李帥帥,郭俊杰,劉文波,韓春龍,賈海飛,凌寧,郭世偉
不同施肥模式下輪作制度引起的土壤磷素有效性變化及其影響因素
李帥帥1,郭俊杰1,劉文波1,韓春龍2,賈海飛2,凌寧1,郭世偉1
1南京農(nóng)業(yè)大學(xué)資源與環(huán)境科學(xué)學(xué)院/江蘇省固體有機(jī)廢棄物資源化高技術(shù)研究重點(diǎn)實(shí)驗(yàn)室,南京 210095;2如皋市農(nóng)業(yè)科學(xué)研究所,江蘇如皋 226575
【】探究不同輪作體系對(duì)土壤磷素有效性的影響,評(píng)估不同輪作體系土壤磷素活化潛力,為農(nóng)田磷素高效利用提供科學(xué)依據(jù)。試驗(yàn)于2018—2020年在江蘇省如皋市農(nóng)業(yè)科學(xué)研究所開(kāi)展,設(shè)置水稻-小麥(R-W)、水稻-油菜(R-O)、水稻-包菜(R-C)、水稻-閑田(R-F)4個(gè)輪作模式,每種輪作模式下設(shè)置3種施肥處理,分別為不施肥處理(CK)、不施磷處理(NK)、氮磷鉀肥處理(NPK)。通過(guò)分析旱季和稻季成熟期不同施肥條件下地上部作物吸磷量、土壤磷組分含量、土壤微生物量及堿性磷酸酶活性等,明確不同水旱輪作體系下土壤磷素平衡及有效性變化規(guī)律,并探究其主要影響因素。NK處理下土壤磷素的嚴(yán)重失衡導(dǎo)致不同輪作體系土壤有效磷的補(bǔ)充存在差異。在NK處理下,R-O輪作可以保持較高的磷素輸出以及促進(jìn)土壤有效磷的補(bǔ)充。具體表現(xiàn)為NK處理下旱季R-O輪作體系下土壤活性磷相對(duì)含量較其他輪作體系低5.7%—7.3%,土壤中等活性磷和穩(wěn)定性磷相對(duì)含量分別較其他輪作體系高4.2%—6.4%和0.9%—1.9%。相比之下,NK處理下稻季土壤中等活性磷相對(duì)含量較其他輪作體系高0.5%—3.0%,活性磷和穩(wěn)定性磷相對(duì)含量則分別較其他輪作體系低0—1.5%和0.2%—2.3%。NK處理下,R-O輪作土壤微生物量碳磷比在旱季和稻季均相對(duì)較小,且在稻季時(shí)顯著低于R-W輪作。土壤微生物量氮磷比也具有類(lèi)似的規(guī)律。R-O輪作土壤堿性磷酸酶在旱季和稻季均保持較高活性。路徑分析模型表明,磷素?cái)y出量(-0.53)和堿性磷酸酶(-0.51)分別對(duì)旱季和稻季土壤有效磷含量的貢獻(xiàn)最高。在土壤磷素相對(duì)虧缺時(shí),水稻-油菜輪作可以通過(guò)在旱季釋放更多的堿性磷酸酶和調(diào)節(jié)稻季的土壤微生物量碳磷比,進(jìn)而促進(jìn)微生物活化非活性態(tài)磷庫(kù)以補(bǔ)充活性態(tài)磷庫(kù),以保證在不影響磷素輸出的情況下維持土壤有效磷含量的相對(duì)穩(wěn)定。
輪作制度;施肥;磷有效性;磷組分;微生物量;微生物量化學(xué)計(jì)量比
【研究意義】磷缺乏是限制土壤維持可持續(xù)生產(chǎn)力的因子之一[1]。近30年的統(tǒng)計(jì)數(shù)據(jù)表明,我國(guó)農(nóng)田土壤磷素平均累積量達(dá)1 926 kg P2O5·hm-2,年均磷素盈余量達(dá)60 kg P2O5·hm-2[2]。盡管土壤中有大量磷素盈余,但大部分的磷被土壤固定,或?yàn)槲⑸锕坛?,能被植物吸收利用的僅占小部分[3-4]。磷素利用率低下導(dǎo)致生產(chǎn)活動(dòng)中需要施用更多的肥料來(lái)提高作物產(chǎn)量和維持土壤磷素有效性,這不僅導(dǎo)致了農(nóng)田系統(tǒng)的可持續(xù)性下降,而且容易造成環(huán)境負(fù)面影響。當(dāng)土壤中的非活性磷能夠被調(diào)動(dòng)時(shí),即使不施磷肥,土壤中的磷含量也可以滿足作物對(duì)磷的需求[5-6]。因此,在減施磷肥的基礎(chǔ)上,維持土壤肥力、提高磷素利用率具有重要意義?!厩叭搜芯窟M(jìn)展】水旱輪作是一種能兼顧水稻和旱地作物生產(chǎn)的種植模式,主要分布在我國(guó)的長(zhǎng)江流域,輪作方式包括水稻-小麥、水稻-油菜、水稻-蔬菜、水稻-綠肥等[7]。據(jù)統(tǒng)計(jì),長(zhǎng)江流域的磷素總累積量已達(dá)到280×108kg,但其有效磷含量卻難以成比例地增加[8]。而水旱輪作模式中,作物和季節(jié)性的水熱變化會(huì)引起土壤物理、化學(xué)和生物學(xué)特征的差異[7]。研究表明,水旱輪作會(huì)使得土壤還原過(guò)程與氧化過(guò)程交替進(jìn)行,從而影響土壤中無(wú)機(jī)磷的化學(xué)行為和有效性[9]。在淹水時(shí),較低的氧化還原電位可將土壤中可溶性較低的Fe3+、Mn4+還原為可溶性較高的Fe2+、Mn2+[10-11],而增加的磷酸鐵化合物正是土壤中磷有效性較高的形式[12-13]。對(duì)于有機(jī)磷庫(kù),只有將其轉(zhuǎn)化為無(wú)機(jī)磷形態(tài)后才能被植物利用,而微生物在驅(qū)動(dòng)磷素轉(zhuǎn)化的過(guò)程中至關(guān)重要[14-15]。一方面,植物可以通過(guò)釋放根系分泌物等措施來(lái)招募有益微生物群落,微生物通過(guò)分泌磷酸酶來(lái)礦化有機(jī)磷以釋放無(wú)機(jī)磷[16-17],而磷酸酶驅(qū)動(dòng)無(wú)機(jī)磷的釋放過(guò)程被認(rèn)為是重要的有效磷潛在來(lái)源[18];其次,土壤微生物量是土壤磷的動(dòng)態(tài)庫(kù)[19],并且與磷的快速吸收以及隨后的釋放和再分配等磷循環(huán)過(guò)程密切相關(guān)[20]。干濕交替的劇烈變化過(guò)程會(huì)使土壤中微生物細(xì)胞破裂溶解,土壤有效磷會(huì)由于微生物中磷的釋放而增加[21]。因此,在水旱輪作模式下,可以通過(guò)適當(dāng)減少水稻季磷的用量和補(bǔ)足旱季磷來(lái)滿足作物吸收和土壤磷素的固定[22]。然而土壤中磷的形態(tài)多樣且存在著復(fù)雜的轉(zhuǎn)化關(guān)系,簡(jiǎn)單地將磷素分為無(wú)機(jī)磷和有機(jī)磷兩大類(lèi),無(wú)法揭示土壤不同形態(tài)磷素的轉(zhuǎn)化關(guān)系。HEDLEY依據(jù)土壤磷在不同的浸提劑中的溶解性提出了兼顧無(wú)機(jī)磷和有機(jī)磷磷素分級(jí)方法[23],而后經(jīng)MOIR和TIESSEN等改進(jìn),能夠在一定程度上反映土壤的磷素含量水平和供磷能力[24]。此外,不同作物輪作模式對(duì)磷素需求的差異也會(huì)造成磷素利用的不同,一般糧食作物輪作存在較小的磷素虧缺,而蔬菜作物輪作由于磷攜出量較低存在磷盈余[25]?!颈狙芯壳腥朦c(diǎn)】以往對(duì)土壤磷素的研究主要是基于對(duì)單一作物種植季的不同施肥模式進(jìn)行分析比較,以明確土壤磷活化增效的調(diào)控途徑。近期基于多年定位試驗(yàn)的研究表明,輪作制度同樣是引起土壤磷素有效性變化的重要因素[26]。因此,本研究針對(duì)輪作模式引起的土壤有效磷的變化來(lái)討論各影響因素對(duì)土壤磷素有效性的貢獻(xiàn)大小?!緮M解決的關(guān)鍵問(wèn)題】本研究通過(guò)水旱輪作田間試驗(yàn),比較不同輪作模式對(duì)土壤磷素活化的潛力,探討磷素累積量、土壤磷素形態(tài)以及微生物學(xué)特征對(duì)土壤磷有效性的貢獻(xiàn),以期為土壤磷素活化和高效利用提供理論依據(jù)。
試驗(yàn)于2018年6月在江蘇省如皋市農(nóng)業(yè)科學(xué)研究所園區(qū)試驗(yàn)田(120°28′ E,32°22′ N)開(kāi)展。該區(qū)地處亞熱帶,年均溫16.1℃,年降雨量815.8 mm。供試土壤為江淮沖積物形成的高砂土,土壤基本理化性質(zhì):pH 7.4,土壤有機(jī)質(zhì)15.8 g·kg-1,全氮1.1 g·kg-1,有效磷50.5 mg·kg-1,速效鉀102.7 mg·kg-1。
試驗(yàn)設(shè)置水稻-小麥(R-W)、水稻-油菜(R-O)、水稻-包菜(R-C)、水稻-閑田(R-F)4個(gè)輪作體系,每種輪作模式下設(shè)置3種施肥處理,分別為不施肥處理(CK)、不施磷處理(NK)、氮磷鉀肥處理(NPK)。隨機(jī)區(qū)組排列,每個(gè)處理設(shè)置3次重復(fù),其中NPK處理小區(qū)面積為40 m2,CK和NK處理小區(qū)面積為13.3 m2。供試水稻、小麥、油菜和包菜品種分別為鎮(zhèn)稻11號(hào)、揚(yáng)麥16號(hào)、秦優(yōu)10號(hào)和鑫旺旺。水稻于每年6月中旬進(jìn)行插秧,每穴2株,種植密度為25 cm×13 cm;小麥于每年11月中旬進(jìn)行條播,播種量為150 kg·hm-2,行距為25 cm;油菜移栽于11月中旬,定植12萬(wàn)株/hm2;包菜移栽于2月下旬,定植7萬(wàn)棵/hm2。水稻的氮肥用量為180 kg·hm-2,其中NK處理按50%基肥+50%分蘗肥比例施用,NPK處理按50%基肥+30%分蘗肥+20%穗肥比例施用;油菜和小麥的氮肥用量為120 kg·hm-2,按40%基肥+60%拔節(jié)肥比例施用;包菜的氮肥用量為250 kg·hm-2,40%用作基肥,剩下的60%分3次作追肥。水稻、小麥、油菜的磷肥用量為60 kg·hm-2,包菜的磷肥用量為90 kg·hm-2,均做基肥一次性施入。水稻的鉀肥用量為75 kg·hm-2,NK處理作基肥施入,NPK處理按60%基肥+40%穗肥比例施用;小麥和油菜的鉀肥用量為45 kg·hm-2,包菜的鉀肥用量為120 kg·hm-2,均做基肥一次性施用。其中供試肥料分別為尿素(含N 46%),過(guò)磷酸鈣(含P2O514%),氯化鉀(含K2O 60%)。各小區(qū)秸稈均不還田,小區(qū)間田埂用防水布覆蓋,四周設(shè)保護(hù)行。在水稻季,除水稻生長(zhǎng)過(guò)程中需要的排水曬田外,田面水保持在5 cm左右;旱季作物的水源主要來(lái)自于降雨。根據(jù)當(dāng)?shù)氐奶镩g管理習(xí)慣進(jìn)行除草、打藥等田間活動(dòng)。
樣品采集于2018—2020年,分別在每年的10月下旬水稻成熟期和5月下旬旱季作物成熟期采集土壤樣品。每個(gè)小區(qū)采取5點(diǎn)0—20 cm土層的土壤,然后將土樣帶回實(shí)驗(yàn)室先過(guò)10目篩以除去根系和石礫。一部分土壤樣品留作鮮樣以測(cè)定微生物量碳、氮、磷及堿性磷酸酶活性;另一部分土樣自然風(fēng)干,分別過(guò)20目和100目篩,用于測(cè)定土壤有效磷、全磷、有機(jī)質(zhì)、pH、磷組分等。以自然年計(jì)作輪作周年,并在2019年的旱季和稻季成熟期采集植株樣品。在旱季,選擇長(zhǎng)勢(shì)均勻的15株小麥、2株油菜、2棵包菜樣品;稻季時(shí)選擇有代表性的2穴水稻植株樣品。所有采集的植株樣品均將根系剪掉,洗凈后分為莖、葉、穗(或果),先置于105℃烘箱中殺青30 min,后于75℃下烘干至恒重,分別稱重以計(jì)算生物量,并留存部分樣品以測(cè)定植株養(yǎng)分含量。
土壤全磷、有效磷和植株磷的測(cè)定參照鮑士旦的方法[27],即采用HClO4-H2SO4法測(cè)定土壤全磷;采用H2SO4-H2O2消煮、鉬銻抗比色法測(cè)定植株磷;采用0.5 mol·L-1NaHCO3(pH 8.5)浸提、鉬銻抗比色法測(cè)定土壤有效磷。土壤磷素分級(jí)依據(jù)修正的Hedley分級(jí)方法[24],根據(jù)不同磷組分的生物有效性,分為活性磷(labile phosphorus)、中等活性磷(moderately labile phosphorus)和穩(wěn)定性磷(stable phosphorus)三類(lèi)。其中活性磷包括樹(shù)脂提取態(tài)磷(Resin-Pi)、0.5 mol·L-1NaHCO3提取態(tài)有機(jī)磷(NaHCO3-Po)和無(wú)機(jī)磷(NaHCO3-Pi);中等活性磷包括 0.1 mol·L-1NaOH提取態(tài)有機(jī)磷(NaOH-Po)和無(wú)機(jī)磷(NaOH-Pi),以及1 mol·L-1HCl提取態(tài)磷(d.HCl-Pi);穩(wěn)定性磷包括濃鹽酸提取態(tài)有機(jī)磷(c.HCl-Po)和無(wú)機(jī)磷(c.HCl-Pi)以及殘留態(tài)磷(Residual-P)。用過(guò)硫酸銨氧化法來(lái)測(cè)定NaHCO3-P、NaOH-P和d.HCl-P中的總磷,土壤總磷含量與無(wú)機(jī)磷含量之差即為土壤有機(jī)磷含量。詳細(xì)的磷素提取流程見(jiàn)圖1。根據(jù)不同磷組分的形態(tài),亦可將以上磷組分分為無(wú)機(jī)磷、有機(jī)磷和殘余態(tài)磷[28],其中殘余態(tài)磷由不能被獨(dú)立提取出來(lái)的無(wú)機(jī)磷和有機(jī)磷兩部分組成。土壤微生物量磷(microbial biomass phosphorus,MBP)采用氯仿熏蒸、0.5 mol·L-1NaHCO3溶液浸提(土水比為1﹕20)、鉬銻抗比色法,轉(zhuǎn)化系數(shù)為0.4[29];土壤微生物量碳(microbial biomass carbon,MBC)和微生物量氮(microbial biomass nitrogen,MBN)采用氯仿熏蒸、0.5 mol·L-1K2SO4(土水比為1﹕4)溶液浸提、經(jīng)TOC/TN儀(德國(guó)耶拿 multi N/C 3100)測(cè)定,轉(zhuǎn)化系數(shù)分別取0.45、0.54[30-31];采用磷酸苯二鈉比色法測(cè)定土壤堿性磷酸酶(Alkaline phosphatase,ALP)的活性[32]。
磷積累量(phosphorus accumulation, kg P2O5·hm-2)=籽粒(或角果)生物量(kg·hm-2)×籽粒(或角果)磷含量(%)+莖生物量(kg·hm-2)×莖磷含量(%)+葉生物量(kg·hm-2)×葉磷含量(%);
圖1 連續(xù)浸提法測(cè)土壤磷組分[24]
磷盈虧(P surplus, kg P2O5·hm-2)=磷肥施用量(kg P2O5·hm-2)-作物磷累積量(kg P2O5·hm-2);
磷肥回收率(P recovery efficiency, %)=(施磷區(qū)作物地上部磷積累總量-不施磷區(qū)作物地上部磷積累總量)/ 磷肥施用總量×100;
磷活化系數(shù)(phosphorus activation coefficient, %)=有效磷含量(mg·kg-1)/全磷含量(mg·kg-1)×100。
采用Excel 2016對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)和圖表制作,同時(shí)采用SPSS 20.0進(jìn)行雙因素方差分析和LSD多重比較(α=0.05)。采用R 4.0.3進(jìn)行Pearson相關(guān)性分析,并用多重假設(shè)檢驗(yàn)(FDR 檢驗(yàn))對(duì)值進(jìn)行校正;采用偏最小二乘路徑分析法(PLS-PM)來(lái)構(gòu)建模型以明確各影響因素對(duì)土壤有效磷的貢獻(xiàn)。
輪作制度和施肥均顯著影響了作物磷攜出量及土壤磷盈余(表1,<0.05)。3種施肥處理下,R-O輪作下旱季磷攜出量高于其他輪作體系,并且在NPK處理中達(dá)到最高;相比之下,R-O輪作稻季磷攜出量均低于其他輪作體系,但與R-W輪作無(wú)顯著差異。相對(duì)于NPK處理,旱季四種輪作NK處理磷攜出量占比分別為95.9%、70.5%、66.7%和0%,稻季4種輪作NK處理磷攜出量占比分別為86.3%、88.0%、77.2%和89.6%。由此表明,水稻季不同輪作對(duì)磷肥的依賴程度大小為R-C>R-W>R-O>R-F。4種輪作體下土壤磷素均處于虧缺狀態(tài),并且在NK處理下磷素虧缺量最大。與其他輪作相比,R-O輪作土壤磷攜出量和土壤磷盈余均處于較高水平;同樣地,R-O輪作磷肥回收率處于較高水平,達(dá)32.7%。
2.2.1 土壤磷含量和有效性 在兩個(gè)輪作周年內(nèi),相對(duì)于NK處理,施用磷肥使稻季土壤有效磷含量平均增加7.5和4.3 mg·kg-1,而旱季土壤有效磷含量主要在不同輪作體系間存在顯著差異(表2,<0.05)。在無(wú)磷肥投入情況下(CK、NK處理),兩個(gè)輪作周年內(nèi)旱季R-O輪作土壤有效磷含量均值分別為39.1和33.7 mg·kg-1,分別較其他輪作體系低15.0—15.8和7.2—10.8 mg·kg-1;NPK處理,旱季R-O輪作土壤有效磷平均含量較其他輪作體系低6.2—15.3 mg·kg-1。旱季NK處理下土壤有效磷含量整體表現(xiàn)為R-O輪作顯著低于其他輪作體系,而稻季時(shí)各輪作之間差異不顯著。輪作制度對(duì)土壤全磷和PAC影響不大,僅CK處理下存在顯著差異。
2.2.2 磷組分含量和有效性 輪作制度顯著影響了旱季土壤活性磷和中等活性磷的含量,而稻季時(shí)各輪作體系的土壤磷組分無(wú)顯著差異(圖2)。在旱季和稻季,4種輪作體系之間土壤穩(wěn)定態(tài)磷庫(kù)(c.HCl-Pi、c.HCl-Po、Residual-P)差異均不大。與穩(wěn)定態(tài)磷庫(kù)的變化不同,活性態(tài)和中等活性態(tài)的磷組分變化更加明顯。Resin-Pi、NaHCO3-Pi、NaOH-Pi含量在旱季所有施肥處理下均表現(xiàn)為R-O輪作顯著低于其他輪作體系,但旱季CK、NK處理下d.HCl-Pi含量以及CK處理下NaHCO3-Po含量則是R-O輪作較其他輪作體系高,而稻季R-O輪作僅NaHCO3-Pi以及NK處理下NaOH-Po含量顯著低于其他輪作體系。Pearson相關(guān)分析表明(圖 3),旱季時(shí)土壤有效磷含量與Resin-Pi、NaHCO3-Pi呈顯著正相關(guān),與c.HCl-Po呈顯著負(fù)相關(guān);稻季時(shí)土壤有效磷含量與NaHCO3-Pi呈顯著正相關(guān),與NaOH-Po呈顯著負(fù)相關(guān)。
2.2.3 磷組分相對(duì)含量和有效性 輪作制度顯著影響了旱季土壤活性磷的相對(duì)含量,而稻季時(shí)不同磷形態(tài)比例在各輪作體系之間無(wú)顯著差異(表3,<0.05)。在4種輪作體系中,活性磷含量占比在旱季所有施肥處理中表現(xiàn)為R-O輪作分別較R-W、R-C和R-F輪作低2.9%—7.3%、0.3%—6.7%和1.5%—6.3%,而稻季R-O輪作則分別低于其他輪作1.5%—3.5%、0.3%—2.6%和-0.3%—2.8%。在NK處理下,水旱兩季R-O輪作中等活性磷含量占比在4種輪作中均是最高,在旱季和稻季分別較其他輪作體系高4.2%—6.4%和0.5%—3.0%;旱季R-O輪作穩(wěn)定性磷含量占比略低于R-F輪作,但分別較R-W和R-C輪作高0.9%和1.9%,而稻季R-O輪作穩(wěn)定性磷含量占比較其他輪作體系低0.2%—2.3%。
表1 不同輪作體系下周年磷表觀平衡及磷肥回收率
CK:不施肥處理;NK:不施磷處理;NPK:氮磷鉀肥處理。R-W:水稻-小麥輪作;R-O:水稻-油菜輪作;R-C:水稻-包菜輪作;R-F:水稻-閑田輪作。同列不同小寫(xiě)字母表示同一施肥處理不同輪作體系間差異顯著(<0.05)。*、**、***分別代表在0.05,0.01,0.001水平下顯著。ns表示不顯著。下表同
CK: No fertilization treatment; NK: No phosphate treatment; N, P, K: NPK fertilization treatment. R-W, R-O, R-C, R-F indicates rice-wheat, rice-oilseed rape, rice-cabbage, and rice-fallow rotation, respectively. Different lowercase letters in the same column indicate significant differences at<0.05 under different rotation systems in the same fertilization treatment. *, **, *** significant at the 0.05, 0.01 and 0.001 probability levels, respectively. ns: Indicates not significant. The same as below
表2 不同輪作體系下磷含量及有效性
TP: Total phosphorus; AP: Available phosphorus; PAC: Phosphorus activation coefficient
同列不同小寫(xiě)字母表示旱季(或稻季)同一施肥處理不同輪作體系間差異顯著(<0.05)
Different lowercase letters in the same column indicate significant differences at<0.05 between different rotation systems under the same fertilization treatment in the dry season (or rice season)
Resin-Pi:樹(shù)脂提取態(tài)磷;NaHCO3-Pi/NaHCO3-Po:0.5 mol·L-1NaHCO3提取態(tài)無(wú)機(jī)磷或有機(jī)磷;NaOH-Pi/ NaOH-Po:0.1 mol·L-1NaOH提取態(tài)無(wú)機(jī)磷或有機(jī)磷;d.HCl-Pi:1 mol·L-1HCl提取態(tài)無(wú)機(jī)磷;c.HCl-Pi/ c.HCl-Po:濃鹽酸提取態(tài)無(wú)機(jī)磷或有機(jī)磷;Residual-P:殘留態(tài)磷
圖中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)差。不同小寫(xiě)字母表示旱季(或稻季)同一施肥處理不同輪作體系間差異顯著(<0.05)
Resin-Pi: Resin extracted phosphorus; NaHCO3-Pi/NaHCO3-Po: 0.5 mol·L-1NaHCO3extracted inorganic or organic phosphorus; NaOH-Pi/ NaOH-Po: 0.1 mol·L-1NaOH extracted inorganic phosphorus or organic phosphorus; d.HCl-Pi: 1 mol·L-1HCl extracted inorganic phosphorus; c.HCl-Pi/ c.HCl-Po: concentrated hydrochloric acid extracted inorganic or organic phosphorus; Residual-P: Residual phosphorus
The data in the figure is the mean ± standard deviation. Different lowercase letters in the same column indicate significant differences at<0.05 between different rotation systems under the same fertilization treatment in the dry season (or rice season)
圖2 2019年旱季(a)和稻季(b)不同輪作體系下各磷組分含量
Fig. 2 Phosphorus fraction contents in dry season (a) and rice season (b) under different rotation systems in 2019
施肥顯著影響了土壤中不同形態(tài)磷組分的占比(表3,<0.05)。與NK處理相比,NPK處理下土壤無(wú)機(jī)磷占比在旱季和稻季分別增加了1.2%和0.4%,并且不同輪作體系間存在顯著差異。在NPK處理中,旱季R-O輪作有機(jī)磷占比較其他輪作體系高1.8%—4.8%、無(wú)機(jī)磷占比較其他輪作體系低4.8%—8.4%,而稻季R-O輪作有機(jī)磷占比則分別較R-W和R-F輪作低1.9%和2.2%,無(wú)機(jī)磷占比較其他輪作體系高0.7%—3.0%(R-C輪作除外)。Pearson相關(guān)分析表明(圖3),土壤有效磷含量與活性態(tài)磷、無(wú)機(jī)磷含量呈顯著正相關(guān),與稻季土壤有機(jī)磷含量呈顯著負(fù)相關(guān)。
表3 不同磷組分含量占比
活性磷包括Resin-Pi、NaHCO3-Pi和NaHCO3-Po;中等活性磷包括NaOH-Pi、NaOH-Po和d.HCl-Pi;穩(wěn)定性磷包括c.HCl-Pi、c.HCl-Po和Residual-P;有機(jī)磷包括NaHCO3-Po、NaOH-Po和c.HCl-Po;無(wú)機(jī)磷包括Resin-Pi、NaHCO3-Pi、NaOH-Pi、d.HCl-Pi和c.HCl-Pi;殘余態(tài)磷:Residual-P
Labile phosphorus includes Resin-Pi, NaHCO3-Piand NaHCO3-Po; Moderately labile phosphorus includes NaOH-Pi, NaOH-Poand d.HCl-Pi; Stable phosphorus includes c.HCl-Pi, c.HCl-Poand Residual-P. Organic phosphorus includes NaHCO3-Po, NaOH-Poand c.HCl-Po; Inorganic phosphorus includes Resin-Pi, NaHCO3-Pi, NaOH-Pi, d.HCl-Piand c.HCl-Pi
輪作制度和施肥均顯著影響了水旱兩季土壤微生物量、微生物量化學(xué)計(jì)量比及堿性磷酸酶活性(表4,<0.05)。旱季R-O輪作土壤微生物量磷較R-W輪作低20.7%—28.6%;相比之下,稻季R-O輪作土壤微生物量磷較R-W輪作高-12.6%—157.5%。R-O輪作土壤微生物量碳磷比和微生物量氮磷比在旱季和稻季均相對(duì)較小。與微生物量化學(xué)計(jì)量比相反,R-O輪作土壤堿性磷酸酶活性在旱季和稻季均保持較高水平,但土壤堿性磷酸酶活性僅在旱季CK處理下不同輪作之間存在顯著差異(表4,<0.05)。Pearson相關(guān)分析表明(圖3),稻季土壤有效磷含量與土壤微生物量磷含量呈顯著正相關(guān),與微生物量碳磷比、微生物量氮磷比以及堿性磷酸酶活性存在顯著負(fù)相關(guān)關(guān)系。
表4 不同輪作體系下土壤微生物學(xué)特征
ns表示不顯著,*代表P<0.05,**代表P<0.01 ns: Indicates not significant; * Indicates P<0.05, ** Indicates P<0.01
PLS-PM綜合分析了土壤微生物量、土壤堿性磷酸酶、土壤磷素形態(tài)以及地上部磷素?cái)y出量對(duì)土壤有效磷的直接與間接影響(圖4)。由路徑分析模型可知,影響旱季土壤有效磷含量的因素的總效應(yīng)大小為:P uptake(-0.53)>ALP(-0.49)>Microbial biomass(0.34)>Organic P(0.14)>Inorganic P(0.02),這些因素一共解釋了49%的土壤有效磷含量變異。影響稻季土壤有效磷含量的因素的總效應(yīng)大小為:ALP(-0.51)>Stoichiometric ratio(-0.50)>Inorganic P(0.42)>P uptake(0.24)>Organic P(0.23),這些因素一共解釋了60%的土壤有效磷含量變異。其中磷素?cái)y出量(-0.53)和堿性磷酸酶(-0.51)分別是影響旱季和稻季土壤有效磷含量的最主要的因子。
土壤有效磷被廣泛應(yīng)用于評(píng)價(jià)土壤供磷特征[33]。與前人研究結(jié)果相似,施用磷肥可以提高磷素輸出和土壤有效磷含量[25,34]。此外,本研究還發(fā)現(xiàn),同一施肥處理下不同輪作體系之間土壤磷素有效性存在顯著差異(表2,<0.05)。一般認(rèn)為,當(dāng)土壤中磷素養(yǎng)分供應(yīng)無(wú)法滿足作物需求時(shí),作物對(duì)磷素的攜出會(huì)導(dǎo)致土壤耕層磷素虧缺,土壤有效磷含量也會(huì)隨之降低[34],這與本研究磷素?cái)y出量與土壤有效磷含量呈負(fù)相關(guān)的結(jié)果一致(圖4-a)。相比于其他施肥處理,NK處理磷素失衡現(xiàn)象最為明顯(表1)。在NK處理下,旱季R-O輪作土壤有效磷含量顯著低于其他輪作,而稻季NK處理下R-O輪作的土壤有效磷含量與其他輪作之間無(wú)顯著性差異。另外,在兩個(gè)輪作周年內(nèi),相比于旱季,后茬R-O輪作NK處理下土壤有效磷含量分別增加2.9和4.9 mg·kg-1,在4種輪作中增幅最大。由此可見(jiàn),R-O輪作體系中旱季作物對(duì)稻季作物維持土壤磷素有效性的影響強(qiáng)于其他輪作。與本研究結(jié)果相似,近期一項(xiàng)研究表明,稻-稻-油輪作早稻成熟期土壤中有效磷含量是稻-稻-閑輪作的2倍左右[35]。此外,相比與其他輪作,R-O輪作周年磷攜出量土壤磷素虧缺量處于較高水平(表1),同時(shí)不同輪作體系磷肥回收率大小為R-O>R-F>R-W。因此,R-O輪作可以維持前后茬土壤磷素的持續(xù)輸出或許是土壤磷素的活化能力強(qiáng)于其他輪作。
實(shí)線表示作用路徑顯著,虛線表示作用路徑不顯著;線的粗細(xì)表示路徑系數(shù)的大小
施用磷肥顯著增加了旱季和稻季土壤中無(wú)機(jī)態(tài)磷的占比,而無(wú)機(jī)態(tài)磷中的土壤活性磷和中等活性磷的再分布受到輪作制度的顯著影響(圖2,表3)。一般認(rèn)為,活性磷和中等活性磷是土壤有效磷的庫(kù)源[36]。本研究中穩(wěn)定態(tài)磷庫(kù)從旱季到稻季呈減小趨勢(shì),尤其在NK處理下,旱季R-O輪作穩(wěn)定性磷含量占比高于其他輪作(R-F輪作除外),而稻季R-O輪作穩(wěn)定性磷含量占比在四種輪作中最低,說(shuō)明磷素虧缺時(shí),穩(wěn)定態(tài)磷庫(kù)可能作為作物的有效磷源。有機(jī)酸溶解被認(rèn)為是微生物或植物對(duì)穩(wěn)定磷庫(kù)中的磷進(jìn)行增溶和補(bǔ)充土壤溶液的重要機(jī)制[37]。R-O輪作能夠較大幅度地促進(jìn)穩(wěn)定性磷的溶解,將穩(wěn)定態(tài)磷庫(kù)轉(zhuǎn)化為其他活性態(tài)磷庫(kù)(表3),或許與油菜根系分泌檸檬酸的速率較快[38],一定程度上提高了土壤中有機(jī)酸的豐度有關(guān)。活性態(tài)磷庫(kù)是對(duì)作物有效性最高的磷庫(kù),其含量高低和土壤有效磷含量存在顯著正相關(guān)關(guān)系(圖3)。在本研究NK處理下,R-O輪作土壤活性磷含量占比較其他輪作低,幅度由旱季的5.7%—7.3%變?yōu)榈炯镜?—1.5%;而中等活性磷含量占比較其他輪作高,幅度由旱季的4.2%—6.4%變?yōu)榈炯镜?.5%—3.0%。R-O輪作土壤穩(wěn)定態(tài)和中等活性態(tài)磷庫(kù)的轉(zhuǎn)化使得活性態(tài)的磷庫(kù)得到補(bǔ)充,減小了R-O輪作與其他輪作之間的差異,因此R-O輪作在沒(méi)有磷肥投入的情況下,依舊可以維持磷素輸出和土壤有效磷含量相對(duì)穩(wěn)定。此外,Resin-Pi與 NaHCO3-Pi是土壤中對(duì)作物有效性最高的磷形態(tài)[39],本研究所有輪作體系NaHCO3-Pi含量均有下降,可能是NaHCO3-Pi被作物大量吸收所致,而稻季R-O輪作活性態(tài)磷庫(kù)占比與其他輪作差異減小主要與Resin-Pi含量增加有關(guān),這與朱文彬的研究結(jié)果類(lèi)似[40]。
土壤中有機(jī)磷含量一般為土壤全磷的20%—40%,本試驗(yàn)中土壤中有機(jī)磷含量為3.9%—11.4%,含量略低的原因是Hedley磷素分級(jí)方法中的有機(jī)磷含量并非是土壤中的全部有機(jī)磷,仍有一部分的有機(jī)磷以殘余態(tài)磷的形式存在而不能被提取出來(lái)。本研究還發(fā)現(xiàn),相比于CK處理,NPK處理土壤有機(jī)磷占比顯著降低,并且在不同輪作體系中轉(zhuǎn)化速率存在差異(表3)。在NPK處理中,旱季R-O輪作有機(jī)磷占比高于其他輪作,無(wú)機(jī)磷占比低于其他輪作,而稻季R-O輪作無(wú)機(jī)磷占比和有機(jī)磷占比較其他輪作則表現(xiàn)出與旱季相反的規(guī)律。此外,由于土壤有效磷含量與有機(jī)磷和無(wú)機(jī)磷含量分別呈負(fù)相關(guān)和正相關(guān)關(guān)系,而非活性態(tài)的NaOH-Po和c.HCl-Po與土壤有效磷的相關(guān)系數(shù)在有機(jī)磷中最高(圖3),且與土壤磷庫(kù)的轉(zhuǎn)化密切相關(guān)(圖4),是潛在的有效磷來(lái)源[41-42]。R-O輪作活性態(tài)磷庫(kù)可以得到補(bǔ)充,或許與非活性態(tài)中有機(jī)磷的礦化有關(guān)。
水旱交替過(guò)程中,除了物理化學(xué)過(guò)程可以釋放磷,微生物過(guò)程也是磷釋放的主要來(lái)源[15]。由于受到植物生長(zhǎng)階段和養(yǎng)分投入的影響,微生物量的變化是非穩(wěn)態(tài)的[43]。本試驗(yàn)結(jié)果表明,與NK處理相比,NPK處理可以增加土壤微生物量,并且輪作制度之間存在顯著差異(表4,<0.05)。微生物生物量的化學(xué)計(jì)量比是控制微生物調(diào)節(jié)功能的重要因素[44],在一定程度上能反映出土壤的養(yǎng)分限制因子。一般認(rèn)為,微生物量碳、氮、磷化學(xué)計(jì)量比在土壤中介于11﹕1﹕1到93﹕10﹕1[45],當(dāng)微生物量碳磷比較小時(shí),則有利于微生物通過(guò)礦化過(guò)程以補(bǔ)充土壤有效磷;反之,則說(shuō)明微生物同化有效磷并與作物競(jìng)爭(zhēng)磷[46]。本研究稻季微生物量碳磷比與土壤有效磷和有機(jī)磷顯著的負(fù)相關(guān)關(guān)系也證實(shí)了上述觀點(diǎn)(圖3,圖4-b)。此外,在NK處理下,旱季4種輪作的微生物量碳磷比無(wú)顯著差異,而在稻季時(shí)則表現(xiàn)為R-O、R-C、R-F輪作顯著低于R-W輪作,NPK處理中也有類(lèi)似的趨勢(shì)。稻季R-C、R-F輪作微生物量碳磷比較R-W輪作低的原因可能是前茬氮素累積促進(jìn)了微生物對(duì)磷素的需求[41]。在肥料投入相同的情況下,相比于R-W輪作,稻季R-O輪作較低的微生物量碳磷比或許有利于促進(jìn)微生物通過(guò)礦化過(guò)程釋放磷,以此來(lái)維持土壤磷素的有效性。酶水解被認(rèn)為是補(bǔ)充土壤有效磷的另一個(gè)重要機(jī)制[37]。本研究旱季和稻季R-O輪作土壤堿性磷酸酶活性在4種輪作中均處于較高水平,說(shuō)明礦化有機(jī)磷的潛力大小與土壤堿性磷酸酶的活性有關(guān)。路徑分析模型也表明,旱季土壤堿性磷酸酶對(duì)土壤有效磷的直接效應(yīng)最大(圖4-a),而在稻季微生物量化學(xué)計(jì)量比對(duì)土壤有效磷的調(diào)控最強(qiáng)(圖4-b)。由此可見(jiàn),R-O輪作通過(guò)維持更大的堿性磷酸酶活性來(lái)潛在地影響土壤中有效磷的補(bǔ)充。在缺乏磷素的土壤中,微生物獲取碳時(shí)會(huì)通過(guò)釋放磷酸酶來(lái)礦化土壤中的有機(jī)磷以增加土壤磷的有效性,這與本文的研究結(jié)果一致[43,47-49]。
在土壤磷素虧缺條件下,水稻-油菜輪作體系更有利于維持磷素輸出和土壤有效磷含量的相對(duì)穩(wěn)定,這與水稻-油菜輪作體系可以礦化非活性態(tài)磷庫(kù)中的有機(jī)磷以補(bǔ)充活性態(tài)磷庫(kù)的過(guò)程有關(guān),而水稻-小麥、水稻-包菜和水稻-閑田輪作的活性態(tài)磷庫(kù)補(bǔ)充量小于水稻-油菜輪作,微生物量碳磷化學(xué)計(jì)量比和堿性磷酸酶活性是影響輪作制度磷素活化差異的關(guān)鍵因素。
[1] BALEMI T, NEGISHO K. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. Journal of Soil Science and Plant Nutrition, 2012(ahead).doi:10.4067/s0718-95162012005000015.
[2] 馬進(jìn)川. 我國(guó)農(nóng)田磷素平衡的時(shí)空變化與高效利用途徑[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2018.
MA J C. Temporal and spatial variation of phosphorus balance and solutions to improve phosphorus use efficiency in Chinese arable land[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese)
[3] LUEDERS T, KINDLER R, MILTNER A, FRIEDRICH M W, KAESTNER M. Identification of bacterial micropredators distinctively active in a soil microbial food web. Applied and Environmental Microbiology, 2006, 72(8): 5342-5348. doi:10.1128/AEM.00400-06.
[4] BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology & Biotechnology, 2012, 28(4): 1327-1350. doi:10.1007/ s11274-011-0979-9.
[5] ZHANG H Z, SHI L L, WEN D Z, YU K L. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biology and Fertility of Soils, 2016, 52(1): 41-51. doi:10.1007/ s00374-015-1053-9.
[6] MENEZES-BLACKBURN D, GILES C, DARCH T, GEORGE T S, BLACKWELL M, STUTTER M, SHAND C, LUMSDON D, COOPER P, WENDLER R, BROWN L, ALMEIDA D S, WEARING C, ZHANG H, HAYGARTH P M. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant and Soil, 2018, 427(1): 5-16. doi:10.1007/s11104-017-3362-2.
[7] 范明生, 江榮風(fēng), 張福鎖, 呂世華, 劉學(xué)軍. 水旱輪作系統(tǒng)作物養(yǎng)分管理策略. 應(yīng)用生態(tài)學(xué)報(bào), 2008, 19(2): 424-432.
FAN M S, JIANG R F, ZHANG F S, Lü S H, LIU X J. Nutrient management strategy of paddy rice-upland crop rotation system. Chinese Journal of Applied Ecology, 2008, 19(2): 424-432. (in Chinese)
[8] POWERS S M, BRUULSEMA T W, BURT T P, CHAN N L, ELSER J J, HAYGARTH P M, HOWDEN N J K, JARVIE H P, YANG L, PETERSON H M, SHARPLEY A N, SHEN J B, WORRALL F, ZHANG F S. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 2016, 9(5): 353-357. doi:10.1038/NGEO2693.
[9] FLESSA H, FISCHER W R. Plant-induced changes in the redox potentials of rice rhizospheres. Plant and Soil, 1992, 143(1): 55-60. doi:10.1007/BF00009128.
[10] LINDSAY W L, NORVELL W A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 1978, 42(3): 421-428. doi:10.2136/sssaj1978. 03615995004200030009x.
[11] 劉學(xué)軍, 呂世華, 張福鎖, 毛達(dá)如. 水肥狀況對(duì)土壤剖面中錳的移動(dòng)和水稻吸錳的影響. 土壤學(xué)報(bào), 1999, 36(3): 369-376.
LIU X J, Lü S H, ZHANG F S, MAO D R. Effect of water and fertilization on movement of manganese in soils and on its uptake by rice. Acta Pedologica Sinica, 1999, 36(3): 369-376. (in Chinese)
[12] 魯如坤, 蔣柏藩, 牟潤(rùn)生. 磷肥對(duì)水稻和旱作的肥效及其后效的研究. 土壤學(xué)報(bào), 1965, 2(2): 152-160.
LU R K, JIANG P F, MU Y S. Studies on the methods of application of phosphatic fertilizer in relation to the yield of crops. Acta Pedologica Sinica, 1965, 2(2): 152-160. (in Chinese)
[13] FAN Y X, ZHONG X J, LIN F, LIU C, YANG L M, WANG M H, CHEN G S, CHEN Y, YANG Y S. Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 2019, 337: 246-255. doi:10.1016/j.geoderma.2018.09.028.
[14] PII Y, MIMMO T, TOMASI N, TERZANO R, CESCO S, CRECCHIO C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 2015, 51(4): 403-415. doi:10.1007/s00374-015-0996-1.
[15] BüNEMANN E K, KELLER B, HOOP D, JUD K, BOIVIN P, FROSSARD E. Increased availability of phosphorus after drying and rewetting of a grassland soil: Processes and plant use. Plant and Soil, 2013, 370(1): 511-526. doi:10.1007/s11104-013-1651-y.
[16] ROMANYà J, ROVIRA P. Organic and inorganic P reserves in rain-fed and irrigated calcareous soils under long-term organic and conventional agriculture. Geoderma, 2009, 151(3/4): 378-386. doi:10.1016/j.geoderma.2009.05.009.
[17] RICHARDSON A E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Functional Plant Biology, 2001, 28(9): 897. doi:10.1071/pp01093.
[18] DELUCA T H, GLANVILLE H C, HARRIS M, EMMETT B A, PINGREE M R A, DE SOSA L L, CERDá-MORENO C, JONES D L. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biology and Biochemistry, 2015, 88: 110-119. doi:10.1016/j.soilbio.2015.05.016.
[19] ROSLING A, MIDGLEY M G, CHEEKE T, URBINA H, FRANSSON P, PHILLIPS R P. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees. New Phytologist, 2016, 209(3): 1184-1195. doi:10.1111/nph.13720.
[20] PISTOCCHI C, MéSZáROS é, TAMBURINI F, FROSSARD E, BüNEMANN E K. Biological processes dominate phosphorus dynamics under low phosphorus availability in organic horizons of temperate forest soils. Soil Biology and Biochemistry, 2018, 126: 64-75. doi:10.1016/j.soilbio.2018.08.013.
[21] TANG X, SHI X, MA Y, HAO X. Phosphorus efficiency in a long-term wheat–rice cropping system in China. The Journal of Agricultural Science, 2011, 149(3): 297-304. doi:10.1017/ s002185961000081x.
[22] YADVINDER-SINGH, DOBERMANN A, BIJAY-SINGH, BRONSON K F, KHIND C S. Optimal phosphorus management strategies for wheat-rice cropping on a loamy sand. Soil Science Society of America Journal, 2000, 64(4): 1413-1422. doi:10.2136/sssaj2000.6441413x.
[23] HEDLEY M J, STEWART J W B, CHAUHAN B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 1982, 46(5): 970-976. doi:10.2136/sssaj1982. 03615995004600050017x.
[24] MOIR J, TIESSEN H. Characterization of available P by sequential extraction//Soil Sampling and Methods of Analysis. 2nd ed. CRC Press, 2007.
[25] MALTAIS-LANDRY G, SCOW K, BRENNAN E, TORBERT E, VITOUSEK P. Higher flexibility in input N: P ratios results in more balanced phosphorus budgets in two long-term experimental agroecosystems. Agriculture, Ecosystems & Environment, 2016, 223: 197-210. doi:10.1016/j.agee.2016.03.007.
[26] 孫博, 李帥帥, 周毅, 張瑩, 陳健, 劉田, 郭俊杰, 凌寧, 郭世偉. 不同輪作模式下優(yōu)化施肥對(duì)水稻產(chǎn)量及磷素積累與分配的影響. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2020, 43(4): 658-666.
SUN B, LI S S, ZHOU Y, ZHANG Y, CHEN J, LIU T, GUO J J, LING N, GUO S W. Effects of optimized fertilization on rice yield and accumulation and distribution of phosphorus under different rotation systems. Journal of Nanjing Agricultural University, 2020, 43(4): 658-666. (in Chinese)
[27] 鮑士旦. 土壤農(nóng)化分析. 3版. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Chinese Agriculture Press, 2000. (in Chinese)
[28] CROSS A F, SCHLESINGER W H. A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 1995, 64(3/4): 197-214. doi:10.1016/0016-7061(94) 00023-4.
[29] BROOKES P C, POWLSON D S, JENKINSON D S. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry, 1982, 14(4): 319-329. doi:10.1016/0038-0717(82)90001-3.
[30] WU J, JOERGENSEN R G, POMMERENING B, CHAUSSOD R, BROOKES P C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169. doi:10.1016/0038-0717(90) 90046-3.
[31] BROOKES P C, LANDMAN A, PRUDEN G, JENKINSON D S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 1985, 17(6): 837-842. doi:10.1016/ 0038-0717(85)90144-0.
[32] NANNIPIERI P, GIAGNONI L, LANDI L, RENELLA G. Role of phosphatase enzymes in soil//Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 215-243. doi:10.1007/978-3-642- 15271-9_9.
[33] BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1): 27-37. doi:10.1007/s11104-013-1696-y.
[34] 黃晶, 張楊珠, 徐明崗, 高菊生. 長(zhǎng)期施肥下紅壤性水稻土有效磷的演變特征及對(duì)磷平衡的響應(yīng). 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(6): 1132-1141. doi:10.3864/j.issn.0578-1752.2016.06.009.
HUANG J, ZHANG Y Z, XU M G, GAO J S. Evolution characteristics of soil available phosphorus and its response to soil phosphorus balance in paddy soil derived from red earth under long-term fertilization. Scientia Agricultura Sinica, 2016, 49(6): 1132-1141. doi:10.3864/j.issn.0578-1752.2016.06.009. (in Chinese)
[35] LU S, LEPO J E, SONG H X, GUAN C Y, ZHANG Z H. Increased rice yield in long-term crop rotation regimes through improved soil structure, rhizosphere microbial communities, and nutrient bioavailability in paddy soil. Biology and Fertility of Soils, 2018, 54(8): 909-923. doi:10.1007/s00374-018-1315-4.
[36] WEAND M P, ARTHUR M A, LOVETT G M, SIKORA F, WEATHERS K C. The phosphorus status of northern hardwoods differs by species but is unaffected by nitrogen fertilization. Biogeochemistry, 2010, 97(2): 159-181. doi:10.1007/s10533-009- 9364-2.
[37] ZHANG H Z, SHI L L, LU H B, SHAO Y H, LIU S R, FU S L. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Science of the Total Environment, 2020, 732: 139295. doi:10.1016/j.scitotenv.2020. 139295.
[38] WANG Y L, ALMVIK M, CLARKE N, EICH-GREATOREX S, ?GAARD A F, KROGSTAD T, LAMBERS H, CLARKE J L. Contrasting responses of root morphology and root-exuded organic acids to low phosphorus availability in three important food crops with divergent root traits. AoB PLANTS, 2015, 7(10.1093): aobpla. doi:10.1093/aobpla/plv097.
[39] VERMA S, SUBEHIA S K, SHARMA S P. Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biology and Fertility of Soils, 2005, 41(4): 295-300. doi:10.1007/ s00374-004-0810-y.
[40] ZHU W B, ZHAO X, WANG S Q, WANG Y. Inter-annual variation in P speciation and availability in the drought-rewetting cycle in paddy soils. Agriculture, Ecosystems & Environment, 2019, 286: 106652. doi:10.1016/j.agee.2019.106652.
[41] FAN Y X, LIN F, YANG L M, ZHONG X J, WANG M H, ZHOU J C, CHEN Y, YANG Y S. Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem. Biology and Fertility of Soils, 2018, 54(1): 149-161. doi:10.1007/s00374-017- 1251-8.
[42] YANG K, ZHU J J, GU J C, YU L Z, WANG Z Q. Changes in soil phosphorus fractions after 9 years of continuous nitrogen addition in aplantation. Annals of Forest Science, 2015, 72(4): 435-442. doi:10.1007/s13595-014-0444-7.
[43] HEUCK C, WEIG A, SPOHN M. Soil microbial biomass C: N: P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry, 2015, 85: 119-129. doi:10.1016/j.soilbio.2015.02. 029.
[44] YUAN H Z, LIU S L, RAZAVI B S, ZHRAN M, WANG J R, ZHU Z K, WU J S, GE T D. Differentiated response of plant and microbial C: N: P stoichiometries to phosphorus application in phosphorus-limited paddy soil. European Journal of Soil Biology, 2019, 95: 103122. doi:10.1016/j.ejsobi.2019.103122.
[45] TISCHER A, POTTHAST K, HAMER U. Land-use and soil depth affect resource and microbial stoichiometry in a tropical mountain rainforest region of southern Ecuador. Oecologia, 2014, 175(1): 375-393. doi:10.1007/s00442-014-2894-x.
[46] HE Z L, WU J, O’DONNELL A G, SYERS J K. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biology and Fertility of Soils, 1997, 24(4): 421-428. doi:10.1007/s003740050267.
[47] WANG J P, WU Y H, ZHOU J, BING H J, SUN H Y. Carbon demand drives microbial mineralization of organic phosphorus during the early stage of soil development. Biology and Fertility of Soils, 2016, 52(6): 825-839. doi:10.1007/s00374-016-1123-7.
[48] ACU?A J J, DURáN P, LAGOS L M, OGRAM A, DE LA LUZ MORA M, JORQUERA M A. Bacterial alkaline phosphomonoesterase in the rhizospheres of plants grown in Chilean extreme environments. Biology and Fertility of Soils, 2016, 52(6): 763-773. doi:10.1007/ s00374-016-1113-9
[49] 袁佳慧. 太湖稻麥輪作農(nóng)田土壤磷素生物有效性研究[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2018.
YUAN J H. Availability of soil P in A rice-wheat cropping rotation in Taihu lake region[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese)
Influence of Typical Rotation Systems on Soil Phosphorus Availability Under Different Fertilization Strategies
LI ShuaiShuai1, GUO JunJie1, LIU WenBo1, HAN ChunLong2, JIA HaiFei2, LING Ning1, GUO ShiWei1
1College of Resources and Environmental Sciences, Nanjing Agricultural University/Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing 210095;2Rugao Institute of Agricultural Sciences, Rugao 226575, Jiangsu
【】 In order to provide a scientific basis for the efficient utilization of phosphorus in farmland, the effects of different rotation systems on the availability of soil phosphorus were explored to evaluate the potential of soil phosphorus activation in different crop rotation systems. 【】 The experiment was conducted at Rugao Institute of Agricultural Sciences, Jiangsu Province from 2018 to 2020. Four paddy-upland rotation systems in the experiment included rice-wheat (R-W), rice-oilseed rape (R-O), rice-cabbage (R-C), and rice-fallow (R-F) rotation. Three fertilization treatments under each rotation system were applied, including no fertilization treatment (CK), no phosphate treatment (NK), and NPK fertilization treatment (NPK). The variation patterns and main influencing factors of soil phosphorus balance and availability under different paddy and upland rotation systems were clarified by analyzing the phosphorus uptake by aboveground crops, soil phosphorus fraction contents, soil microbial biomass and soil alkaline phosphatase activity under different phosphorus application conditions in dry season and rice season maturity. 【】The severe imbalance of soil phosphorus under NK treatment resulted in differences in the supplement of soil available phosphorus in different rotation systems. Under NK treatment, R-O rotation could maintain a higher phosphorus output and promote the replenishment of soil available phosphorus. Specifically, the relative content of soil labile phosphorus in R-O rotation in dry season under NK treatment was 5.7%-7.3% lower than that in other rotations, and the relative content of soil moderately labile phosphorus and stable phosphorus were 4.2%-6.4% and 0.9%-1.9% higher than that in other rotations, respectively. However, the relative content of soil moderately labile phosphorus in R-O rotations under NK treatment in rice season was 0.5%-3.0% higher than that under other rotations, and the soil labile phosphorus and stable phosphorus were 0-1.5% and 0.2%-2.3% lower than that under other rotations, respectively. Under NK treatment, the soil microbial biomass C/P ratios of R-O rotation was relatively small in both dry season and rice season, and it was significantly lower than that under R-W rotation in rice season. The soil microbial biomass N/P ratios also had a similar trend. But the soil alkaline phosphatase activity of R-O rotation maintained a high level in both dry season and rice season. The path analysis model showed that the phosphorus accumulation (-0.53) and the soil alkaline phosphatase (-0.51) had the most contribution to the soil available phosphorus in dry season and rice season, respectively. 【】 When the soil phosphorus was relatively imbalance, the rice-oilseed rape rotation released more alkaline phosphatase in dry season and regulated the soil microbial biomass C/P ratio in rice season, which was conducive to promoting the activation of the non-labile phosphorus by microorganisms to supplement the labile phosphorus, so as to ensure the relative stable of soil available phosphorus content without affecting phosphorus output.
rotation system; fertilization strategies; phosphorus availability; phosphorus fractions; microbial biomass; microbial biomass stoichiometric ratio
10.3864/j.issn.0578-1752.2022.01.009
2020-12-26;
2021-04-02
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0200200)、國(guó)家自然科學(xué)基金(U2003210)、江蘇省自然科學(xué)基金(BK20190543)
李帥帥,E-mail:2018103102@njau.edu.cn。通信作者郭世偉,E-mail:sguo@njau.edu.cn
(責(zé)任編輯 李云霞)
中國(guó)農(nóng)業(yè)科學(xué)2022年1期