蘇慶旺 蒼柏峰 白晨陽 李韞哲 宋澤 李俊材 吳美康 魏曉雙 崔菁菁 武志海
施硅量對(duì)旱作水稻產(chǎn)量和干物質(zhì)積累的影響
蘇慶旺 蒼柏峰 白晨陽 李韞哲 宋澤 李俊材 吳美康 魏曉雙 崔菁菁 武志海*
(吉林農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院/國家農(nóng)作物品種審定特性鑒定站, 長春 130118;*通信聯(lián)系人: wuzhihai1116@163.com)
【】明確直接播種雨養(yǎng)為主的旱作水稻的硅肥最佳施用量并揭示硅肥增加產(chǎn)量的機(jī)制。以綏粳18為材料進(jìn)行兩年大田試驗(yàn),設(shè)計(jì)0、15、30、45、60和75 kg/hm2的有效硅用量(用Si0、Si15、Si30、Si45、Si60和Si75表示),研究不同硅肥用量對(duì)旱作水稻生理指標(biāo)、干物質(zhì)轉(zhuǎn)運(yùn)和產(chǎn)量構(gòu)成因素的影響。施加硅肥顯著增加了旱作水稻的產(chǎn)量,二次回歸方程分析表明施用有效硅量47.68 kg/hm2可獲得最大理論產(chǎn)量,當(dāng)有效硅用量為30~47.68 kg/hm2時(shí),硅肥顯著提高了根系活力、葉片SPAD值和葉面積指數(shù),協(xié)調(diào)了莖葉干物質(zhì)向穗部的轉(zhuǎn)移,延緩了后期葉片的衰老,每穗粒數(shù)提高了23.62%~24.63%,千粒重提高了8.94%~10.08%,優(yōu)化了穗粒結(jié)構(gòu)進(jìn)而增產(chǎn)38.42%~110.20%;有效硅施用量為47.68~75 kg/hm2時(shí),生育后期加快了莖葉干物質(zhì)向穗部轉(zhuǎn)移,加速了葉片衰老,不利于籽粒的持續(xù)性灌漿,影響了每平方米穗數(shù)、每穗粒數(shù)和千粒重進(jìn)而影響產(chǎn)量。對(duì)于綏粳18而言,適宜吉林省中部地區(qū)旱作水稻高產(chǎn)高效的最佳有效硅肥施用量為30~47.68 kg/hm2。
旱作水稻;硅肥;干物質(zhì)轉(zhuǎn)運(yùn);硅肥利用率;產(chǎn)量
水稻在我國的糧食安全中具有重要的戰(zhàn)略意義[1]。生產(chǎn)水稻大約消耗了我國50%的淡水資源[2-3],然而我國是世界上13個(gè)干旱國家之一[4-5],干旱已成為水稻生產(chǎn)的主要限制因素[6-7]。目前很多學(xué)者對(duì)于水稻的節(jié)水栽培采取了不同的策略[8-10]。僅靠自然降雨或輔以少量灌水的旱作水稻,耗水量僅是傳統(tǒng)水稻的 1/5 甚至更少[11]。因勞動(dòng)力短缺、氣候變化和水資源枯竭等因素,旱作水稻的發(fā)展比以往任何時(shí)候都顯得更加緊迫[12]。
然而旱作水稻存在產(chǎn)量較低的問題,增強(qiáng)抗旱性、提高產(chǎn)量是旱作水稻栽培過程中亟待解決的問題。有學(xué)者認(rèn)為,硅可以綜合提高植物的生物脅迫和非生物脅迫[13-15]抗性。在干旱脅迫條件下,硅通過調(diào)節(jié)植株體內(nèi)多種生理代謝途徑增強(qiáng)抗旱性進(jìn)而提升產(chǎn)量[16-19]。陳健曉等[20]研究認(rèn)為硅肥的施用增加了水稻的根系體積,提高了葉綠素含量、可溶性總糖含量和硝酸還原酶活性。韋還和等[21]研究結(jié)果表明,施硅處理水稻莖蘗數(shù)顯著增加,且提高了葉面積指數(shù)、光合勢和干物質(zhì)積累量。商全玉等[22]研究表明施硅通過提高穗數(shù)、每穗粒數(shù)和千粒重提高水稻產(chǎn)量。目前學(xué)者普遍認(rèn)為施用硅肥顯著提高了水稻產(chǎn)量[20-23],但是不同硅肥用量對(duì)水稻增產(chǎn)效果不一[24-26]。韋還和等[21]與張國良等[26]均認(rèn)為過量硅肥會(huì)降低水稻的產(chǎn)量。目前關(guān)于水稻最佳硅肥用量雖有研究,但結(jié)論并不一致,旱作水稻最佳硅肥用量更是缺乏系統(tǒng)研究。
因此,研究適宜的硅肥用量對(duì)旱作水稻的發(fā)展具有重大意義。本研究以旱作水稻為研究對(duì)象,設(shè)置不同有效硅肥施用量,研究硅肥對(duì)旱作水稻主要形態(tài)特征、生理指標(biāo)和產(chǎn)量的影響,旨在篩選適宜吉林省地區(qū)旱作水稻高產(chǎn)高效栽培的硅肥用量,并揭示硅肥增產(chǎn)的機(jī)制,以便于旱作水稻的推廣應(yīng)用。
供試水稻品種為綏粳18,生育期為134~135 d,是吉林省中部地區(qū)水稻栽培主推品種之一。
2019-2020年在吉林農(nóng)業(yè)大學(xué)國家農(nóng)作物品種審定特性鑒定站內(nèi)進(jìn)行田間試驗(yàn)。土壤有效硅含量113.46 mg/kg,為中等供硅能力土壤,有機(jī)質(zhì)含量18.7 g/kg,堿解氮117.02 mg/kg,速效磷41.11 mg/kg,速效鉀245.16 mg/kg,pH值6.2。試驗(yàn)以不施硅(Si0)為對(duì)照,設(shè)置15(Si15)、30(Si30)、45(Si45)、60(Si60)和75 kg/hm2(Si75)五個(gè)硅肥處理。采用隨機(jī)區(qū)組設(shè)計(jì),每個(gè)處理重復(fù)3次,小區(qū)面積為25m2。播種量150 kg/hm2, 行距30 cm,條播。于5月第一周播種,10月第一周收獲,2019年全生育期積溫和降雨量分別為2851.9℃和664.4 mm,2020年為2920.2℃和593.1 mm。生育期間以雨養(yǎng)為主,當(dāng)10?15 cm土壤水勢低于?35 kPa時(shí)(土壤水勢測定儀SYS-TSS1監(jiān)測),用定噴式360°霧化旋轉(zhuǎn)噴灌,噴灑半徑為8 m,出水量0.7 m3/h,結(jié)合植株的田間長勢進(jìn)行噴灌補(bǔ)水約2 h,補(bǔ)水后土壤水勢?10 kPa。磷肥(過磷酸鈣,P2O512%)用量(折合P2O5)和鉀肥(氯化鉀,K2O 60%) 用量(折合K2O )均為75 kg/hm2,一次性作為底肥施入。氮肥(尿素,純 N 46%)用量(折合純N)160 kg/hm2,以基肥∶分蘗肥∶穗肥=5∶3∶2的方式分3次施入。硅肥用必奧力俄羅斯礦物硅,有效硅含量≥72%,按基肥∶穗肥=5∶5施入。嚴(yán)格控制病蟲草害,防止水稻產(chǎn)量損失。
1.3.1 根系活力
在分蘗期(播種后55-60 d)、孕穗期(播種后70-75 d)、齊穗期(80%植株抽穗)和灌漿期(齊穗后15-20 d)取樣,避開小區(qū)邊緣,隨機(jī)選擇3個(gè)點(diǎn)小心取旱作水稻根系,清水沖洗干凈后用濾紙擦干水分,用TTC法測定根系活力[27]。
1.3.2 葉片SPAD值
分別在分蘗期、孕穗期、齊穗期和灌漿期測定旱作水稻上部第一片展開葉的SPAD值,采用日本生產(chǎn)的葉綠素儀(SPAD-502plus)測定葉片上、中、下部的SPAD值,重復(fù)3次,計(jì)算平均值。
1.3.3 葉面積指數(shù)及光合勢的測定
在分蘗期、孕穗期、齊穗期以及齊穗后10 d、20 d和30 d,用美國生產(chǎn)的CID-203葉面積儀,在小區(qū)中部隨機(jī)選擇3點(diǎn),每點(diǎn)測量5株旱作水稻的葉面積,計(jì)算平均值。根據(jù)每平方米株數(shù)計(jì)算每平方米的葉面積,即葉面積指數(shù)。光合勢(LAD)的計(jì)算公式如下:
光合勢(m2d·m?2)=(1+2)×(2?1)/2; 1)
1和2為前后兩次測定的葉面積,1和2為前后兩次測定的時(shí)間。
1.3.4 干物質(zhì)積累
于分蘗期、孕穗期、齊穗期和成熟期,在小區(qū)中部隨機(jī)選擇三點(diǎn),每點(diǎn)取5株旱作水稻,分解為莖、葉、穗三部分,105℃下殺青30 min,80℃下烘干至恒重后稱重。經(jīng)磨樣器粉碎后過篩(60目)稱重,莖、葉、穗各3份,每份100 mg,消解法處理樣品后用硅鉬藍(lán)比色法進(jìn)行硅含量測定[28]。
莖(葉)轉(zhuǎn)運(yùn)量(kg/hm2)= 齊穗期干物質(zhì)量?成熟期干物質(zhì)量; 2)
表1 不同有效硅用量對(duì)旱作條件下水稻產(chǎn)量構(gòu)成的影響
Si0—不施硅;Si15—有效硅15kg/hm2;Si30—有效硅30kg/hm2;Si45—有效硅45kg/hm2;Si60—有效硅60kg/hm2;Si75—有效硅75kg/hm2。同列數(shù)據(jù)(平均值±標(biāo)準(zhǔn)差)后不同字母表示在5%水平上差異顯著(=5,最小差異顯著法)。下同。
Si0, No silicon; Si15, Effective silicon level of 15 kg/hm2; Si30, Effective silicon level of 30 kg/hm2; Si45, Effective silicon level of 45 kg/hm2; Si60, Effective silicon level of 60 kg/hm2; Si75, Effective silicon level of 75 kg/hm2.Values (mean ± SD) followed by different letters are significantly different at<0.05 (=5, LSD). The same below. Within a column for each location, means followed by the same letters are not significantly different at<0.05.
莖(葉)干物質(zhì)轉(zhuǎn)運(yùn)率(%)=干物質(zhì)轉(zhuǎn)運(yùn)量/齊穗期干物質(zhì)量×100%; 3)
地上部干物質(zhì)轉(zhuǎn)運(yùn)對(duì)穗的貢獻(xiàn)率(%)=(莖干物質(zhì)轉(zhuǎn)運(yùn)量+葉干物質(zhì)轉(zhuǎn)運(yùn)量)/(成熟期穗重?齊穗期穗重)×100%; 4)
籽粒硅攜出量(kg/hm2)= 穗干物質(zhì)量×穗含硅量; 5)
硅素農(nóng)學(xué)利用率(kg/hm2)=(施硅區(qū)作物產(chǎn)量?無硅區(qū)作物產(chǎn)量)/硅肥施用量; 6)
硅素生理利用率(kg/hm2)=(施硅區(qū)作物產(chǎn)量?無硅區(qū)作物產(chǎn)量)/(施硅區(qū)植株總吸硅量?無硅區(qū)植株總吸硅量); 7)
硅肥偏生產(chǎn)力(kg/hm2)=稻谷產(chǎn)量/硅肥施用量; 8)
硅素稻谷生產(chǎn)效率(kg/hm2)=稻谷產(chǎn)量/硅素吸收總量。 9)
1.3.5 產(chǎn)量及構(gòu)成要素
成熟期在各小區(qū)中部選擇三點(diǎn),每點(diǎn)選取具有代表性植株5株用于測定每穗粒數(shù)、結(jié)實(shí)率、千粒重等產(chǎn)量構(gòu)成要素,取樣點(diǎn)所在位置選擇1m2調(diào)查每1 m2穗數(shù),重復(fù)3次,計(jì)算平均數(shù),并收獲1 m2中全部稻穗測定實(shí)際產(chǎn)量,風(fēng)干后脫粒去除雜質(zhì)之后稱重并測量其水分含量,基于14%的水分含量確定各處理的標(biāo)準(zhǔn)谷物產(chǎn)量,重復(fù)3次,計(jì)算平均數(shù)。
試驗(yàn)結(jié)果采用Excel進(jìn)行數(shù)據(jù)處理,用SPSS 21.0進(jìn)行方差和相關(guān)性分析,采用<0.05水平進(jìn)行最小顯著性差異(LSD)測試。
由表1可見,與對(duì)照(Si0)相比,施用硅肥顯著增加了旱作水稻的結(jié)實(shí)率、千粒重以及產(chǎn)量(<0.05),可增加旱作水稻產(chǎn)量38.42%~85.62% (2019年)和47.72%~110.20%(2020年)。隨著硅肥用量的增加,旱作水稻的每平方米穗數(shù)、每穗粒數(shù)、千粒重和產(chǎn)量在兩年間均呈先增加后下降的趨勢。2020年由于旱作水稻灌漿期極端低溫、寡照、多雨天氣影響導(dǎo)致結(jié)實(shí)率和千粒重較2019年降低。兩年產(chǎn)量數(shù)據(jù)表明Si30、Si45和Si60三個(gè)處理間差異不顯著,但均以Si45處理增產(chǎn)效果最優(yōu)。將水稻產(chǎn)量()與有效硅用量()進(jìn)行多項(xiàng)式回歸分析(圖1),得到一元二次方程:=?1.44742+138.02+3178.1(2= 0.9628),(最佳)=47.68 kg/hm2。因此適宜旱作水稻高產(chǎn)形成的最佳有效硅施用量為30~47.68 kg/hm2,當(dāng)有效硅用量大于47.68 kg/hm2時(shí)產(chǎn)量呈現(xiàn)下降趨勢;當(dāng)有效硅用量大于60 kg/hm2時(shí)產(chǎn)量顯著降低。由于2 年產(chǎn)量趨勢基本一致,因此若無特殊說明,下文以 2019 年數(shù)據(jù)為主。
圖1 旱作水稻產(chǎn)量與有效硅施用量的多項(xiàng)式回歸分析
Fig. 1. Polynomial regression analysis of dry farming rice yield and silicon fertilizer application level.
MT-分蘗期;PI-孕穗期;HD-齊穗期;FS-灌漿期。柱上不同小寫字母表示在 5%水平上差異顯著(n=3,最小顯著差數(shù)法)。下同。
Fig. 2. Comparison of root vigor of dry farming rice under different silicon fertilizer rates at different growth stages.
圖2的結(jié)果表明,旱作水稻的根系活力在整個(gè)生育期間呈現(xiàn)下降趨勢。Si0處理與其他處理之間存在顯著差異,尤其在灌漿期各硅肥處理根系活力較Si0處理分別提高了8.65%、31.75%、34.93%、23.78%和5.41%。根系活力在各生育期均呈現(xiàn)隨施硅量的增加先增加后降低的趨勢,在Si45處理下達(dá)到最大,在齊穗期前有效硅施用量大于30 kg/hm2時(shí),各處理間根系活力沒有明顯變化,在灌漿期Si60和Si75處理根系活力分別較齊穗期相應(yīng)處理下降26.37%和36.07%,與Si30和Si45處理存在顯著差異。
圖3的結(jié)果表明,旱作水稻各處理劍葉SPAD值均在齊穗期達(dá)到最大,施用硅肥顯著提高了各時(shí)期葉片的SPAD值。在孕穗期前隨著硅肥施用量增加葉片SPAD值逐漸增加。齊穗期當(dāng)有效硅用量小于30 kg/hm2時(shí),硅肥效應(yīng)顯著。有效硅用量大于30 kg/hm2時(shí)硅肥效應(yīng)不顯著,在Si60和Si75處理下反而有所下降,最終在Si45處理下葉片SPAD值達(dá)到最大。齊穗期到灌漿期葉片SPAD值有較大幅度的降低,由Si0至Si75葉片SPAD值分別下降了49.17%、38.55%、36.97%、41.22%、50.22%和52.09%,Si15、Si30和Si45三個(gè)處理有效緩解了葉片SPAD值的快速衰減。
圖3 不同有效硅用量對(duì)旱作水稻葉片SPAD值的影響
Fig. 3. Effect of different silicon fertilizer rates on SPAD value of rice under dry cultivation.
Fig. 4. Effect of different silicon fertilizer rates on leaf area duration of rice under dry cultivation.
LAD反映了作物某一時(shí)期內(nèi)光合面積的發(fā)展動(dòng)態(tài),可以有效反映作物的光合能力。由圖4可知,與Si0處理相比,硅肥的施用顯著增加了旱作水稻的LAD,在分蘗期-孕穗期以及孕穗期-齊穗期,LAD隨硅肥施用量的增加而增加,當(dāng)有效硅用量大于30 kg/hm2時(shí)LAD沒有明顯變化,在齊穗期-灌漿期,各處理的LAD隨硅肥施用量的增加呈現(xiàn)先增加后降低的趨勢,在Si45處理下LAD達(dá)到最大。
Fig. 5. Attenuation of leaf area of dry farming rice under different silicon fertilizer rates after heading.
表2 不同有效硅量對(duì)旱作水稻干物質(zhì)轉(zhuǎn)運(yùn)及植株硅積累總量的影響
IDM, Increase in dry matter; TVDM, Transport volume of dry matter; TRDM, Transport rate of dry matter; CRDM, Contribution rate of dry matter transport to panicle; TDMA, Total dry matter accumulation.
圖5為不同處理旱作水稻齊穗后葉面積指數(shù)的衰減速率,施用硅肥處理有效提高了齊穗期旱作水稻的葉面積指數(shù),齊穗后30 d內(nèi)不同有效硅用量對(duì)葉面積的衰減速率有不同影響。Si0至Si75葉面積指數(shù)從齊穗期至齊穗后30 d分別下降了60.44%,56.03%,52.31%,48.55%,57.99%和63.37%,當(dāng)有效硅用量小于45 kg/hm2時(shí)有效延緩了葉片的衰老,維持葉片光合持續(xù)期,當(dāng)大于45 kg/hm2時(shí)加速了葉片衰老,Si60葉片衰老速率和Si0沒有明顯差別,Si75葉面積指數(shù)降幅較Si0提高2.93%。
作物產(chǎn)量的形成源自葉片的光合作用和莖葉的干物質(zhì)轉(zhuǎn)運(yùn)。由表2可知,施硅處理顯著增加了植株干物質(zhì)積累總量,且在Si30、Si45和Si60處理下顯著高于其他處理。施硅處理莖鞘干物質(zhì)轉(zhuǎn)運(yùn)量和葉片干物質(zhì)轉(zhuǎn)運(yùn)量均隨硅肥施用量增加而增加,莖鞘干物質(zhì)轉(zhuǎn)運(yùn)率隨有效硅肥施用量增加呈現(xiàn)先降低后增加趨勢,但均小于Si0處理,在Si30處理下莖鞘干物質(zhì)轉(zhuǎn)運(yùn)率最小,葉片干物質(zhì)轉(zhuǎn)運(yùn)率隨硅肥施用量增加而增加,與Si0相比,Si15,Si30和Si45處理下葉片干物質(zhì)轉(zhuǎn)運(yùn)率分別降低了11.77%、12.84%和5.6%,Si60和Si75葉片干物質(zhì)轉(zhuǎn)運(yùn)率分別增加0.97%和11.86%,各處理葉片干物質(zhì)轉(zhuǎn)運(yùn)率均明顯高于莖的干物質(zhì)轉(zhuǎn)運(yùn)率。穗部干物質(zhì)轉(zhuǎn)運(yùn)量隨硅肥施用量的增加先增加后降低,并在Si30處理達(dá)到最大。從干物質(zhì)轉(zhuǎn)運(yùn)對(duì)穗部的貢獻(xiàn)率看, Si0干物質(zhì)轉(zhuǎn)運(yùn)對(duì)穗部的貢獻(xiàn)率最大,施用硅肥減緩了葉片的衰老,抑制了莖葉干物質(zhì)過快向穗部的轉(zhuǎn)運(yùn)。
表3 不同有效硅量對(duì)旱作水稻硅肥利用效率的影響
表4 灌漿期生理指標(biāo)及干物質(zhì)轉(zhuǎn)運(yùn)與產(chǎn)量相關(guān)性分析
*表示在 0.05 水平上顯著相關(guān);**表示在 0.01 水平上顯著相關(guān)。
*Significantly correlated at the 0.05 probability level;**Significantly correlated at the 0.01 probability level. STVDM, Transport rate of dry matter of stem; LTVDM, Transport rate of dry matter of leaf.
由表3可知,隨著有效硅肥用量的增加,各處理硅素農(nóng)學(xué)利用率和硅肥偏生產(chǎn)力逐減,而硅素生理利用率和硅素稻谷生產(chǎn)效率均在Si60處理下達(dá)到最大。施用硅肥顯著增加了籽粒硅攜出量,且隨有效硅肥用量增加籽粒硅攜出量呈現(xiàn)先增加后降低趨勢,并在Si60處理下達(dá)到最大。施用硅肥處理的硅平衡(硅虧缺)顯著高于無硅處理,這主要是由于施硅處理產(chǎn)量較高,所以硅素的吸收量也較多。
由表4可知,旱作水稻的產(chǎn)量與灌漿期根系活力、SPAD值、LAD和干物質(zhì)積累總量均呈極顯著相關(guān),與干物質(zhì)轉(zhuǎn)運(yùn)對(duì)穗的貢獻(xiàn)率呈顯著負(fù)相關(guān);根系活力與SPAD值、LAD、干物質(zhì)積累總量均極顯著正相關(guān);干物質(zhì)積累總量與莖干物質(zhì)轉(zhuǎn)運(yùn)量呈顯著正相關(guān),與干物質(zhì)轉(zhuǎn)運(yùn)對(duì)穗的貢獻(xiàn)率呈顯著負(fù)相關(guān);干物質(zhì)轉(zhuǎn)運(yùn)對(duì)穗的貢獻(xiàn)率與莖干物質(zhì)轉(zhuǎn)運(yùn)量顯著正相關(guān),與產(chǎn)量、根系活力和干物質(zhì)積累總量呈顯著負(fù)相關(guān),與葉片SPAD值呈極顯著負(fù)相關(guān)。
干旱脅迫常常會(huì)導(dǎo)致植物生理生化反應(yīng)紊亂,進(jìn)而影響到產(chǎn)量[29]。有研究表明硅在水稻生長和產(chǎn)量特性方面有積極作用[30-31],但硅肥對(duì)水稻的增產(chǎn)效果因土壤質(zhì)地和硅肥類型而異,目前關(guān)于水稻最適硅肥用量并沒有定論。張國良等[26]研究表明武育粳3號(hào)在施硅量0~450 kg/hm2范圍(SiO2=20%)內(nèi)產(chǎn)量隨施硅量先增加后降低,最適宜硅肥量為225 kg/hm2,商全玉等[22]則認(rèn)為北方粳稻適宜的施硅量為180~240 kg/hm2(SiO2含量20%)。我們的結(jié)果表明,硅肥的施用顯著增加了旱作水稻的產(chǎn)量,適宜吉林省旱作水稻高產(chǎn)形成的最佳有效硅施用量為30~ 47.68 kg/hm2,當(dāng)有效硅用量大于47.68 kg/hm2時(shí)產(chǎn)量有所降低,當(dāng)用量大于60 kg/hm2時(shí)較適宜有效硅量的產(chǎn)量顯著降低。
產(chǎn)量的提高可能歸因于硅提高養(yǎng)分吸收[31-32]、花粉的活力和光合能力[33]。我們的研究表明適量硅肥增加旱作水稻根系活力、葉片SPAD值、葉面積以及葉片LAD,這與前人關(guān)于硅肥對(duì)水稻的研究結(jié)果基本一致[21, 34]。相關(guān)分析表明,根系活力與LAD和葉片SPAD值顯著相關(guān),這表明根系活力增加有助于地上部的生長發(fā)育。齊穗后葉片的光合作用和地上部干物質(zhì)的積累與轉(zhuǎn)運(yùn)是決定產(chǎn)量的關(guān)鍵[8, 35]。武志海等[36]認(rèn)為促進(jìn)水稻灌漿期地上部干物質(zhì)積累,并適當(dāng)調(diào)控齊穗后10-20 d莖稈中同化物向穗的轉(zhuǎn)運(yùn)速率,有利于高產(chǎn)形成。我們的研究表明,地上部干物質(zhì)轉(zhuǎn)運(yùn)對(duì)穗部的貢獻(xiàn)率在15%~30%范圍內(nèi)較適宜旱作水稻的高產(chǎn), 當(dāng)?shù)陀?5%的時(shí)候地上部轉(zhuǎn)運(yùn)到穗部的干物質(zhì)量下降,不利于高產(chǎn)的形成,高于30%時(shí)則加速了葉片的衰老,影響葉片光合作用,進(jìn)而影響到籽粒的灌漿。我們的研究表明,適量硅肥(有效硅用量30~47.68 kg/hm2)提高了旱作水稻根系活力,進(jìn)而提高了地上部葉片的葉綠素含量和光合勢,減緩了齊穗后葉片的衰老,協(xié)調(diào)了地上部干物質(zhì)轉(zhuǎn)運(yùn)對(duì)穗的貢獻(xiàn)率,進(jìn)而通過增加穗數(shù)、每穗粒數(shù)、結(jié)實(shí)率和千粒重促進(jìn)了旱作水稻產(chǎn)量的增加。
過高的硅肥用量不利于水稻產(chǎn)量的形成。韋還和等[21]研究結(jié)果表明過量硅肥施用降低了水稻的結(jié)實(shí)率和千粒重。張國良等[26]則認(rèn)為過量硅肥降低了水稻的有效穗數(shù)。目前對(duì)于過量硅肥不利于產(chǎn)量增加的機(jī)制并沒有深入研究。本研究結(jié)果表明,過量施用硅肥(有效硅用量>47.68 kg/hm2),旱作水稻的穗數(shù)、每穗粒數(shù)和千粒重均有所降低,進(jìn)而影響了產(chǎn)量,這可能是因?yàn)楦吖璺视昧肯潞底魉镜母祷盍ο陆?,影響到根系?duì)營養(yǎng)物質(zhì)的吸收和向地上部的轉(zhuǎn)運(yùn),且在生育后期地上部干物質(zhì)轉(zhuǎn)運(yùn)過快,加速了葉片的衰老,不利于籽粒持續(xù)性灌漿,進(jìn)而影響產(chǎn)量形成。關(guān)于過量硅肥不利于旱作水稻產(chǎn)量形成的生理生化機(jī)理還需進(jìn)一步研究。
硅肥施入土壤后釋放其有效硅,一部分可以被植株根部吸收,一部分殘留在土壤中可被下一季作物吸收利用,另一部分則發(fā)生無效化反應(yīng)[37]。龔金龍等[23]認(rèn)為施用硅肥不僅增加了硅素供應(yīng),而且還有利于改善土壤的供硅能力,提高土壤有效硅含量,從而促進(jìn)水稻對(duì)硅素的吸收。大量研究均表明施用硅肥可以提高肥料的利用效率[38]。有研究認(rèn)為目前我國硅肥利用效率約為60%左右[37],謝凡[39]研究認(rèn)為同一氮肥水平下,隨著硅肥用量的增加硅素利用效率并未存在有規(guī)律的增大或減小,而本研究發(fā)現(xiàn)隨著有效硅肥用量的增加硅素農(nóng)學(xué)利用率和硅肥偏生產(chǎn)力逐漸下降。農(nóng)田養(yǎng)分收支平衡是檢查土壤肥力狀況和預(yù)測土壤養(yǎng)分水平發(fā)展趨勢的方法之一[40]。對(duì)各處理硅素平衡研究發(fā)現(xiàn),Si0處理硅素虧缺量最少,這主要是因?yàn)樵撎幚淼漠a(chǎn)量較低,籽粒攜出的硅量較少;Si15處理和Si30處理硅素虧缺量顯著大于其余處理,這說明15~30 kg/hm2的硅投入量不足以滿足硅的平衡需求;有效硅肥用量大于30 kg/hm2時(shí)硅素虧缺量顯著降低,但硅素農(nóng)學(xué)利用率、硅素生理利用率和硅肥偏生產(chǎn)力明顯降低,尤其Si75處理與Si45處理和Si60處理達(dá)到顯著差異??偠灾?dāng)前農(nóng)田硅素整體顯現(xiàn)入不敷出的局面,適宜硅肥用量的施用對(duì)于旱作水稻高產(chǎn)高效栽培具有重大意義。
本研究表明隨硅肥施用量增加旱作水稻產(chǎn)量先增加后降低,適宜其高產(chǎn)高效栽培的最佳有效硅施用量為30~47.68 kg/hm2。適量硅肥有效緩解旱作水稻對(duì)干旱脅迫的響應(yīng),有利于增強(qiáng)根系活力、減緩葉面積衰老,維持高LAD,平衡了干物質(zhì)向穗部的積累與轉(zhuǎn)運(yùn),協(xié)調(diào)穗粒結(jié)構(gòu)進(jìn)而促進(jìn)產(chǎn)量增加;而過量硅肥(有效硅用量>47.68 kg/hm2)在灌漿期加快了莖葉干物質(zhì)向穗部轉(zhuǎn)移,加速了葉片衰老,不利于籽粒持續(xù)灌漿,通過降低穗粒數(shù)和千粒重進(jìn)而影響產(chǎn)量。
[1] Liu X, Wang H, Zhou J, Hu F Q, Zhu D J, Chen Z M, Liu Y Z. Effect of N fertilization pattern on rice yield, N use efficiency and fertilizer-N fate in the Yangtze River Basin, China[J].2016, 11(11): e0166002.
[2] Luo L J. Breeding for water-saving and drought- resistance rice (WDR) in China[J]., 2011: 3509-3517.
[3] Cai H F, Chen Q G. Rice production in China in the early 21st Century[J].2000(2): 14-16.
[4] Jia L, Hu C, Li Z, Zhou J, Fu J F, Jia X Y. Development prospect and strategies of water-saving and drought- resistance rice[J].,2016, 17(5): 1125-1128.
[5] 王瑗, 盛連喜, 李科, 孫弘顏. 中國水資源現(xiàn)狀分析與可持續(xù)發(fā)展對(duì)策研究[J]. 水資源與水工程學(xué)報(bào), 2008(3): 10-14.
Wang Y, Sheng LX, Li K, Sun H Y. Analysis of present situation of water resources and countermeasures for sustainable development in China[J].2008(3): 10-14. (in Chinese with English abstract)
[6] Cao B L, Ma Q, Xu K. Silicon restrains drought-induced ROS accumulation by promoting energy dissipation in leaves of tomato[J]., 2020, 257(2): 537-547.
[7] Hosseini S A, Maillard A, Hajirezaei M R, Ali N, Schwarzenberg A, Jamois F, Yvin J. Induction of barley silicon transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA homeostasis under osmotic stress and concomitant potassium deficiency[J]., 2017, 8: 1359.
[8] Ye Y S, Liang X Q, Chen Y X, Liu J, Gu J T, Guo R, Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use[J]., 2013, 144(2013): 212-224.
[9] Ramasamy S, Berge H, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application[J]., 1997, 51(1-2): 65-82.
[10] Zhang Z C, Zhang S F, Yang J C, Zhang J H. Yield, grain quality and water use efficiency of rice under non-flooded mulching cultivation[J]., 2008, 108(1): 71-81.
[11] 黃晨. 冀中南地區(qū)旱稻生產(chǎn)現(xiàn)狀及發(fā)展對(duì)策[J]. 河北農(nóng)業(yè), 2018, 281(8): 55-57.
Huang C. Status and development strategies of dry rice production in central and southern Hebei[J]., 2018, 281(8): 55-57.(in Chinese)
[12] Sandhu N, YadawR B, Chaudhary B, Prasai H, Iftekharuddaula K, VenkateshwarluC, Annamalai A, Xangsayasane P, BattanK R, RamM, Cruz M S, Pablico P, MaturanP C, RamanK, CatolosM, KumarA. Evaluating the performance of rice genotypes for improving yield and adaptability under direct seeded aerobic cultivation conditions[J]., 2019, 10: 159.
[13] Ma J F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses[J]., 2004, 50(1): 11-18.
[14] Etesami H. Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants?[J], 2018, 253: 98-112.
[15] Luyckx M, Hausman J, Lutts S, Guerriero G. Silicon and plants: Current knowledge and technological perspectives [J]., 2017, 8: 411.
[16] Gong H J, Chen K M, Chen G C, Wang S M, Zhang C L. Effects of silicon on growth of wheat under drought[J]., 2003, 26(5): 1055-1063.
[17] Parveen N, Ashraf M. Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (L.) cultivars grown hydroponically[J]., 2010, 42(3): 1675-1684.
[18] Zhang W J, Yu X X, Li M, Lang D Y, Zhang X H, Xie Z C. Silicon promotes growth and root yield ofunder salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism[J]., 2018, 107: 1-11.
[19] Zhu Y X, Gong H J. Beneficial effects of silicon on salt and drought tolerance in plants[J]., 2013, 34(2): 455-472.
[20] 陳健曉, 屠乃美, 易鎮(zhèn)邪, 朱紅林. 硅肥對(duì)超級(jí)早稻產(chǎn)量形成和部分生理特性的影響[J]. 作物研究, 2011, 25(6): 544-549.
Chen J X, Tu N M, Yi Z X, Zhu H L. Effects of silicon fertilizer on yield formation and some physiological characteristics of super early rice[J]., 2011, 25(6): 544-549.(in Chinese with English abstract)
[21] 韋還和, 孟天瑤, 李超, 張洪程, 史天宇, 馬榮榮, 王曉燕, 楊筠文, 戴其根, 霍中洋, 許軻, 魏海燕, 郭保衛(wèi). 施硅量對(duì)甬優(yōu)系列秈粳交超級(jí)稻產(chǎn)量及相關(guān)形態(tài)生理性狀的影響[J]. 作物學(xué)報(bào), 2016, 42(3): 437-445.
Wei H H, Meng T Y, Li C, Zhang H C, Shi T Y, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Effects of silicon application rate on the yield and related morphological and physiological characteristics of Yongyou series indica-japonica super rice[J]., 2016, 42(3): 437-445. (in Chinese with English abstract)
[22] 商全玉, 張文忠, 韓亞東, 榮蓉, 徐海, 徐正進(jìn), 陳溫福. 硅肥對(duì)北方粳稻產(chǎn)量和品質(zhì)的影響[J]. 中國水稻科學(xué), 2009, 23(6): 661-664.
Shang Q Y, Zhang W Z, Han Y D, Rong R, Xu H, Xu Z J. Chen W F. The effect of silicon fertilizer on the yield and quality of northernrice[J]., 2009, 23(6): 661-664. (in Chinese with English abstract)
[23] 龔金龍, 胡雅杰, 龍厚元, 常勇, 葛夢婕, 高輝, 劉艷陽, 張洪程, 戴其根, 霍中洋, 許軻, 魏海燕, 李德劍, 沙安勤, 周有炎, 羅學(xué)超. 不同時(shí)期施硅對(duì)超級(jí)稻產(chǎn)量和硅素吸收、利用效率的影響[J]. 中國農(nóng)業(yè)科學(xué), 2012, 45(8): 1475-1488.
Gong J L, Hu Y J, Long H Y, Chang Y, Ge M J, Gao H, Liu Y Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Sha A Q, Zhou Y Y, Luo X C. The effects of silicon application in different periods on the yield and silicon absorption and utilization efficiency of super rice[J].2012, 45(8): 1475-1488. (in Chinese with English abstract)
[24] 趙雁. 硅肥在水稻上的應(yīng)用研究[J]. 寧夏農(nóng)林科技, 2016, 57(12): 52-54.
Zhao Y. Research on the application of silicon fertilizer on rice[J]., 2016, 57(12): 52-54.
[25] Cuong T X, Ullah H, Datta A, Hanh T C. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam[J]., 2017, 24(5): 283-290.
[26] 張國良, 戴其根, 王建武, 張洪程, 霍中洋, 凌勵(lì), 王顯, 張軍. 施硅量對(duì)粳稻品種武育粳3號(hào)產(chǎn)量和品質(zhì)的影響[J]. 中國水稻科學(xué), 2007, 21(3): 299-303.
Zhang G L, Dai Q G, Wang J W, Zhang H C, Huo Z Y, Ling L, Wang X, Zhang J. Effects of silicon fertilizer rate on yield and quality of japonica rice Wuyujing 3[J]., 2007, 21(3): 299-303. (in Chinese with English abstract)
[27] 黃益宗, 張文強(qiáng), 招禮軍, 曹慧明. Si對(duì)鹽脅迫下水稻根系活力、丙二醛和營養(yǎng)元素含量的影響[J]. 生態(tài)毒理學(xué)報(bào), 2009, 4(6): 860-866.
Huang Y Z, Zhang W Q, Zhao L J, Cao H M. Effects of Si on rice root vigor, malondialdehyde and nutrient element contents under salt stress[J]., 2009, 4(6): 860-866. (in Chinese with English abstract)
[28] 賈雨薇, 楊瑞林, 張洋, 房娟娟, 陳惠. 一種優(yōu)化的測定水稻硅含量的方法[J]. 植物學(xué)報(bào), 2016, 51(5): 679-683.
Jia Y W, Yang R L, Zhang Y, Fang J J, Chen H. An optimized method for measuring silicon content in rice[J]., 2016, 51(5): 679-683. (in Chinese with English abstract)
[29] Bouman B, Humphreys E, Tuong T, Barker R. Rice and water[J]., 2007, 92(4): 187-237.
[30] Prakash N B, Chandrashekar N, Mahendra C, Patil S U, Thippeshappa G N, Laane H M. Effect of foliar spray of soluble silicic acid on growth and yield parameters of wetland rice in hilly and coastal zone soils of Karnataka, south India[J]., 2011, 34(12), 1883-1893.
[31] Pati S, Pal B, Badole S, Mandal B. Effect of silicon fertilization on growth, yield, and nutrient uptake of rice[J]., 2016, 47(3): 284-290.
[32] Crooks R, Prentice P. Extensive investigation into field based responses to a silica fertilizer[J].2017, 9(2): 301-304.
[33] Detmann K C, Araújo W L, Martins S C V, Sanglard L M V P, Reis J V, Detmann E, Rodrigues F A, Nunes-Nesi A, Fernie A R, DaMatta F M. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice[J].2012, 196(3): 752-762.
[34] Chen W, Yao X Q, Cai K Z, Chen J N. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption[J]., 2011, 142(1): 67-76.
[35] Ambavaram M M R, Basu S, Krishnan A, Ramegowda V, Batlang U, Rahman L, Baisakh N, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress[J]., 2014, 5(1): 20-29.
[36] 武志海, 趙國臣, 徐克章, 邸玉婷, 姜楠, 凌鳳樓. 吉林省水稻品種遺傳改良過程中地上干物質(zhì)積累特性[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 34(5): 483-490.
Wu Z H, Zhao G C, Xu K Z, Di Y T, Jiang N, Ling F L. Characteristics of above ground dry matter accumulation during genetic improvement of rice varieties in Jilin Province[J]., 2012, 34(5): 483-490. (in Chinese with English abstract)
[37] 張娟, 張智, 張廣鑫, 劉傳玉, 宋繼富. 關(guān)于土壤中施用固體硅肥有效利用率的探討[J]. 黑龍江科學(xué), 2016, 7(19): 8-10.
Zhang J, Zhang Z, Zhang G X, Liu C Y, Song J F. Discussion on the effective utilization rate of solid silicon fertilizer in soil[J]., 2016, 7(19): 8-10. (in Chinese)
[38] 于廣武, 李曉冰, 何長興, 鄭連舉, 林永德. 硅肥對(duì)水稻生育性狀及產(chǎn)量的影響[J]. 肥料與健康, 2020(3): 19-23.
Yu G W, Li X B, He C X, Zheng L J, Lin Y D. Effects of silicon fertilizer on rice growth traits and yield[J]., 2020(3): 19-23. (in Chinese)
[39] 謝凡. 不同硅肥用量對(duì)水稻生長發(fā)育及養(yǎng)分吸收的影響[D]. 南昌:江西農(nóng)業(yè)大學(xué), 2016.
Xie F. The effect of different amounts of silicon fertilizer on rice growth and nutrient absorption[D].Nanchang: Jiangxi Agricultural University, 2016. (in Chinese with English abstract)
[40] 葛瑋健, 常艷麗, 劉俊梅, 張樹蘭, 孫本華, 楊學(xué)云.土區(qū)長期施肥對(duì)小麥-玉米輪作體系鉀素平衡與鉀庫容量的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào), 2012, 18(3): 629-636.
Ge W J, Chang Y L, Liu J M, Zhang S L, Sun B H, Yang X Y. Effects of long-term fertilization in soil area on potassium balance and potassium storage capacity of wheat-corn rotation system[J]., 2012, 18(3): 629-636. (in Chinese with English abstract)
Effect of Silicon Application Rate on Yield and Dry Matter Accumulation of Rice Under Dry Cultivation
SU Qingwang, CANG Baifeng, BAI Chenyang, LI Yunzhe, SONG Ze, LI Juncai, WU Meikang, WEI Xiaoshuang, CUI Jingjing, WU Zhihai*
(National Crop Variety Approval and Characterization Station/Agronomy College, Jilin Agricultural University, Changchun 130118, China; Corresponding author, E-mail: wuzhihai1116@163.com)
【】It is very important to clarify the best application amount of silicon fertilizer in upland rice and reveal the yield-increasing mechanism of silicon fertilizer.【】A two-year field experiment was conducted with Suijing 18 as material at the effective silicon levels of 0, 15, 30, 45, 60 and 75 kg/hm2(labeled as Si0, Si15, Si30, Si45, Si60and Si75), to study the effects of different silicon fertilizer rates on physiological indexes, dry matter transport and yield components of rice under dry cultivation.【】Silicon fertilizer application significantly increased the yield of rice under dry cultivation. Thequadratic regression equation analysis showed that the maximum theoretical yield could be obtained at the effective silicon level of 47.68 kg/hm2. At the levels ranging from 30 to 47.68 kg/hm2, silicon fertilizer significantly increased root activity, SPAD value and leaf area index, coordinated the transfer of dry matter from stem and leaf to panicle, and delayed the senescence of leaves in late growth stage. Meanwhile the number of grains per panicle increased by 23.62%-24.63%, and 1000-grain weight increased by 8.94%-10.08%, the panicle-grain structure was optimized, and the yield increased by 38.42%-110.20%. When the amount of effective silicon was more than 47.68-60 kg/hm2, the effective tiller number was low, the dry matter transfer from stem and leaf to panicle was accelerated during late growth stage, as well as the leaf senescence, which was not favorable to the continuous grain filling. As a result, the number of panicles per square meter, the number of grains per panicle and 1000-grain weight were negatively affected, causing a drop in grain yield. 【】For Suijing 18, the optimal silicon fertilizer application amount suitable for high yield and efficiency of rice under dry condition is 30-47.68 kg/hm2in the central region of Jilin Province.
rice under dry cultivation; silicon fertilizer; dry matter transfer; silicon utilization efficiency; yield
10.16819/j.1001-7216.2022.201208
2020-12-11;
2021-07-09。
吉林省科技發(fā)展計(jì)劃資助項(xiàng)目(20190301061NY, 20200403016SF);中國工程院院地合作重點(diǎn)咨詢項(xiàng)目(2019-JL-3-1)。