shí)間內(nèi)難以轉(zhuǎn)化。由于隨著有機(jī)碳含量的升高,除Ca10-P外其他各形態(tài)的無(wú)機(jī)磷含量都呈增加趨勢(shì),因此緩效磷庫(kù)和難利用磷庫(kù)含量也隨之增加。
土壤Ca2-P、Al-P和緩效磷庫(kù)相對(duì)含量(占無(wú)機(jī)磷總量的比例)隨著SOC含量升高而升高,且與SOC呈極顯著正相關(guān)關(guān)系,Ca10-P和難利用磷庫(kù)相對(duì)含量則隨SOC升高而下降,與SOC極顯著負(fù)相關(guān),Ca8-P、O-P和Fe-P占無(wú)機(jī)磷比重則維持在同一個(gè)水平(圖3),表明土壤有機(jī)碳含量的改變可導(dǎo)致土壤中不同形態(tài)無(wú)機(jī)磷轉(zhuǎn)化,從而改變其相對(duì)含量。有機(jī)碳的提高促進(jìn)了土壤中難利用磷庫(kù)向緩效或活性磷庫(kù)的轉(zhuǎn)化,提高了有效磷源占無(wú)機(jī)磷的比例。這與宋付朋[26]在石灰性土壤菜園耕層土中Ca2-P、Al-P 所占無(wú)機(jī)磷比例隨著種菜歷史的延長(zhǎng),有機(jī)質(zhì)含量的不斷升高而顯著升高,Ca10-P則顯著下降的結(jié)果一致。在本研究中,Ca8-P、Fe-P 和O-P的相對(duì)含量隨著有機(jī)碳含量的增加基本無(wú)變化,與以往在石灰性土壤上研究結(jié)果不一致。謝林花[27]在石灰性土壤上長(zhǎng)期施肥發(fā)現(xiàn),化肥和有機(jī)肥中易溶性磷施入土壤后,不但形成易溶性和較易溶的Ca2-P和Ca8-P,也形成相當(dāng)數(shù)量的Al-P、Fe-P,這可能與供試土壤性質(zhì),尤其是土壤樣品磷含量差異有關(guān)。本研究選取的土壤樣品Olsen-P和全磷含量基本相似,土壤有機(jī)碳含量呈梯度。因此,有機(jī)碳累積可能主要提高了可供作物直接利用的有效磷庫(kù)Ca2-P和緩效磷庫(kù)中Al-P的比例,降低難溶性磷庫(kù)中Ca10-P的比例來(lái)提高土壤磷素有效性。
本研究結(jié)果中Olsen-P含量與難利用磷庫(kù)含量呈顯著正相關(guān)關(guān)系,與活性磷庫(kù)和緩效磷庫(kù)相關(guān)性不顯著(圖4)。該結(jié)果表明當(dāng)前條件下土壤有效磷的主要來(lái)源是難利用磷庫(kù),可能是其逐漸向緩效磷庫(kù)和活性磷庫(kù)轉(zhuǎn)化釋放供作物吸收。有研究表明,土有機(jī)碳達(dá)到10.0 g·kg-1后,作物產(chǎn)量不再隨之進(jìn)一步增加[28],S3樣品(SOC平均含量為10.17 g·kg-1)就已經(jīng)達(dá)到閾值;同時(shí)土壤Olsen-P達(dá)到約17 mg·kg-1時(shí)作物對(duì)磷肥施入或Olsen-P進(jìn)一步提升不再有響應(yīng)[29-30]??梢哉J(rèn)為,在目前土壤磷和S3—S6樣品土壤有機(jī)質(zhì)含量條件下,磷的固定相對(duì)較弱,難利用態(tài)磷庫(kù)可以通過(guò)土壤有機(jī)碳的提高向緩效磷庫(kù)和活性磷庫(kù)轉(zhuǎn)化。COOKE[31]也認(rèn)為,施入土壤中的磷素大部分最終都能被作物吸收利用。本研究中難利用態(tài)磷庫(kù)向緩效磷庫(kù)和活性磷庫(kù)轉(zhuǎn)化原因可能如下:(1)有機(jī)物對(duì)難利用磷庫(kù)有活化作用,促進(jìn)了難利用態(tài)磷庫(kù)向活性磷庫(kù)和緩效磷庫(kù)的轉(zhuǎn)化。章永松等[32]在紅壤上采用逐級(jí)去磷的方法把土壤中的Ca10-P和O-P去除后,被豬糞活化的磷量與原來(lái)土壤相比顯著下降,說(shuō)明有機(jī)物對(duì)難利用態(tài)Ca10-P和O-P有較強(qiáng)的活化作用;(2)有機(jī)碳的提升對(duì)土壤微生物和酶活性的激發(fā)效應(yīng),促使微生物快速生長(zhǎng)繁殖,同時(shí)分解吸收大量生物活性較強(qiáng)的磷,從而促進(jìn)了難利用磷庫(kù)向有效磷庫(kù)的轉(zhuǎn)化[33-34]。李蘊(yùn)慧[35]通過(guò)研究不同種類農(nóng)業(yè)有機(jī)物(秸稈、樹(shù)葉、豬糞、菌渣)對(duì)黑土磷素形態(tài)影響的長(zhǎng)期動(dòng)態(tài)變化規(guī)律,發(fā)現(xiàn)增施有機(jī)物料在顯著提升土壤有機(jī)碳的同時(shí)也顯著提高了土壤磷酸酶活性、活性磷庫(kù)和緩效磷庫(kù)與難利用態(tài)磷庫(kù)間的相關(guān)性;(3)有機(jī)酸溶解了土壤中難溶態(tài)的磷酸鹽,對(duì)磷起活化作用。趙曉齊等[36]采用雙氧水氧化去除土壤有機(jī)碳的方法探究了有機(jī)物的添加對(duì)磷吸附的影響,表明有機(jī)物分解過(guò)程中產(chǎn)生的有機(jī)酸能溶解土壤中難溶態(tài)的磷酸鹽,對(duì)磷起活化作用。楊毅等[37]研究了不同施肥制度對(duì)石灰性土壤無(wú)機(jī)磷形態(tài)的影響發(fā)現(xiàn),在土壤中添加菌肥等有機(jī)物對(duì)Ca10-P、O-P等難溶性磷庫(kù)有一定地促溶或抑制其增加的作用;(4)有機(jī)碳減少了土壤對(duì)化肥磷的固定,活性磷含量增加,從而提高土壤磷素的有效性[38-39]。于群英等[40]在黃棕壤和林國(guó)林等[41]在潮土上研究得出一致結(jié)論,即與單施無(wú)機(jī)磷肥相比,用豬糞中的磷替代其中20%無(wú)機(jī)磷肥處理,提高了土壤中的Olsen-P 和Ca2-P含量。劉建玲等[42]在石灰性土壤上研究也表明,與單施無(wú)機(jī)磷肥相比,在無(wú)機(jī)磷肥中添加有機(jī)肥提高了施入的磷向活性磷庫(kù)Ca2-P的轉(zhuǎn)化量。
土壤Ca10-P與各形態(tài)無(wú)機(jī)磷均無(wú)顯著相關(guān)關(guān)系,Al-P和Fe-P之間相關(guān)性不顯著,其他各形態(tài)無(wú)機(jī)磷均呈顯著或極顯著正相關(guān)關(guān)系(表2)。說(shuō)明土壤各形態(tài)無(wú)機(jī)磷之間有明顯的轉(zhuǎn)化,它們之間存在一定程度的相互影響和制約,處于動(dòng)態(tài)平衡。Ca10-P與其他各形態(tài)無(wú)機(jī)磷均沒(méi)有顯著相關(guān)關(guān)系,可能是由于Ca10-P作為難溶性磷酸鹽難以向其他磷組分轉(zhuǎn)化,或轉(zhuǎn)化量極低,尤其是在石灰性土壤中Ca10-P化學(xué)活性很低。沈仁芳等[10]在石灰性土壤上研究表明Ca10-P與作物吸磷量無(wú)相關(guān)性,供磷能力極低,只能作為一種潛在磷源的物質(zhì)基礎(chǔ)。Al-P和Fe-P之間相關(guān)性不顯著,可能是由于Al-P和Fe-P對(duì)植物有效性相當(dāng),相互間維持較穩(wěn)定的平衡關(guān)系。郭智芬等[12]在石灰性旱地灰潮土上以原子反應(yīng)堆和放射化學(xué)標(biāo)記合成的Ca2-32P、Ca8-32P、Al-32P、Fe-32P鹽標(biāo)記土壤中相應(yīng)的磷酸鹽的方法,評(píng)估了不同形態(tài)無(wú)機(jī)磷的有效性及對(duì)作物磷素營(yíng)養(yǎng)的貢獻(xiàn),發(fā)現(xiàn)Fe-P的有效性與Al-P基本相當(dāng)。
在本試驗(yàn)中pH與各形態(tài)無(wú)機(jī)磷均無(wú)顯著相關(guān)關(guān)系(表2)。以往研究認(rèn)為土壤pH與除難溶性磷酸鹽外各形態(tài)無(wú)機(jī)磷均呈顯著負(fù)相關(guān)關(guān)系[26],可能由于本研究中土壤CaCO3含量較高。因?yàn)橥寥纏H與CaCO3含量顯著相關(guān)[26],有機(jī)物分解過(guò)程中產(chǎn)生的有機(jī)酸對(duì)石灰性土壤中CaCO3的溶解釋放能力非常有限,且與土壤中CaCO3的含量相關(guān)[43]。陸文龍等[43]通過(guò)模擬植物在缺磷脅迫條件下,根系分泌出的有機(jī)酸對(duì)石灰性土壤磷素吸附試驗(yàn)發(fā)現(xiàn)檸檬酸對(duì)CaCO3含量較低的土壤鈣的最大累積釋放量比CaCO3含量較高的值大,說(shuō)明有機(jī)酸對(duì)CaCO3的溶解能力有限,因此在CaCO3含量較高的土壤上,盡管有機(jī)質(zhì)含量有差異,但對(duì)pH影響不大,因而難以對(duì)磷形態(tài)表現(xiàn)很大影響。
全磷是有效磷的來(lái)源,土壤Ca10-P、Al-P與土壤全磷呈顯著正相關(guān)關(guān)系(表2),前者是由于其含量最高,所占比重最大;后者可能是長(zhǎng)期施肥對(duì)不同形態(tài)磷的富集作用,施入土壤中的磷素由于有機(jī)碳含量差異優(yōu)先轉(zhuǎn)化為緩效態(tài)Al-P。余婉霞[44]和林志安等[45]的研究發(fā)現(xiàn),在石灰性土壤中,當(dāng)可溶性磷進(jìn)入土壤后絕大多數(shù)以緩效態(tài)形式保存在土壤中。
在陜西關(guān)中平原小麥-玉米種植區(qū)土中,隨著土壤SOC含量升高,土壤活性磷庫(kù)(Ca2-P)、緩效磷庫(kù)(Ca8-P、Al-P、Fe-P)含量及相對(duì)含量(主要是Al-P)均顯著提高,難利用態(tài)磷庫(kù)含量(主要是O-P)也顯著提升,但相對(duì)含量(主要是Ca10-P)顯著降低。土壤Olsen-P含量與難利用磷庫(kù)含量呈顯著正相關(guān)關(guān)系。以上結(jié)果表明,在Olsen-P含量相近,全磷含量也基本相近,土壤有機(jī)碳水平呈梯度的土上,有機(jī)碳提升促進(jìn)了土壤中難利用磷庫(kù)向緩效磷庫(kù)和活性磷庫(kù)的轉(zhuǎn)化,提高了有效磷占無(wú)機(jī)磷的比例,從而提高了土壤磷素有效性。
[1] ELSER J J, BRACKEN M E S, CLELAND E E, GRUNER D S, HARPOLE W S, HILLEBRAND H, NGAI J T, SEABLOOM E W, SHURINJ B, SMITH J E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 2007, 10(12): 1135-1142.
[2] 陸文龍, 曹一平, 張福鎖. 根分泌的有機(jī)酸對(duì)土壤磷和微量元素的活化作用. 應(yīng)用生態(tài)學(xué)報(bào), 1999, 10(3): 379-382.
LU W L, CAO Y P, ZHANG F S. Role of root-exuded organic acids in mobilization of soil phosphorus and micronutrients. Chinese Journal of Applied Ecology, 1999, 10(3): 379-382.(in Chinese)
[3] 李想, 劉艷霞, 劉益仁, 徐陽(yáng)春. 無(wú)機(jī)有機(jī)肥磷配施對(duì)作物產(chǎn)量及土壤磷形態(tài)的影響. 土壤, 2013, 45(4): 641-647.
LI X, LIU Y X, LIU Y R, XU Y C. Interactive effects of combining inorganic and organic fertilizers on grain yields and phosphorus forms. Soils, 2013, 45(4): 641-647. (in Chinese)
[4] MACDONALD G K, BENNETT E M, POTTER P A, RAMANKUTTY N. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 3086-3091.
[5] 常艷麗, 劉俊梅, 李玉會(huì), 孫本華, 張樹(shù)蘭, 楊學(xué)云. 陜西關(guān)中平原小麥/玉米輪作體系施肥現(xiàn)狀調(diào)查與評(píng)價(jià). 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 42(8): 51-61.
CHANG Y L, LIU J M, LI Y H, SUN B H, ZHANG S L, YANG X Y. Investigation and evaluation of fertilization under winter wheat and summer maize rotation system in Guanzhong Plain, Shaanxi Province. Journal of Northwest A&F University (Natural Science Edition), 2014, 42(8): 51-61. (in Chinese)
[6] AULAKH M S, GARG A K, KABBA B S. Phosphorus accumulation, leaching and residual effects on crop yields from long-term applications in the subtropics. Soil Use & Management, 2010, 23(4): 417-427.
[7] 向春陽(yáng), 馬艷梅, 田秀平. 長(zhǎng)期耕作施肥對(duì)白漿土磷組分及其有效性的影響. 作物學(xué)報(bào), 2005(1): 48-52.
XIANG C Y, MA Y M, TIAN X P. Effects of long-term culture and fertilization on the contents of forms of phosphorus and their availability in Albic soil.Acta AgriculturaSinica, 2005(1): 48-52. (in Chinese)
[8] 李若楠, 王政培, BATBAYAR Javkhlan, 張東杰, 張樹(shù)蘭, 楊學(xué)云. 等有機(jī)質(zhì)塿土有效磷和無(wú)機(jī)磷形態(tài)的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2019, 52(21): 3852-3865.
LI R N, WANG Z P, BATBAVAR J, ZHANG D J, ZHANG S L, YANG X Y. Relationship between soil available phosphorus and inorganic phosphorus forms under equivalent organic matter condition in a tier soil. Scientia Agricultura Sinica, 2019, 52(21): 3852-3865. (in Chinese)
[9] 于淑芳, 張漱銘. 石灰性土壤中無(wú)機(jī)磷形態(tài)和有效性的研究. 中國(guó)土壤與肥料, 1992(3): 1-4.
YU S F, ZHANG S M. Study on the form and availability of inorganic phosphorus in calcareous soil. Soil and Fertilizer Sciences in China, 1992(3): 1-4. (in Chinese)
[10] 沈仁芳, 蔣柏藩. 石灰性土壤無(wú)機(jī)磷的形態(tài)分布及其有效性. 土壤學(xué)報(bào), 1992, 29(1): 80-86.
SHEN R F, JIANG B F. Distribution and availability of various forms of inorganic phosphorus in calcareous soils. Acta Pedologica Sinca, 1992, 29(1): 80-86. (in Chinese)
[11] UK R E S. Report of the Rothamsted Experimental Station for 1969. Nature, 1965, 184(4689): 781-782.
[12] 郭智芬, 涂書新, 李曉華, 潘勇, 張宜春. 石灰性土壤不同形態(tài)無(wú)機(jī)磷對(duì)作物磷營(yíng)養(yǎng)的貢獻(xiàn). 中國(guó)農(nóng)業(yè)科學(xué), 1997, 30(1): 26-32.
GUO Z F, TU S X, LI X H, PAN Y, ZHANG Y C. Contribution of different forms of inorganic phosphates in calcareous soils to phosphorus nutrition of crops. Scientia Agricultura Sinica, 1997, 30(1): 26-32. (in Chinese)
[13] BOL R, JULICH D, BRODLIN D, ROLAND B, DORIT J, DOMINIK B, JAN S, KLAUS K, MICHAELA A D, SANDRA S, THOMAS Z, DANIELA M, FRIEDHELM B, HEIKE P, STEFAN H, MARKUS W, WULF A, FRIEDERIKE L, YAKOV K, KARL H E, NINA G, ERWIN K, ANNA M, CAROLA W, DAVID U, JAKOB S, KLAUS W, BEI W, FRANK H. Dissolved and colloidal phosphorus fluxes in forest ecosystems-an almost blind spot in ecosystem research. Journal of Plant Nutrition and Soil Science, 2016(179): 425-438.
[14] 劉建玲, 張福鎖. 小麥-玉米輪作長(zhǎng)期肥料定位試驗(yàn)中土壤磷庫(kù)的變化: Ⅰ.磷肥產(chǎn)量效應(yīng)及土壤磷庫(kù)、無(wú)機(jī)磷庫(kù)的變化.應(yīng)用生態(tài)學(xué)報(bào), 2000, 11(3): 365-368.
LIU J L, ZHANG F S. Dynamics of soil P pool in a long-term fertilizing experiment of wheat -maize rotation.Ⅰ. Crop yield effect of fertilizer P and dynamics of soil total P and inorganic P. Chinese Journal of Applied Ecology, 2000, 11(3): 365-368. (in Chinese)
[15] 展曉瑩, 任意, 張淑香, 康日峰. 中國(guó)主要土壤有效磷演變及其與磷平衡的響應(yīng)關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(23): 4728-4737.
ZHAN X Y, REN Y, ZHANG S X, KANG R F. Changes in Olsen phosphorus concentration and its response to phosphorus balance in main types of soil in China. Scientia Agricultura Sinica, 2015, 48(23): 4728-4737. (in Chinese)
[16] LUO L, MA Y B, SANDERS R L, XU C, LI J, SATISH C B M. Phosphorus speciation and transformation in long-term fertilized soil: Evidence from chemical fractionation and P K-edge XANES spectroscopy. Nutrient Cycling in Agroecosystems, 2017, 107: 215-226.
[17] 周寶庫(kù), 張喜林. 長(zhǎng)期施肥對(duì)黑土磷素積累、形態(tài)轉(zhuǎn)化及其有效性影響的研究. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2005, 11(2): 143-147.
ZHOU B K, ZHANG X L. Effect of long-term phosphorus fertilization on the phosphorus accumulation and distribution in black soil and its availability. Journal of Plant Nutrition and Fertilizer, 2005, 11(2): 143-147. (in Chinese)
[18] 王永和, 曹翠玉, 史瑞和. 有機(jī)肥對(duì)石灰性土壤無(wú)機(jī)磷組分的影響. 土壤, 1996, 28(4): 180-182.
WANG Y H, CAO C Y, SHI R H. Effect of organic fertilizer on inorganic phosphorus components in calcareous soil. Soils, 1996, 28(4): 180-182. (in Chinese)
[19] WU J S, HUANG M, XIAO H A. Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments. Plant & Soil, 2007, 290(1/2): 333-342.
[20] 安志裝, 介曉磊, 李有田, 白由路, 魏義長(zhǎng), 劉世亮.不同水分和添加物料對(duì)石灰性土壤無(wú)機(jī)磷形態(tài)轉(zhuǎn)化的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2002, 8(1): 58-64.
AN Z Z, JIE X L, LI Y T, BAI Y L, WEI Y C, LIU S L. Effect of different water and material on inorganic phosphorus transformation in calcareous soil. Journal of Plant Nutrition and Fertilizer, 2002, 8(1): 58-64. (in Chinese)
[21] WILLIAMS J D H, SYERS J K, HARRIS R F, ARMSTRONG D E. Fractionation of inorganic phosphate in calcareous lake sediments. Soil Science Society of America Journal, 1971, 35(2): 250-255.
[22] 鮑士旦. 土壤農(nóng)化分析. 3版. 北京: 中國(guó)農(nóng)業(yè)出版社, 2005.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2005. (in Chinese)
[23] 蔣柏藩, 顧益初. 石灰性土壤無(wú)機(jī)磷分級(jí)體系的研究. 中國(guó)農(nóng)業(yè)科學(xué), 1989, 22(3): 58-66.
JIANG B F, GU Y C. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Scientia Agricultura Sinica, 1989, 22(3): 58-66. (in Chinese)
[24] 韓曉日, 馬玲玲, 王曄青, 王穎, 戰(zhàn)秀梅. 長(zhǎng)期定位施肥對(duì)棕壤無(wú)機(jī)磷形態(tài)及剖面分布的影響. 水土保持學(xué)報(bào), 2007, 21(4): 51-55.
HAN X R, MA L L, WANG Y Q,WANG Y, ZHAN X M. Effects of long-term fertilization on inorganic phosphorus forms and profile distribution in Brown soil. Journal of Soil and Water Conservation, 2007, 21(4): 51-55. (in Chinese)
[25] 韓曉飛, 高明, 謝德體, 王子芳, 陳晨. 長(zhǎng)期定位施肥條件下紫色土無(wú)機(jī)磷形態(tài)演變研究. 草業(yè)學(xué)報(bào), 2016, 25(4): 63-72.
HAN X F, GAO M, XIE D T, WANG Z F, CHEN C. Inorganic phosphorus in a regosol (purple) soil under long term phosphorus fertilization. Acta Prataculturae Sinica, 2016, 25(4): 63-72. (in Chinese)
[26] 宋付朋. 長(zhǎng)期施磷石灰性土壤無(wú)機(jī)磷形態(tài)特征及其有效性研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2006.
SONG F P. Charicteristics and availability of inorganic phosphate fractions in calcareous soils under long-term fertilization[D]. Taian: Shandong Agricultural University, 2006. (in Chinese)
[27] 謝林花. 長(zhǎng)期不同施肥對(duì)石灰性土壤磷形態(tài)轉(zhuǎn)化及剖面分布的影響[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2001.
XIE L H. Effects on long-term different fertilization on calcareous soil phosphorus morphology transformation and soil profile distribution[D]. Yangling: Northwest A&F University, 2001. (in Chinese)
[28] WANG R J, ZHOU J X, XIE J Y, KHAN A, YANG X Y, SUN B H, ZHANG S L. Carbon sequestration in irrigated and rain-fed cropping systems under long-term fertilization regimes. Journal of Soil Science and Plant Nutrition, 2020, 20(6). DOI: 10.1007/s42729-020-00181-6.
[29] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENE O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1/2): 27-37.
[30] TANG X, M Y B, HAO X Y, LI X Y, LI J M, HUANG S M, YANG X Y. Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant and Soil, 2009, 323(1/2): 143-151.
[31] COOKE G W. Long-term fertilizer experiments in England. Agronomy, 1976, 27: 503-536.
[32] 章永松, 林咸永, 羅安程, 蘇玲. 有機(jī)肥(物)對(duì)土壤中磷的活化作用及機(jī)理研究──Ⅰ.有機(jī)肥(物)對(duì)土壤不同形態(tài)無(wú)機(jī)磷的活化作用. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 1998, 4(2): 145-150.
ZHANG Y S, LIN X Y, LUO A C, SU L. Studies on activation of phosphorus by organic manure in soils and its mechanisms. Ⅰ. Effect of organic manure (matter) on activation to different phosphate in soils. Plant Nutrition and Fertilizer Science, 1998, 4(2): 145-150. (in Chinese)
[33] 黃敏, 尹維文, 余婉霞, 周開(kāi)來(lái), 黃永炳, 石曉娟. 兩種外源性有機(jī)物料對(duì)土壤磷變化的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2015, 34(3): 501-508.
HUANG M, YIN W W, YU W X, ZHOU K L, HUANG Y B, SHI X J. Effects of two organic amendments on phosphorus transformation in greenhouse soil. Journal of Agro-Environment Science, 2015, 34(3): 501-508. (in Chinese)
[34] 陳安磊, 王凱榮, 謝小立, 劉迎新. 不同施肥模式下稻田土壤微生物生物量磷對(duì)土壤有機(jī)碳和磷素變化的響應(yīng). 應(yīng)用生態(tài)學(xué)報(bào), 2007, 18(12): 2733-2738.
CHEN A L, WANG K R, XIE X L, LIU Y X. Responses of microbial biomass P to the changes of organic C and P in paddy soils under different fertilization systems. Chinese Journal of Applied Ecology, 2007, 18(12): 2733-2738. (in Chinese)
[35] 李蘊(yùn)慧. 增施有機(jī)物料黑土磷素形態(tài)轉(zhuǎn)化規(guī)律研究[D]. 長(zhǎng)春: 吉林農(nóng)業(yè)大學(xué),2017.
LI Y H. The changes of phosphorous fractions in black soil applied organic materials[D]. Changchun: Jilin Agricultural University, 2017. (in Chinese)
[36] 趙曉齊, 魯如坤. 有機(jī)肥對(duì)土壤磷素吸附的影響. 土壤學(xué)報(bào), 1991, 28(1): 7-15.
ZHAO X Q, LU R K. Effects of organic manure on soil phosphorus adsorption. Acta Pedologica Sinica, 1991, 28(1): 7-15. (in Chinese)
[37] 楊毅, 趙文婷. 不同施肥制度對(duì)北方石灰性土壤無(wú)機(jī)磷形態(tài)影響研究. 灌溉排水學(xué)報(bào), 2015, 34(7): 28-33.
YANG Y, ZHAO W T. Influence of inorganic phosphorus forms on calcareous soil under different fertilization systems in Northern China. Journal of Irrigation and Drainage, 2015, 34(7): 28-33. (in Chinese)
[38] 王伯仁, 徐明崗, 文石林, 李冬初. 長(zhǎng)期施肥對(duì)紅壤旱地磷組分及磷有效性的影響. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2002, 28(4): 293-297.
WANG B R, XU M G, WEN S L, LI D C. The effects of long term fertilization on chemical fractions and availability of inorganic phosphate in red soil upland. Journal of Hunan Agricultural University (Natural Sciences), 2002, 28(4): 293-297. (in Chinese)
[39] 王曄青, 韓曉日, 馬玲玲, 王玲莉, 趙立勇, 李鑫. 長(zhǎng)期不同施肥對(duì)棕壤微生物量磷及其周轉(zhuǎn)的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2008, 14(2): 322-327.
WANG H Q, HAN X R, MA L L, WANG L L, ZHAO L Y, LI X. Effect of long-term fertilization on the content and turnover of soil microbial biomass P. Plant Nutrition and Fertilizer Science,2008, 14(2): 322-327. (in Chinese)
[40] 于群英, 李孝良, 李粉茹, 汪建飛. 安徽省土壤無(wú)機(jī)磷組分狀況及施肥對(duì)土壤磷素的影響. 水土保持學(xué)報(bào), 2006, 20(4): 57-61.
YU Q Y, LI X L, LI F R, WANG J F. Contents of soil inorganic phosphorus fractions in Anhui Province and effects of fertilization on soil phosphorus. Journal of Soil and Water Conservation, 2006, 20(4): 57-61. (in Chinese)
[41] 林國(guó)林, 云鵬, 陳磊, 高翔, 張金濤, 盧昌艾, 劉榮樂(lè), 汪洪. 小麥季磷肥施用對(duì)后作玉米的效果及土壤中無(wú)機(jī)磷形態(tài)轉(zhuǎn)化的影響. 土壤通報(bào), 2011(3): 676-680.
LIN G L, YUN P, CHEN L, GAO X, ZHANG J T, LU C A, LIU R L, WANG H. Residual effects of phosphate fertilizer applied to winter wheat on following maize and transformation of phosphate fractions in soil. Chinese Journal of Soil Science, 2011(3): 676-680. (in Chinese)
[42] 劉建玲, 張福鎖. 小麥-玉米輪作長(zhǎng)期肥料定位試驗(yàn)中土壤磷庫(kù)的變化. Ⅱ. 土壤Olsen-P及各形態(tài)無(wú)機(jī)磷的動(dòng)態(tài)變化. 應(yīng)用生態(tài)學(xué)報(bào), 2000, 11(3): 365-368.
LIU J L, ZHANG F S. Dynamics of soil P pool in a long-term fertilizing experiment of wheat-maize rotation. Ⅱ. Dynamics of soil Olsen-P and inorganic P. Chinese Journal of Applied Ecology, 2000, 11(3): 365-368. (in Chinese)
[43] 陸文龍, 張福鎖, 曹一平, 王敬國(guó). 低分子量有機(jī)酸對(duì)石灰性土壤磷吸附動(dòng)力學(xué)的影響. 土壤學(xué)報(bào), 1999, 36(2): 3-5.
LU W L, ZHANG F S, CAO Y P, WANG J G. Influence of low- molecular weight organic acids on kinetics of phosphorus adsorption by soils. Acta Pedologica Sinica, 1999, 36(2): 3-5. (in Chinese)
[44] 余婉霞. 設(shè)施菜地土壤磷與有機(jī)碳的轉(zhuǎn)化及其相互關(guān)系[D]. 武漢: 武漢理工大學(xué), 2014.
YU W X. Transformation of phosphorus and organic carbon and their interaction in greenhouse vegetable soil[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese)
[45] 林治安, 謝承陶, 張振山, 張雪瑤. 石灰性土壤無(wú)機(jī)磷形態(tài)、轉(zhuǎn)化及其有效性研究. 土壤通報(bào), 1997, 28(6): 274-276.
LIN Z A, XIE C T, ZHANG Z S, ZHANG X Y. Study on the form, transformation and effectiveness of inorganic phosphorus in limestone soil. Chinese Journal of Soil Science, 1997, 28(6): 274-276. (in Chinese)
Phosphorus Availability and Transformation of Inorganic Phosphorus Forms Under Different Organic Carbon Levels in a Tier Soil
LU Peng, LI WenHai, NIU JinCan, BATBAYAR Javkhlan, ZHANG ShuLan, YANG XueYun
College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi
【】The influence of organic carbon on the contents and transformation of soil in organic phosphorus fractions were investigated, which can help to formulate soil managemental strategies whereby to improve phosphorus use efficiency in tier soil.【】The soil samples were collected and selected with a gradient of organic carbon levels but similar in Olsen-P (ranges from 17.41 mg·kg-1to 18.72 mg·kg-1) under winter wheat summer maize cropping in the Guanzhong Plain of Shaanxi Province. The organic carbon contents of the selected soil samples were 6.38, 8.34, 10.17, 11.95, 13.64 and 15.74 g·kg-1, respectively. Then the soil inorganic phosphorus fractions (dicalcium phosphate (Ca2-P), octa-calcium phosphate (Ca8-P), apatite (Ca10-P), aluminum bounded phosphate (Al-P), iron bounded phosphate (Fe-P) and occluded phosphate (O-P)) were analyzed with the phosphorus fractionation procedure proposed by Chang & Jackson and modified by Jiang and Gu.【】The results showed that organic carbon played an important role in transformation of soil inorganic phosphorus in the winter wheat-summer maize cropping in Guanzhong Plain of Shaanxi Province. The soil Ca2-P, Ca8-P, Al-P, Fe-P, O-P fractions, moderately labile P (Ca8-P, Al-P and Fe-P), and stable P (O-P and Ca10-P) pools were increased significantly and linearly with increasing soil organic carbon, whereas Ca10-P remained unchanged. The relative contents of labile-P (Ca2-P), moderately labile P (mainly Al-P) were significantly and positively correlated with SOC content, but stable P (mainly Ca10-P) showed significant negative correlation with SOC. Soil Olsen-P increased significantly and linearly with increasing stable P.【】Under the similar soil Olsen-P and total phosphorus conditions, soil organic carbon improved the availability of soil phosphorus mainly through promoting the conversion of stable P to moderately labile P and labile P in the soil, increasing the ratio of available phosphorus to inorganic phosphorus, and improving the availability of soil phosphorus. The results implied that improvement of soil fertility (SOC) could promote the activation and utilization of legacy phosphorus in soil.
fractionation of inorganic phosphorus; winter wheat-summer maize cropping; tier soil; phosphorus availability; inorganic phosphorus transformation
10.3864/j.issn.0578-1752.2022.01.010
2020-12-23;
2021-02-20
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0200205)
路鵬,E-mail:lupeng8602@163.com。通信作者楊學(xué)云,E-mail:xueyunyang@hotmail.com
(責(zé)任編輯 李云霞)