• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical studies of the influence of seeding locations on D-SOL plasmas in EAST

    2022-02-15 11:07:52MinWANG王敏QinmeiXIAO肖青梅XiaogangWANG王曉鋼andDaoyuanLIU劉道遠(yuǎn)
    Plasma Science and Technology 2022年1期
    關(guān)鍵詞:王敏青梅

    Min WANG (王敏), Qinmei XIAO (肖青梅),2, Xiaogang WANG (王曉鋼),2 and Daoyuan LIU (劉道遠(yuǎn))

    1 School of Physics, Harbin Institute of Technology, Harbin 150001, People’s Republic of China

    2 Laboratory of Space Environment and Physics Science, Harbin Institute of Technology, Harbin 150001,People’s Republic of China

    3 School of Physics, Dalian University of Technology, Dalian 116024, People’s Republic of China

    Abstract Impurity seeding has been found effective for divertor detachment operations and the seeding location plays a key role in this process.In this work, we use the fluid code SOLPS-ITER to study the influence of seeding locations on divertor and scrape-off layer (D-SOL) plasmas in Experimental Advanced Superconducting Tokamak (EAST) with neon seeding.Simulation results indicate that the neon is a highly effective impurity in mitigating the heat flux and electron temperature peaks on the target of the divertor and achieving the partial detachment on both inner and outer targets.Further, by comparing results of the seeding at the private-flux region(PFR) plate (called ‘TP’ location) and the outer target (called ‘XP’ location), we find that the impurity density and power radiation for TP case are higher in core and upstream regions and lower in the divertor region than that for seeding at the XP,and the difference becomes more and more obvious as the seeding rate increases.It clearly demonstrates that the seeding at the XP location is more appropriate than at the TP location, especially in high seeding rate conditions.

    Keywords: impurity seeding, detachment, SOLPS-ITER, D-SOL

    1.Introduction

    The control of heat loads and particle flux on the divertor target is crucial but extremely challenging for steady-state operations,particularly for high fusion power devices such as China Fusion Engineering Testing Reactor (CFETR) and International Thermonuclear Experimental Reactor (ITER)[1, 2].Those steady-state operations of fusion reactors suffer an average power load of ~ 1 0 MW · m?2on the first wall and a much higher flux on the target.Thus,one has to cut the load by a great share to decrease the plasma-wall interaction(PWI)and reduce the target electron temperature to a level of<10 eV, for lowering the erosion and extending the servicelife of target materials[3].In recent decades,impurity seeding has been found effective for energy dissipation by impurity radiation [4–6].Particularly, the radiation power can be enhanced by intense collisions between the high electron temperature plasma and impurity particles with a high radiation loss rate.Then, the heat load and electron temperature at the target can be reduced.Such methods have been substantiated in various tokamaks, with the most popular seeding impurities of nitrogen(N),neon(Ne),and argon(Ar)[7–10].However, these impurities are relatively high-Z particles which may degrade energy confinement of the core plasma and cause disruptions in the worst scenario.Therefore,the impurity transport in SOL region is very crucial for stability of the upstream plasma profiles as well as the confinement of the core plasma.The results on JET, ASDEXUpgrade, and Alcator C-Mod revealed that the radiation power of impurities was observed both inside the last closed flux surface (LCFS) and outside the separatrix [8, 11, 12].In EAST, modeling and experimental works illustrated that the impurities easily transported upstream to penetrate into the core region[10,13].Also,the location of the impurity puffing exerted a significant influence on the divertor target detachment process and its magnitude.In addition, as tungsten (W)gradually replaces the carbon (C) plasma-facing materials(PFM)in future tokamaks,its erosion and physical sputtering are dominated by impurity ions rather than deuterium ions[14–16].On the other hand, it is difficult to make a high resolution measurement on the edge for impurity radiation and transport, due to the uncertainty LCFS position.Hence,for better understanding the influence of gas seeding location on detachment process and impurity transport in D-SOL regions, simulation analysis is necessary.

    In this paper, we choose Ne as the impurity, and use the lower single null (LSN) configuration of EAST for transport study.The divertor geometry,seeding locations and modeling setup are described in section 2.In section 3,we compare and analyze the influence of two locations on the detachment process and impurity transport.Then, the conclusion is summarized in the last section.

    2.Modeling setup

    In this work, the SOLPS-ITER code package is chosen to simulate the SOL and divertor plasma.SOLPS-ITER is a large fluid code, which is coupled with the B2.5 fluid code and the Eirene kinetic code.B2.5 mainly solves Braginskii equations for ions and electrons, Eirene is a Monte-Carlo transport code which provides the neutral transport as well as its birth and death[17–19].SOLPS-ITER and its old versions have been widely and successfully used on current and future tokamaks [2, 20–22].

    The simulated cross-section of EAST is illustrated in figure 1.In the modeling, the simulation region contains the core region located between core boundary (CEI) and separatrix (SEP), the D-SOL regions, and the private flux region(PFR).The simulation mesh (including triangular meshes) is constructed by 36 cells radially, 96 cells in poloidally, as shown in figure 1.

    The first impurity seeding location is chosen at the PFR plate close to the outer target plate (called the ‘TP’ location),the second location is at the lower main SOL region next to outer-target of the divertor(called the‘XP’location),as shown in figure 1.Or as described in a‘two-point’theory,the first one is in the divertor region and the second one is at the divertor region entrance [23], as shown in figure 1.The impurity seeding rate is ×M10 s20?1, where M is the intensity coefficient.The species in the simulation include deuterium atoms(D), main ions (+D ), electrons, and Ne impurities (with all charge states ofNe0?Ne10+).Since the particle radial diffusion and the thermal conductivity coefficients cannot be exactly calculated in first principle, we thus use an empirical model based on experiments to fit the density and electron temperature profiles on the outer mid-plane (OMP).For L-mode discharges, considering their slow spatial variation feature, we approximate the radial diffusion coeffciient asD⊥=1.0 m2· s?1and the thermal conductivity coeffciient asχe=χi= 1.7 m2 s? 1 in the whole region [24–28].The SOL flows are driven by the poloidal transport asymmetry due to asymmetry of the edge transport between the low-field/badcurvature and the high-field/good-curvature sides [29].Also,in the simulation the EAST LSN configuration is applied with the× ?Bpoints toward the X-point.

    Figure 1.The simulation domain with its mesh structure (triangular grid for neutral particle,orthogonal grid for ion and electron),as well as Ne seeding and gas pumping locations.

    The boundary conditions in modeling are listed as follows.

    2.1.Core boundary

    The main plasma (D+) density: 3.0 × 1019m?3, while other species are set zero, except for the neon density which has a gas puffing source outside of the core edge.The total power flux from the core to SOL is assumed as =Psol1.5 MW.It is also assumed that the total power flux is divided equally into ions and electrons, i.e.,Psol,e=Psol,i= 0.75 MW.

    2.2.Divertor target

    A standard sheath boundary condition is applied.The sheath heat transmission coefficients are set: =ETe0.9 for electrons and =ETi2.5 for ions.

    2.3.SOL and PFR boundaries

    Figure 2.Profiles of (a) the electron density ne and (b) ion + electron temperatures at OMP with seedings at TP and XP.

    The radial decay lengths for both the electron and ion temperatures are set to be 3 cm.For D+and Ne+1?Ne+10,we use the radial leakage boundary condition with Γa=αa Csa na,where the subscriptais for the ions,C as is the sound speed of the ion species;αis the leakage factor.The leakage condition presents the particles leaking out the boundary (α> 0) or recycling to main plasma as the neutral(α< 0).Here,we setαD= ?0.001for D+, andαNe= ?0.003for Ne ions.

    In order to keep the particle balance in the simulation,we add a pumping effect in the modeling with its position being shown in figure 1.Correspondingly, the recycling coefficient is set to be 1.0 at the boundaries of the D-SOL walls,targets,and dome side of private flux regions, as well as 0.95 at the pumping duct outlet.Since the pumping is mainly for neutrals, the effect is then simulated by Eirene in the region covered by triangular cells.

    3.Simulation results and discussion

    To reveal the effect of impurity seeding locations on D-SOL plasmas, the comparisons between Ne seeding at XP and TP in L modes are made.The Ne seeding rate is5.0 × 1019s?1.The upstream radial profiles of the electron densityne,electron temperatureTe, and ion temperatureTiat OMP are shown in figure 2.It can be seen that, as shown in figure 2(a),compared with the no seeding case, the upstream electron density is raised at a certain position ofr?rSEP,here the subscript‘SEP’stands for‘separatrix’,by the Ne seeding.It is because that some Ne particles transported into the upstream are ionized, resulting in the electron and ion temperatures decreasing.In figure 2(b), one can also find that the ion and electron temperatures are decoupled.It is due to that the ion density is lower than the electron caused by impurity seeding,in this case,Tican be higher thanT.eFurthermore, it is interesting that the electron densities at OMP for two various seeding locations are slightly different, the slope ofnewith seeding at TP is a litter higher than seeding at XP.However,Te,sepandne,sepfor both cases at OMP are almost the same or on the same order of magnitude,which indicates that the both cases have the similar upstream conditions [23].

    Moreover,the upstream profiles of the total neon density and neon ion content by percentage (figure 3(a)), as well as neon ion densities for different charge states at OMP(figure 3(b)), are shown in figure 3.Here, we call neon ions fromNe0?Ne6+as low charge states, and those from Ne7+?Ne10+as high charge states.Then in figure 3(a), it can be seen that the total neon density of the TP case is higher than that of the XP case, with a peak value difference of 6.93 × 1017m?3to8.23 × 1017m?3.The neon content in the TP case is higher than that in the XP case, as increased fromcNe,CEI,XP=1.88%tocNe,CEI,TP=2.13%upstream and fromcNe,SEP,XP=3.55%tocNe,SEP,TP=4.36%downstream,respectively.Also,it is shown in figure 3(b)that the upstream density of the high charge state is much higher than that of the low charge state, due to the high electron temperature upstream.However, thenNeof the TP case at upstream is higher than that of the XP case, due to different features of flows in SOL and PFR regions[15,29].The TP location is in the PFR region,and the most of Ne ions from the TP location move along the magnetic field line to the X-point, and then enter the core boundary and further into the upstream core plasma.Oppositely,the XP location is in the SOL region,and more Ne ions transport along the magnetic field line to the outer target,thus the neon impurities are mostly concentrated in the divertor region.Hence,in order to keep a low impurity concentration in the core plasma,seeding in the XP location is a better option according to our simulation results.

    Figure 4 presents the downstream profile ofne,Te,and the heat load on the outer and inner divertor targets with the two different seeding locations.It can be seen that, with Ne seeding, both targets achieve the partial detachment.However,theneandTepeaks shift to the far SOL region because the vertical shape of the divertor causes a low neutral density, as shown in figure 4 [30].Thus, in the far SOL region,both targets are still in an attached state.On the outer target,Te<5 eV withinr?rSEP<0.01 m for the XP case.For TP case on the other hand, the detachment region is much narrower (r?rSEP<0.001 m).In other words, compared with the TP case,seeding at XP locations has higher density and radiation power loss for the neon impurity.

    Figure 3.(a)The total neon density(solid and dashed curves in teal)and the impurity content(plus and dot curves in olive),(b)the neon ion densities of different charge states at OMP, for seedings at TP and XP respectively.

    Figure 4.The electron density and temperature n e, Te ,and the heat load qtot at the outer(a)and the inner(b)targets,with seedings at XP and TP respectively.

    Furthermore, profiles of the total neon and low charge states densities at the outer target are shown in figure 5, for seedings at two locations respectively, the low charge states are mainly concentrated in the divertor region due to the low electron temperature there.It can be clearly seen that, at the outer target,the total neon density,as well as the low charge states densities of the XP case, is larger than that of the TP case.As learned from these results, for seeding at the XP location, the density and radiation power of the neon are higher, while the electron temperature and the heat load at the target are lower, in comparison with the TP case.

    Figure 5.(a)The total neon density and(b)the neon ion densities of the lower charge states at the outer target,with seedings at TP and XP locations respectively.

    Figure 6.Radiation power density distribution of XP case (a) and TP case (b).

    Table 1.The distribution of radiation power in different regions with seeding at two locations.

    Figure 7.The peak value of (a) electron temperature and (b) heat load at outer target as functions of neon seeding rates.

    The difference in the radiation power between the two seeding location cases is shown in figure 6, where the radiation power dominates the target area since the Ne impurity is concentrated in the divertor region.The radiation power of different regions is listed in table 1.The total power radiation loss of the XP case is about 84.6%, and of the TP case is about 87.6%.The power radiation of the TP case is slightly higher than that of the XP case due to the higher impurity density upstream, which clearly causes a higher radiation power in core and SOL region.

    To further check the influence of seeding locations on the divertor plasma,we also simulate the seeding rate from1019to 1.5 × 1020s?1.The peak values ofTeandqtotat the outer target as functions of the seeding rate are shown in figure 7.It can be seen clearly that, as the seeding rate increases, the peaks ofTeandqtotdecrease;and the peak heat load in the XP case is lower than that in the TP case slightly.It indicates that the difference between two seeding locations is more significant as the seeding rate begins to increase.However,whenTe,peak≤10 eV,the decrease of the peak electron temperature is getting slower as the seeding rate increases,due to the outer target achieving detachment [18, 23].Also, with the rising seeding rate, the peakTeof the two cases at the outer target becomes insignificant.The reason is that in high seeding conditions,the electron temperature variation gets smaller and smaller as the seeding rate rises, due to a deeper and deeper detachment being achieved at the target.

    4.Summary

    The importance of the impurity seeding at different locations and its effect on D-SOL plasma processes has been studied for EAST geometry and parameters, numerically by SOLPSITER code.The simulation results show that the neon impurity seeding is very effective to enhance the radiation power loss, and thus to reduce the temperature and heat load on the divertor target.In the same upstream conditions, the seeding locations have significant effects on both divertor plasmas and upstream profiles.In the divertor region, seedings at the TP and the XP positions can both achieve the partial detachment at the inner and the outer targets, withTe<6 eV at the strike point, though still>10 eV in the far-SOL region.The radiation power loss due to the neon impurity seeding is mainly concentrated in the divertor region in both cases.However, seeding at the XP leads to lower temperature and heat load flux than that for TP in both targets,because the neon density of the XP case is much higher than that of the TP case.As the seeding rate increases, the peak heat load flux at outer target for the XP case is lower than that for the TP case, and the peak temperature variation becomes insignificant.In the upstream region, the electron density profile rises due to the neon impurity seeding, and thus the temperature profile drops.The modeling results show that the neon impurity density is mainly located near the inner LCFS,while the neon content in the core region is still noticeably low (cNe,CEI,TP=2.13%,cNe,CEI,XP=1.88%).Moreover, the impurity density of the TP case is higher than that of the XP case.It indicates that, for seeding at the TP, the neon ions move more easily upstream into the core plasmas.In other words, seeding at the private-flux region (the TP location) is not beneficial for the plasma confinement, especially in high seeding rate conditions.

    Not only is the D-SOL plasma affected by the impurity seeding location, but also the transport coefficients, and the drift in the impurity transport process also plays an important role.Therefore,the impurity transport with different transport coefficients and the influence of drift should be considered and further investigated in future work.

    Acknowledgments

    We would like to express our gratitude to Xavier Bonnin of ITER Organization for the help in the application of the SOLPSITER code.This work was supported by the National Key Research and Development Program (No.2018YFE0303105),National MCF Energy R&D Program(No.2019YFE03080300),and National Natural Science Foundation of China (No.11975087).

    猜你喜歡
    王敏青梅
    Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER
    且將蠶豆伴青梅
    青梅煮酒論英雄 下
    Improvement of English Listening Teaching in Junior MiddleSchool Guided by Schema Theory
    魅力中國(2018年4期)2018-07-30 11:11:44
    夏季養(yǎng)顏“青梅酒”
    Electricity supplier era of packaging design Current Situation and Prospects
    東方教育(2017年1期)2017-04-20 02:52:09
    福建·詔安首季出口青梅制品3 356 t
    自制青梅酒,生津和胃
    自制青梅酒,生津和胃
    Bromate formation in bromide-containing waters irradiated by gamma rays?
    亚洲综合色惰| 人妻夜夜爽99麻豆av| 日本黄色视频三级网站网址| 午夜a级毛片| 成年女人永久免费观看视频| 禁无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| 成人综合一区亚洲| 亚洲国产精品合色在线| 午夜福利18| 日本精品一区二区三区蜜桃| 一区二区三区免费毛片| 如何舔出高潮| 可以在线观看毛片的网站| 国产老妇女一区| 村上凉子中文字幕在线| or卡值多少钱| 国产精品美女特级片免费视频播放器| 精品一区二区三区av网在线观看| .国产精品久久| 久久国产乱子免费精品| 俄罗斯特黄特色一大片| 欧美色视频一区免费| 中文在线观看免费www的网站| 色综合色国产| 婷婷色综合大香蕉| 日日干狠狠操夜夜爽| 国产视频内射| 欧美高清成人免费视频www| 一区二区三区高清视频在线| 久久精品影院6| 国产精华一区二区三区| av在线老鸭窝| 全区人妻精品视频| 我的女老师完整版在线观看| 高清毛片免费观看视频网站| 乱码一卡2卡4卡精品| 国语自产精品视频在线第100页| 深夜a级毛片| 黄色视频,在线免费观看| 无人区码免费观看不卡| 人人妻人人看人人澡| 老熟妇仑乱视频hdxx| 国产精品人妻久久久影院| 日韩欧美精品免费久久| 亚洲久久久久久中文字幕| 最新在线观看一区二区三区| 成年女人毛片免费观看观看9| 久久99热6这里只有精品| 精品无人区乱码1区二区| 在线看三级毛片| 久久精品国产亚洲网站| 性欧美人与动物交配| 免费看av在线观看网站| 成人亚洲精品av一区二区| 欧美极品一区二区三区四区| 国产日本99.免费观看| 极品教师在线视频| 午夜久久久久精精品| 国产激情偷乱视频一区二区| 啦啦啦观看免费观看视频高清| 国产精品伦人一区二区| 桃色一区二区三区在线观看| 国产精品嫩草影院av在线观看 | 三级毛片av免费| 欧美丝袜亚洲另类 | 国产精品久久久久久久电影| 亚洲中文字幕日韩| 不卡一级毛片| 免费看a级黄色片| 日韩欧美精品v在线| 久久久久久九九精品二区国产| 久久久午夜欧美精品| 成人特级av手机在线观看| 国产成人aa在线观看| 美女被艹到高潮喷水动态| 我的老师免费观看完整版| 天堂动漫精品| 中文字幕精品亚洲无线码一区| 赤兔流量卡办理| 亚洲专区中文字幕在线| 国内精品久久久久精免费| 婷婷亚洲欧美| 99热网站在线观看| 99久久精品国产国产毛片| 国产色爽女视频免费观看| 国产一区二区三区视频了| 亚洲18禁久久av| 嫩草影院入口| 最近最新中文字幕大全电影3| 波野结衣二区三区在线| 日韩人妻高清精品专区| 久久精品91蜜桃| 成人av一区二区三区在线看| 22中文网久久字幕| 午夜免费成人在线视频| 欧美日本亚洲视频在线播放| 精品乱码久久久久久99久播| 国产精品自产拍在线观看55亚洲| 久久6这里有精品| 久久久色成人| 老女人水多毛片| 精品不卡国产一区二区三区| 久久国产乱子免费精品| 日韩欧美免费精品| 一区二区三区四区激情视频 | 天堂av国产一区二区熟女人妻| 免费一级毛片在线播放高清视频| netflix在线观看网站| h日本视频在线播放| 1000部很黄的大片| 婷婷精品国产亚洲av在线| 国产精品无大码| 婷婷色综合大香蕉| 精品久久久久久久久av| 岛国在线免费视频观看| 成人性生交大片免费视频hd| 91精品国产九色| 国产在视频线在精品| av在线老鸭窝| 99精品在免费线老司机午夜| 窝窝影院91人妻| 日韩国内少妇激情av| 一级黄色大片毛片| 久久久午夜欧美精品| 香蕉av资源在线| 亚洲一级一片aⅴ在线观看| 99九九线精品视频在线观看视频| 九九热线精品视视频播放| 99久久精品热视频| 一进一出好大好爽视频| 日日撸夜夜添| 男女做爰动态图高潮gif福利片| 久久久久久久久久黄片| 精品久久国产蜜桃| 国产精品自产拍在线观看55亚洲| 一夜夜www| 欧美成人a在线观看| 久久久久久久久久久丰满 | 天堂动漫精品| 乱系列少妇在线播放| 真人做人爱边吃奶动态| 欧美日本亚洲视频在线播放| 毛片一级片免费看久久久久 | 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 久久久久久久精品吃奶| 免费看日本二区| 国产综合懂色| 老熟妇乱子伦视频在线观看| 少妇丰满av| 中文字幕熟女人妻在线| 简卡轻食公司| 日日摸夜夜添夜夜添小说| av福利片在线观看| 日韩中文字幕欧美一区二区| 日本 av在线| 欧美一区二区亚洲| 三级毛片av免费| 国产色爽女视频免费观看| av天堂中文字幕网| 国产午夜精品久久久久久一区二区三区 | 国产精品一区二区三区四区久久| av在线天堂中文字幕| 高清毛片免费观看视频网站| 一级黄片播放器| 亚洲av成人精品一区久久| netflix在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 成年版毛片免费区| 少妇人妻一区二区三区视频| 久久精品国产清高在天天线| 国产真实乱freesex| 亚洲性久久影院| 国产精品av视频在线免费观看| 最近在线观看免费完整版| a级一级毛片免费在线观看| 97人妻精品一区二区三区麻豆| 欧美zozozo另类| 国产大屁股一区二区在线视频| 色哟哟哟哟哟哟| a级毛片a级免费在线| 女的被弄到高潮叫床怎么办 | 人妻少妇偷人精品九色| 国产免费男女视频| 久久人人爽人人爽人人片va| 如何舔出高潮| 国产高潮美女av| 黄色视频,在线免费观看| 国产久久久一区二区三区| 动漫黄色视频在线观看| 嫩草影院精品99| 亚洲久久久久久中文字幕| 国内精品美女久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产精品久久男人天堂| 99久久精品国产国产毛片| 国产在线男女| 一进一出好大好爽视频| 欧美3d第一页| 不卡一级毛片| 欧美在线一区亚洲| 18+在线观看网站| 精品一区二区免费观看| 一级黄片播放器| 在线a可以看的网站| 国产欧美日韩精品亚洲av| 亚洲一区高清亚洲精品| 亚洲第一区二区三区不卡| 国产精品自产拍在线观看55亚洲| 国产精品一区二区免费欧美| 日本色播在线视频| 麻豆成人午夜福利视频| 伦理电影大哥的女人| АⅤ资源中文在线天堂| 男人狂女人下面高潮的视频| 国产老妇女一区| 俄罗斯特黄特色一大片| 十八禁国产超污无遮挡网站| 亚洲精品日韩av片在线观看| 午夜精品久久久久久毛片777| 日韩精品中文字幕看吧| 久久久久久久午夜电影| 精品人妻一区二区三区麻豆 | 久久精品夜夜夜夜夜久久蜜豆| 欧美色视频一区免费| 国内精品一区二区在线观看| 男女边吃奶边做爰视频| 尤物成人国产欧美一区二区三区| 亚洲国产精品sss在线观看| 久久久色成人| 欧美不卡视频在线免费观看| 国产精品爽爽va在线观看网站| 高清在线国产一区| 国产av在哪里看| 午夜福利视频1000在线观看| 校园春色视频在线观看| 欧美绝顶高潮抽搐喷水| 草草在线视频免费看| 韩国av在线不卡| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 日日摸夜夜添夜夜添小说| 黄色女人牲交| 亚洲欧美精品综合久久99| 亚洲一区二区三区色噜噜| 女人十人毛片免费观看3o分钟| 啦啦啦韩国在线观看视频| 国产不卡一卡二| 免费观看的影片在线观看| 看免费成人av毛片| 日韩强制内射视频| 亚洲在线观看片| 成人三级黄色视频| 亚洲成人久久爱视频| 欧美精品啪啪一区二区三区| 亚洲性夜色夜夜综合| 中文字幕人妻熟人妻熟丝袜美| av在线观看视频网站免费| 桃红色精品国产亚洲av| 日韩国内少妇激情av| 亚洲国产欧美人成| 黄色欧美视频在线观看| 精品一区二区免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产三级中文精品| 国产淫片久久久久久久久| 欧美不卡视频在线免费观看| 天美传媒精品一区二区| 国产精品人妻久久久久久| 亚洲综合色惰| 欧洲精品卡2卡3卡4卡5卡区| av天堂在线播放| 亚洲va在线va天堂va国产| 啦啦啦韩国在线观看视频| 日韩一本色道免费dvd| 中国美女看黄片| 成人一区二区视频在线观看| 国产av在哪里看| 久久久色成人| av.在线天堂| 成人午夜高清在线视频| 看片在线看免费视频| 高清日韩中文字幕在线| 国产精品永久免费网站| 国内揄拍国产精品人妻在线| 蜜桃亚洲精品一区二区三区| 免费观看在线日韩| 在线观看午夜福利视频| 特级一级黄色大片| 中文字幕熟女人妻在线| 窝窝影院91人妻| 99热只有精品国产| 日韩欧美国产在线观看| 一级a爱片免费观看的视频| 一进一出抽搐动态| 免费在线观看影片大全网站| 久久天躁狠狠躁夜夜2o2o| 欧美人与善性xxx| 麻豆国产97在线/欧美| 国产高清三级在线| 久久久久久伊人网av| 成人亚洲精品av一区二区| 国产精品综合久久久久久久免费| 97热精品久久久久久| 不卡视频在线观看欧美| 国内毛片毛片毛片毛片毛片| 色5月婷婷丁香| 九色成人免费人妻av| 国产在视频线在精品| eeuss影院久久| 在线看三级毛片| 22中文网久久字幕| 国产精品美女特级片免费视频播放器| 成人毛片a级毛片在线播放| 久久久久国内视频| av福利片在线观看| 欧美成人一区二区免费高清观看| 看十八女毛片水多多多| 久久亚洲真实| 波野结衣二区三区在线| 欧美xxxx黑人xx丫x性爽| 日本熟妇午夜| 男女之事视频高清在线观看| 伦精品一区二区三区| 色综合站精品国产| 午夜视频国产福利| 亚洲国产欧美人成| 中文字幕av在线有码专区| 九色成人免费人妻av| 国产精品一区二区免费欧美| 国产成年人精品一区二区| 色尼玛亚洲综合影院| 婷婷色综合大香蕉| 蜜桃亚洲精品一区二区三区| 美女免费视频网站| 中出人妻视频一区二区| 少妇丰满av| 中出人妻视频一区二区| 色噜噜av男人的天堂激情| 久久草成人影院| 精品久久久久久,| 在线免费观看不下载黄p国产 | 欧美日本视频| 午夜影院日韩av| 亚洲无线观看免费| 日韩欧美一区二区三区在线观看| bbb黄色大片| 不卡视频在线观看欧美| 天堂动漫精品| 亚洲人成网站在线播| 12—13女人毛片做爰片一| 哪里可以看免费的av片| 啦啦啦啦在线视频资源| 九九在线视频观看精品| 国产精品女同一区二区软件 | 日韩欧美精品v在线| 亚洲va在线va天堂va国产| 少妇的逼水好多| 国产精品免费一区二区三区在线| 最新在线观看一区二区三区| 成年女人看的毛片在线观看| 超碰av人人做人人爽久久| 日韩一本色道免费dvd| 女人十人毛片免费观看3o分钟| 亚洲在线自拍视频| 亚洲国产精品sss在线观看| 麻豆国产av国片精品| 白带黄色成豆腐渣| 色哟哟·www| 老司机午夜福利在线观看视频| 免费在线观看影片大全网站| 久久亚洲真实| 91在线观看av| 97超视频在线观看视频| x7x7x7水蜜桃| 欧美+日韩+精品| 色吧在线观看| 如何舔出高潮| 久久久久久九九精品二区国产| 毛片一级片免费看久久久久 | 国产一区二区三区av在线 | 国产蜜桃级精品一区二区三区| x7x7x7水蜜桃| 色哟哟哟哟哟哟| 天天躁日日操中文字幕| 精品久久久久久久人妻蜜臀av| 免费av毛片视频| 欧美色欧美亚洲另类二区| 999久久久精品免费观看国产| 乱人视频在线观看| 中文在线观看免费www的网站| 亚洲自拍偷在线| 最近在线观看免费完整版| 在线观看免费视频日本深夜| 日日干狠狠操夜夜爽| 国产亚洲精品综合一区在线观看| 亚洲综合色惰| 蜜桃亚洲精品一区二区三区| 大型黄色视频在线免费观看| 99久久精品国产国产毛片| 国产精品一区二区三区四区免费观看 | 久久热精品热| 18禁裸乳无遮挡免费网站照片| 少妇高潮的动态图| 欧美性猛交╳xxx乱大交人| 十八禁国产超污无遮挡网站| 男女下面进入的视频免费午夜| 两人在一起打扑克的视频| 国产极品精品免费视频能看的| 两个人视频免费观看高清| 成人综合一区亚洲| 国产91精品成人一区二区三区| 亚洲久久久久久中文字幕| 午夜福利18| 无人区码免费观看不卡| 国产午夜福利久久久久久| 色播亚洲综合网| 国产亚洲精品av在线| 麻豆国产97在线/欧美| 天堂网av新在线| 九九久久精品国产亚洲av麻豆| 99热这里只有是精品在线观看| av在线蜜桃| 69人妻影院| a级一级毛片免费在线观看| 久久久久久伊人网av| 精品午夜福利视频在线观看一区| 国产乱人视频| 99在线视频只有这里精品首页| 在线观看66精品国产| 最近中文字幕高清免费大全6 | 精品人妻偷拍中文字幕| 亚洲精品久久国产高清桃花| 日日摸夜夜添夜夜添av毛片 | 欧美潮喷喷水| 久久婷婷人人爽人人干人人爱| 在现免费观看毛片| 国产精品98久久久久久宅男小说| 我要看日韩黄色一级片| 天堂av国产一区二区熟女人妻| 一进一出好大好爽视频| 精品日产1卡2卡| 亚洲成人精品中文字幕电影| 一本一本综合久久| 女同久久另类99精品国产91| 嫩草影院新地址| 午夜视频国产福利| 五月玫瑰六月丁香| 日本三级黄在线观看| 亚洲自拍偷在线| 国产人妻一区二区三区在| 女同久久另类99精品国产91| 一个人观看的视频www高清免费观看| 亚洲无线观看免费| 亚洲国产欧美人成| 亚洲在线观看片| 91麻豆精品激情在线观看国产| 一级黄片播放器| 男女啪啪激烈高潮av片| 99在线视频只有这里精品首页| .国产精品久久| 亚洲最大成人av| 啦啦啦观看免费观看视频高清| 丰满人妻一区二区三区视频av| 精品久久久久久久久久久久久| 欧美日韩精品成人综合77777| 日本-黄色视频高清免费观看| 嫩草影院新地址| 91狼人影院| 久久久久久大精品| 欧美潮喷喷水| 欧美黑人欧美精品刺激| 天堂影院成人在线观看| 久久精品久久久久久噜噜老黄 | 国产在线男女| 哪里可以看免费的av片| 国产精品一区二区免费欧美| 一进一出好大好爽视频| 亚洲美女搞黄在线观看 | 国产精品国产三级国产av玫瑰| 蜜桃久久精品国产亚洲av| 一a级毛片在线观看| 国产v大片淫在线免费观看| 亚洲真实伦在线观看| 51国产日韩欧美| 两个人的视频大全免费| 欧美色视频一区免费| 欧美三级亚洲精品| 欧美成人一区二区免费高清观看| 国产精品国产高清国产av| 男女之事视频高清在线观看| av在线亚洲专区| 欧美一区二区亚洲| 免费在线观看日本一区| 亚洲美女视频黄频| 久久久久久久久久久丰满 | 俺也久久电影网| 国产老妇女一区| 一级毛片久久久久久久久女| 欧美日本视频| a级毛片a级免费在线| 看片在线看免费视频| 国产成人福利小说| 精品久久久噜噜| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 国产主播在线观看一区二区| 校园春色视频在线观看| 一a级毛片在线观看| 99热这里只有精品一区| 五月伊人婷婷丁香| 色av中文字幕| 精品人妻视频免费看| 99热这里只有是精品在线观看| 亚洲精品一区av在线观看| 国产 一区 欧美 日韩| 中文字幕av成人在线电影| 丝袜美腿在线中文| 欧美日本视频| 久久久久久大精品| 黄色丝袜av网址大全| 国产三级在线视频| 国产69精品久久久久777片| 国产男靠女视频免费网站| 日本撒尿小便嘘嘘汇集6| 午夜免费成人在线视频| 久久精品国产亚洲网站| 欧美日本亚洲视频在线播放| 欧美3d第一页| 12—13女人毛片做爰片一| 亚洲欧美清纯卡通| 亚洲成人免费电影在线观看| 国产亚洲av嫩草精品影院| 国内精品美女久久久久久| 男人和女人高潮做爰伦理| 国产一级毛片七仙女欲春2| 给我免费播放毛片高清在线观看| 国产午夜福利久久久久久| 别揉我奶头~嗯~啊~动态视频| 亚洲中文字幕日韩| 国产亚洲av嫩草精品影院| 国产高潮美女av| 午夜激情福利司机影院| 欧美日本亚洲视频在线播放| 亚洲精品456在线播放app | 国产视频内射| 精品人妻视频免费看| 校园春色视频在线观看| 九九久久精品国产亚洲av麻豆| 老女人水多毛片| 哪里可以看免费的av片| 中文字幕av在线有码专区| 亚洲狠狠婷婷综合久久图片| 欧美日韩国产亚洲二区| 欧美成人性av电影在线观看| 少妇熟女aⅴ在线视频| 一边摸一边抽搐一进一小说| 国产午夜福利久久久久久| 久99久视频精品免费| 午夜福利在线在线| 国产精品久久久久久久久免| 欧美bdsm另类| 国产综合懂色| 麻豆国产97在线/欧美| 成人永久免费在线观看视频| 国产精品人妻久久久影院| 99久久精品一区二区三区| 久久久精品欧美日韩精品| 国产精品99久久久久久久久| 啪啪无遮挡十八禁网站| 国产视频一区二区在线看| 国产精华一区二区三区| 日本免费一区二区三区高清不卡| 久久精品国产亚洲网站| 精华霜和精华液先用哪个| 精品人妻一区二区三区麻豆 | 精品人妻视频免费看| 校园春色视频在线观看| 国产私拍福利视频在线观看| 又黄又爽又刺激的免费视频.| 麻豆国产97在线/欧美| 精品人妻一区二区三区麻豆 | 久久精品国产自在天天线| 黄色丝袜av网址大全| 波多野结衣高清作品| 国产激情偷乱视频一区二区| 深爱激情五月婷婷| h日本视频在线播放| 午夜精品在线福利| 日韩精品青青久久久久久| 99久国产av精品| 香蕉av资源在线| 国产精品野战在线观看| 舔av片在线| 少妇高潮的动态图| 国产亚洲精品久久久com| 精品人妻偷拍中文字幕| 最新在线观看一区二区三区| 日韩精品有码人妻一区| 最近最新中文字幕大全电影3| 免费高清视频大片| 成人精品一区二区免费| 一个人免费在线观看电影| 免费av不卡在线播放| 99久久精品国产国产毛片| 国产精品久久久久久亚洲av鲁大| 欧美极品一区二区三区四区| 一区福利在线观看| 亚洲欧美日韩高清在线视频| 欧美一区二区国产精品久久精品| 久久精品国产亚洲av涩爱 | 成人永久免费在线观看视频| 制服丝袜大香蕉在线| 天天一区二区日本电影三级|