包 麗
(南通市啟秀中學(xué) 江蘇 南通 226000)
1.1 創(chuàng)設(shè)情境,引導(dǎo)學(xué)生分析并建立兩個(gè)變量之間的二次函數(shù)關(guān)系,通過類比歸納出二次函數(shù)有關(guān)概念。
1.2 引導(dǎo)學(xué)生研究、分析函數(shù)y=ax2的解析式、兩個(gè)變量的對(duì)應(yīng)值表,結(jié)合“描點(diǎn)法”畫圖象,幫助學(xué)生深刻認(rèn)識(shí)二次函數(shù)圖象特征和函性質(zhì),讓學(xué)生充分體驗(yàn)“數(shù)形結(jié)合”的思想方法。
二次函數(shù)y=ax2的圖象特征及性質(zhì)。
3.1.1 引例
(1)汽車油箱中原有汽油50升,如果行駛中每小時(shí)用油5升,求油箱中的油量y與行駛時(shí)間x的關(guān)系.y=-5x+50.
(2)正方體的棱長為x,表面積為y,求y與x的關(guān)系.y=6x2.
(3)n個(gè)球隊(duì)參加比賽,每兩隊(duì)之間進(jìn)行一場比賽.比賽的場次m與球隊(duì)數(shù)n有什么關(guān)系?,即.
(4)某工廠今年的產(chǎn)量是20件,預(yù)計(jì)今后兩年每年的增長率為x,那么兩年后這種產(chǎn)品產(chǎn)量y與x有什么關(guān)系?y=20(1+x)2,即y=20x2+40x+20.
3.1.2 二次函數(shù)定義和有關(guān)概念
第一個(gè)函數(shù)是一次函數(shù),由此復(fù)習(xí)回顧一次函數(shù)的定義及有關(guān)知識(shí)。引導(dǎo)學(xué)生觀察后三個(gè)函數(shù)有什么共同特點(diǎn)。學(xué)生思考可以發(fā)現(xiàn):這三個(gè)函數(shù)都是用自變量的二次式表示的,并猜想像這樣的函數(shù)叫做二次函數(shù)。由此得到二次函數(shù)的定義。學(xué)生由一次函數(shù)的知識(shí)遷移得到二次函數(shù)的定義:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)。其中a,b,c分別是函數(shù)解析式的二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)這兩種函數(shù)都是形式定義。
設(shè)計(jì)意圖:這部分充分利用教材中三個(gè)二次函數(shù)模型,添加了一個(gè)一次函數(shù)模型,目的是抓住本節(jié)的研究重點(diǎn),避免分散學(xué)生的注意力,這樣更有利于培養(yǎng)學(xué)生抓住關(guān)鍵問題、關(guān)鍵環(huán)節(jié)的思維習(xí)慣。這一教學(xué)環(huán)節(jié)的研究重點(diǎn)是引導(dǎo)學(xué)生順利找到變量間的關(guān)系,回憶函數(shù)及一次函數(shù)的定義,并由一次函數(shù)的基本概念遷移到二次函數(shù)的基本概念。利用這幾個(gè)引例,學(xué)生可以自主生成新知,提高學(xué)習(xí)效率,最終激發(fā)學(xué)生學(xué)習(xí)的興趣和熱情,培養(yǎng)學(xué)生數(shù)學(xué)建模能力。
根據(jù)定義,教師引導(dǎo)學(xué)生思考a為什么不等于0,b、c是否可以等于0,從而強(qiáng)化二次函數(shù)的定義。教師提出當(dāng)b、c同時(shí)為0時(shí),二次函數(shù)即y=ax2,a可以取0以外的任意實(shí)數(shù),最簡單的就是a=0的情形。研究問題可以從最簡單的情形開始,因此研究二次函數(shù)也可以從最簡單的y=x2入手。
3.2.1 分析y=x2的解析式
(1)自變量x的取值范圍是什么?x為任意實(shí)數(shù).
(2)函數(shù)值y的取值范圍是什么?非負(fù)實(shí)數(shù).
(3)從函數(shù)解析式的特征來看,猜想函數(shù)的圖象有什么特征?如果學(xué)生有困難,教師可以給出提示:圖象一定過哪個(gè)點(diǎn)?圖象大致在什么位置?(圖象過原點(diǎn),除了原點(diǎn)以外,圖象都在x軸上方.)
3.2.2 分析變量對(duì)應(yīng)值表
從變量對(duì)應(yīng)值表的特點(diǎn)猜想圖象的特征.(對(duì)稱性)
學(xué)生的猜想是否正確,二次函數(shù)圖象是什么,需要學(xué)生通過描點(diǎn)畫圖來觀察驗(yàn)證。
3.2.3 描點(diǎn)畫圖
描點(diǎn)畫圖得出一條曲線.這條曲線和投籃時(shí)球所經(jīng)過的路線類似,所以就叫做拋物線.實(shí)際上,二次函數(shù)的圖象都是拋物線.學(xué)生通過觀察圖象分析函數(shù)y=x2的圖象特征與性質(zhì).教師引導(dǎo)學(xué)生從拋物線的開口方向、對(duì)稱軸、拋物線的頂點(diǎn)、函數(shù)的最值、函數(shù)的增減性等方面進(jìn)行研究、總結(jié)。
隨后學(xué)生再在同一平面直角坐標(biāo)系中畫函數(shù)y=-x2的圖象,并把它與y=x2的圖象進(jìn)行比較。學(xué)生畫圖后可以發(fā)現(xiàn):函數(shù)y=-x2的圖象開口向下,對(duì)稱軸也是y軸,拋物線的頂點(diǎn)是(0,0),函數(shù)y=-x2的圖象與y=x2的圖象關(guān)于x軸對(duì)稱。
3.2.4 總結(jié)概括函數(shù)的性質(zhì)
從開口、對(duì)稱軸、頂點(diǎn)、最值、增減性等方面列表總結(jié)。
設(shè)計(jì)意圖:從特殊到一般,引導(dǎo)學(xué)生從函數(shù)解析式、兩變量的對(duì)應(yīng)值表分析、猜想函數(shù)的圖象與性質(zhì),培養(yǎng)學(xué)生直觀想象能力.再利用“描點(diǎn)法”畫圖驗(yàn)證猜想,幫助學(xué)生自主建構(gòu)二次函數(shù)y=ax2的函數(shù)圖象與性質(zhì).課程設(shè)計(jì)充分體現(xiàn)從“數(shù)”到“形”,再從“形”到“數(shù)”的過程,有利于幫助學(xué)生強(qiáng)化“數(shù)形結(jié)合”的思想,從而提升學(xué)生的數(shù)學(xué)抽象及直觀想象能力。
3.3.1 說出下列拋物線的開口方向、對(duì)稱軸、頂點(diǎn)、最值及增減性:
y=3x2;y=-3x2;;.
設(shè)計(jì)意圖:練習(xí)是檢驗(yàn)學(xué)生學(xué)習(xí)效果的重要手段,能深化學(xué)生對(duì)新知的理解和吸收。第1題加深學(xué)生對(duì)函數(shù)圖象與性質(zhì)的理解,訓(xùn)練學(xué)生的數(shù)形結(jié)合思想。 第2題涵蓋了本堂課的所有知識(shí)內(nèi)容。教師還可以根據(jù)學(xué)生情況增加本題難度,將(4)中的條件x1〉x2〉0去掉,直接讓學(xué)生討論得出答案,這樣能引導(dǎo)學(xué)生充分理解二次函數(shù)的增減性。設(shè)置這組練習(xí)的目的是訓(xùn)練學(xué)生舉一反三的能力。
3.4.1 本節(jié)課研究了什么內(nèi)容?
3.4.2 如何分析得到函數(shù)y=ax2(a≠0)的函數(shù)圖象及其性質(zhì)?
3.4.3 通過這堂課,掌握了哪些研究問題的方法,有什么收獲?
設(shè)計(jì)意圖:引導(dǎo)學(xué)生歸納總結(jié)本節(jié)課的知識(shí)要點(diǎn)及思想方法。這是學(xué)生對(duì)本節(jié)課知識(shí)點(diǎn)的再認(rèn)識(shí)過程,通過總結(jié)能幫助學(xué)生進(jìn)一步掌握知識(shí),進(jìn)一步提高數(shù)學(xué)思維能力,從而提升學(xué)習(xí)能力.在這個(gè)過程中,教師要著重重視提升學(xué)生“從一般到特殊”研究知識(shí)的能力,以及“從特殊到一般”解決問題的能力。
3.5.1 必做題
(1)一個(gè)長方形的長是寬的2倍,寫出這個(gè)長方形的面積與寬之間的函數(shù)關(guān)系式.
(2)畫出函數(shù)y=4x2與的圖象并說出拋物線的開口方向、對(duì)稱軸及頂點(diǎn)
3.5.2 選做題
在同一直角坐標(biāo)系中,畫出二次函數(shù)y=x2+1與y=x2-1的圖象,并思考這兩個(gè)函數(shù)的圖象與拋物線y=x2有什么關(guān)系?
設(shè)計(jì)意圖:必做題用于復(fù)習(xí)本課內(nèi)容,并進(jìn)一步培養(yǎng)學(xué)生的模型觀念、數(shù)學(xué)抽象能力。選做題可以作為學(xué)生掌握本課內(nèi)容基礎(chǔ)上的提升,進(jìn)一步培養(yǎng)學(xué)生應(yīng)用意識(shí)和創(chuàng)新能力。這樣的分層作業(yè),在尊重學(xué)生的個(gè)體差異基礎(chǔ)上,讓不同的人有不同的收獲。
實(shí)踐反思:
最新版《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出,數(shù)學(xué)課程要培養(yǎng)的核心素養(yǎng)包括三個(gè)方面:會(huì)用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界,會(huì)用數(shù)學(xué)的思維思考現(xiàn)實(shí)世界、會(huì)用數(shù)學(xué)的語言表達(dá)現(xiàn)實(shí)世界。在教學(xué)中,教師要挖掘教材的相關(guān)要素,依托“三學(xué)”課堂,訓(xùn)練學(xué)生的數(shù)學(xué)思維。
(1)注重效率,學(xué)材再建構(gòu),培養(yǎng)學(xué)生逐步找到思考問題、分析問題、解決問題的方法、策略和路徑,逐步習(xí)慣用數(shù)學(xué)的思維思考現(xiàn)實(shí)世界
“三學(xué)”課堂主張“學(xué)材再建構(gòu)”,知識(shí)內(nèi)容要源于教材,高于教材,活化教材。因此本節(jié)課的教學(xué)內(nèi)容與教材有一定幅度的調(diào)整。人教版教材第一課時(shí)是二次函數(shù)的基本概念,第二課時(shí)是二次函數(shù)y=ax2的圖象與性質(zhì)。其實(shí),此階段學(xué)生已經(jīng)有學(xué)習(xí)變量與函數(shù)、一次函數(shù)、二次三項(xiàng)式及一元二次方程等的經(jīng)驗(yàn),只需要簡單復(fù)習(xí)舊知就可以幫助學(xué)生順利進(jìn)行知識(shí)遷移。因此,筆者將兩小節(jié)內(nèi)容進(jìn)行統(tǒng)籌涉及,重新整合相應(yīng)的教學(xué)目標(biāo)。同時(shí),通過選取一個(gè)一次函數(shù)模型問題及教材中的引例揭示來兩變量之間的關(guān)系,突出教學(xué)重點(diǎn),幫助學(xué)生為知識(shí)遷移做好準(zhǔn)備。在這個(gè)過程中,教師重點(diǎn)要關(guān)注學(xué)生思考問題、分析問題、解決問題的方法、策略和路徑。
(2)基于主體,學(xué)法三結(jié)合,培養(yǎng)學(xué)生逐步形成觀察事物、探究結(jié)論、研究問題的方法和歸納表達(dá)的能力,逐步習(xí)慣用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界
“學(xué)法三結(jié)合”貫穿本課全過程,在個(gè)人學(xué)習(xí)、小組學(xué)習(xí)、全班學(xué)習(xí)中,幫助學(xué)生自主生成二次函數(shù)的定義及有關(guān)概念。在研究二次函數(shù)的圖象與性質(zhì)時(shí),教師要注重培養(yǎng)學(xué)生探索新知識(shí)的科學(xué)思維:從解析式的特征開始觀察,猜想函數(shù)圖象的特征,再實(shí)際操作畫圖驗(yàn)證,最后歸納總結(jié)出二次函數(shù)的定義。在課堂教學(xué)中,教師注重培養(yǎng)學(xué)生觀察、研究、歸納等能力,而不是直接告知結(jié)論.同時(shí),教師引導(dǎo)學(xué)生認(rèn)識(shí)到這樣的學(xué)習(xí)研究方法在其他類型知識(shí)學(xué)習(xí)中也可以參考使用,從而實(shí)現(xiàn)提升學(xué)生的學(xué)力教育目標(biāo)。這種基于學(xué)生為主體的“學(xué)法三結(jié)合”,就是讓學(xué)生在教與學(xué)的過程中用數(shù)學(xué)的眼光觀察世界,逐步養(yǎng)成學(xué)生養(yǎng)成從數(shù)學(xué)的角度觀察世界的習(xí)慣。
(3)加強(qiáng)引導(dǎo),學(xué)程重生成,培養(yǎng)學(xué)生在思辨中總結(jié)歸納,提升學(xué)生對(duì)科學(xué)知識(shí)的熱情和積極的態(tài)度,逐步習(xí)慣用數(shù)學(xué)的語言表達(dá)現(xiàn)實(shí)世界
這堂課的重點(diǎn)和難點(diǎn)都是二次函數(shù) 的圖象特征及性質(zhì).為了抓住重點(diǎn)突破難點(diǎn),筆者精心設(shè)計(jì)了三個(gè)教學(xué)層次:首先,從最簡單的二次函數(shù)y=ax2入手,在教師的引導(dǎo)下學(xué)生研究了函數(shù)解析式、兩變量的對(duì)應(yīng)值表;然后,學(xué)生自己嘗試畫出函數(shù)圖象,總結(jié)函數(shù)y=x2的圖象特征和性質(zhì);最后,分別畫出a=-1,a=2,a=的函數(shù)圖象,再由圖象總結(jié)概括二次函數(shù)y=ax2的圖象特征及性質(zhì)。整個(gè)教學(xué)過程充分體現(xiàn)“學(xué)程重生成”。教師精心創(chuàng)設(shè)問題情境,留給學(xué)生思考的空間,教學(xué)過程充分揭示獲取知識(shí)的思維過程,從而優(yōu)化學(xué)生的思維品質(zhì).教學(xué)中,學(xué)生不是被動(dòng)的接受知識(shí),而是在自主探究、親自實(shí)踐、合作交流的氛圍中解決自己的困惑,并將學(xué)習(xí)的困惑及研究的成果用數(shù)學(xué)的語言表達(dá)出來,與同學(xué)分享。學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者?!叭龑W(xué)”課堂不僅能使學(xué)生感受到合作學(xué)習(xí)的快樂,更能培養(yǎng)學(xué)生學(xué)習(xí)的熱情和積極的態(tài)度,從而幫助學(xué)生逐步養(yǎng)成用數(shù)學(xué)的語言表達(dá)現(xiàn)實(shí)世界的習(xí)慣,充分發(fā)展學(xué)生的學(xué)力。
學(xué)生數(shù)學(xué)思維的養(yǎng)成是一個(gè)長期的目標(biāo),貫穿于學(xué)生數(shù)學(xué)學(xué)習(xí)的全過程?!叭龑W(xué)”課堂致力于“學(xué)材再建構(gòu),學(xué)法三結(jié)合,學(xué)程重生成”,正是促進(jìn)學(xué)生數(shù)學(xué)思維發(fā)展的課堂?;凇叭龑W(xué)”課堂的教學(xué)活動(dòng),能更有效地促進(jìn)學(xué)生掌握基本知識(shí)基本技能,體會(huì)和運(yùn)用數(shù)學(xué)的思想方法,從而培養(yǎng)學(xué)生良好的思維習(xí)慣,幫助學(xué)生形成積極的情感態(tài)度和價(jià)值觀,最終提升學(xué)生的數(shù)學(xué)素養(yǎng)。