• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Motion cue based pedestrian detection with two-frame-filtering①

    2015-04-17 06:27:06LvJingqin呂敬欽
    High Technology Letters 2015年3期

    Lv Jingqin (呂敬欽)

    (Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, P.R.China)

    ?

    Motion cue based pedestrian detection with two-frame-filtering①

    Lv Jingqin (呂敬欽)②

    (Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, P.R.China)

    This study proposes a motion cue based pedestrian detection method with two-frame-filtering (Tff) for video surveillance. The novel motion cue is exploited by the gray value variation between two frames. Then Tff processing filters the gradient magnitude image by the variation map. Summations of the Tff gradient magnitudes in cells are applied to train a pre-detector to exclude most of the background regions. Histogram of Tff oriented gradient (HTffOG) feature is proposed for pedestrian detection. Experimental results show that this method is effective and suitable for real-time surveillance applications.

    pedestrian detection, two-frame-filtering (TFF), Tff magnitude vector (TffMV), Histogram of Tff oriented gradient (HTffOG), SVM, video surveillance

    0 Introduction

    Pedestrian detection is an important precursor for many computer vision applications, such as intelligent video surveillance and image annotation. Though pedestrian detection is a challenging task due to variable appearance and pose, prominent progresses have been published[1,2]for pedestrian detection on image. Such works study detection on image by densely extracting powerful feature (such as HOG and LBP) and SVM training, and good results have been achieved. However these methods are time-consuming, furthermore their performance can be improved by adding motion information. Therefore such methods are still not suitable for video surveillance. In recent years, a few works exploit motion information for video pedestrian detection. In Ref.[3] the detection performance is improved significantly when optical flow based feature is combined, but the detection speed is decreased. In Ref.[4] the motion information is exploited by image differencing, and as an early work the detector is trained based on sums of absolute differences and gray value in rectangles. Methods combined with edge templates and foreground cues[5,6]can obtain good performance in video surveillance scenes with relatively rapid speed.

    In surveillance scenes most people are walking, and stand-up people will walk away later. By this observation, a motion cue based pedestrian detection method with two-frame-filtering is proposed to detect moving pedestrians in surveillance scenes. The novel motion cue is exploited by the variation of pixel’s gray value between two adjacent frames, instead of foreground cues which may obtain undesirable inaccurate foreground in crowded scenes. Then Tff processing filters the gradient magnitude image of the current frame through the variation map by constraining the magnitude less than the variation value for each pixel. Consequently, the Tff gradient magnitude of the background region is suppressed substantially, and contours of moving targets are highlighted relatively. Summations of the Tff magnitudes in cells are concatenated into Tff magnitude vector (TffMV) and utilized to train the pre-detector by SVM to exclude most of the background regions rapidly. To represent pedestrian’s appearance, histogram of Tff oriented gradient feature is proposed and utilized to train the pedestrian detector. Experimental results and analysis indicate that our detection method is effective and suitable for real-time surveillance applications.

    The structure of this paper is as follows. Section 1 introduces Tff processing, TffMV as well as HTffOG. In Section 2, the detection method is described. Experimental results are presented in Section 3. Finally, the method is concluded in Section 4.

    1 Tff processing and HTffOG

    1.1 Tff processing

    For surveillance scene, motion cue can be exploited from two frames. Firstly, Tff processing computes the variation map of the scene. Given two adjacent frames It+1and It, difference dIt+1(x) of pixel x is calculated

    (1)

    where g is a normalizing factor. The gray value variation map Vt+1(x) is computed as

    (2)

    The result map Vt+1(x) which simply captures pixel’s variation across frames contains the valuable motion cue of the scene. If dIt+1(x) is large enough, it is most likely produced by motion or illumination changing. The normalizing factor g is set to 25 in our experiments by obtaining better effects of variation maps for several randomly selected frames.

    For illustrative purpose, the results of Tff processing on two frames are shown in Fig.1. In the variation map Vt+1(x), the background is suppressed substantially, while moving targets are highlighted relatively, which indicates that the motion information is successfully extracted into the variation map.

    Fig.1 Original image, variation map, magnitude image and Tff magnitude image (from top to bottom)

    In some cases, motions of some local body parts are tiny. In the variation map, such parts are usually thin and weaker. To strengthen the variation of such parts, Vt+1(x) is improved as

    (3)

    Secondly, the gradient magnitude Gt+1(x) of the current frame It+1is calculated using [-1,1] derivative mask. Then magnitude Gt+1(x) is divided by coefficient g as in Eq.(1). Next it is cropped by the same way as Eq.(2).

    The gradient cue characterizes the appearance of the scene, and the variation map exploits the variation parts around moving objects. In order to obtain good features for detection, to integrate the merits of both cues is an advisable way. As the variation map and the magnitude image are calculated in similar ways, Tff processing filters the gradient magnitude image of the current frame through the variation map

    (4)

    1.2 TffMV and HTffOG

    The notable HOG densely extracts histograms of oriented gradient in each cell on a grid of pedestrian window. It captures the appearance and shape information which enable detector to discriminate pedestrians from complex background. Given the Tff magnitude image, the proposed TffMV and HTffOG are extracted in a similar way as HOG. The pedestrian window (96×48 image window) is divided into a 16×8 grid and a 15×7 grid (with cell size of 6×6), as shown in Fig.2. The appearance of pedestrian window can be represented by extracting feature from each cell. Cells of one grid are located at the center of 2×2 neighboring cells of the other grid. Therefore this pair of grids can provide abundant information.

    Fig.2 Illustration of two grids for calculating HTffOG

    In the Tff magnitude image, magnitudes of moving people’s contour are high, while magnitudes of most of the background are close to zero. The summation of magnitudes in a cell represents the appearance of the cell. TffMV is extracted by concatenating the summation of pixels’ magnitudes in every cell. Before calculating the summation, the Tff magnitude image is filtered by a 5×5 averaging filter to reduce aliasing between cells. Consequently, the pedestrian windows can be discriminated from the background ones using TffMV.

    Local appearance and shape can be often characterized well by the distribution of local region’s gradients. To obtain better and sufficient representation, a histogram of oriented gradient is constructed for each cell. Firstly, each pixel’s magnitude is voted bilinearly to histograms of 2×2 neighboring cells according to the distances between the pixel and the cell centers. Next the histogram can be calculated by voting each magnitude to two adjacent orientation bins linearly according to its gradient orientation. HTffOG is the concatenation of all the 233 histograms of oriented gradient, resulting in a vector of 2097 dimensions. Due to the merits of Tff magnitude image, HTffOG can extract moving pedestrian’s appearance better than the traditional HOG for video surveillance.

    In order to alleviate lighting changing problem and imbalance of gradient magnitude among cells, histogram normalization is performed. The histogram of oriented gradient v is normalized for each cell

    (5)

    For general normalization, α is a constant whose value is 1. Consequently, histogram vnis irrelevant to ‖v‖1after normalization. In our method, α is set to 1/3 by experience, and M is set to the evaluated mean summation of Tff magnitude in every cell from the training data. Therefore the informative Tff magnitude cue ‖v‖1is partly preserved in vn.

    2 The detection method

    Linear SVM is adopted to train the pre-detector and the pedestrian detector with TffMV and HTffOG respectively. The detection process is based on scanning a 96×48 model window over the input image at discrete positions (with step size equal to cell size). Detectors are applied to classify each scanned window as a pedestrian candidate or background with TffMV or HTffOG. Background windows will be rejected by the detectors.

    The proposed method contains three steps. Firstly, for each scanned window, TffMV is extracted and runs the pre-detector to classify each window. As a result, most of background windows will be rejected, and only a few windows classified as pedestrian candidate pass the pre-detector. Secondly, the discriminative HTffOG is extracted for each remnant candidate window. HTffOG vectors are fed to the pedestrian detector to classify these windows as pedestrian or not. Some nearby windows corresponding to the same pedestrians usually pass the pedestrian detector. Finally, all the remnant windows are merged to obtain exact pedestrian positions by the mean shift algorithm[8].

    3 Experimental results

    3.1 Implementation details

    To evaluate the proposed detection method, the PETS 2009 dataset[9]is selected which includes many sequences recorded at 7 frames per second from a surveillance scene. The detectors are trained with cropped windows from sequence Time-14-03. 590 pedestrians’ windows (resized to 48×96) are cropped from Time-14-03 as positive training samples, and 5900 negative samples are cropped. The pre-detector and the pedestrian detector are trained by the public software LibSVM[10]. The method is tested after every tenth frame for Time-12-34, and after every fifth frame for Time-13-57. In Time-13-57, many people are in crowd and occlusion happens frequently. This sequence is challenging for the pedestrian detection task, while Time-12-34 is relatively easy. In surveillance scenes, people usually walk on a ground plane. A useful calibration technology[5]can be applied to determine the height of pedestrians at every image vertical coordinates. Then the method can run the detectors through a few scales instead of all scales.

    3.2 The performance of the pre-detector

    Fig.3 shows the output of the pre-detector at a single scanning scale. The 6×6 green patches are the centers of the candidate windows passed the pre-detector. Obviously, most of the background windows are precluded by the pre-detector. To evaluate the performance of the pre-detector, the number of passed windows per person in a frame (NPWP) is defined as a metric. Lower NPWP value indicates that more windows are precluded by the pre-detector. The evaluated average NPWP for Time-12-34 is 21.83. As shown in Table 1 in section 3.3, 85% of the persons are detected in this sequence. Therefore the real average value of NPWP for all the detected persons may be no more than 26. The number of the candidate windows of each frame is 18870. Therefore more than 18000 windows of the background are precluded by the pre-detector with a few computations.

    Fig.3 Outputs of the pre-detector

    TffMV is of only 233 dimensions, and thus the pre-detector can be very efficient to scan the image. HTffOG is of 2097 dimensions, while HOG is of 3780 dimensions. 18000 windows are precluded by the TffMV based pre-detector, and only less than 870 windows are required to calculate the HTffOG and send to

    the person detector. As compared, our method can be nearly 15 times faster than HOG based detection method, which indicates that the method should be suitable for real-time detection.

    3.3 Pedestrian detection results

    Recently Bolme, et al. proposed the ASEF Filter based detection method[11], and Felzenszwalb, et al. proposed the part model detection method. Experimental results of both methods on PETS 2009 dataset were presented in Ref.[11]. For evaluation purposes, the results of our method are compared with results of these methods. Table 1 and Table 2 show the detection results of the proposed method and results extracted from Ref.[11]. Two detection results with different detection thresholds are given for each method.

    Table 1 Results of sequence Time-14-03

    Table 2 Results of sequence Time-13-57

    For Time-12-34, the proposed method achieves a high recall rate 85.65% and a higher precision rate 96.91%. Our method performs better than the compared methods as shown in Table 1. In this sequence some people stand statically. If such kind of cases is not considered in statistics, the recall rate should be higher than 93%. Fig.5 shows the final results of three frames. In Fig.5, most of the pedestrians are detected well, except the person who stands statically in the first image.

    For Time-13-57, our method results in a lower recall rate 62.85% and a high precision rate 89.43%, under difficulties that half-body occlusion and whole-body occlusion happen frequently. Compared with other methods with the same recall rates, our precision rate is higher. During the calculation of the recall rate, all the pedestrians including whole-body occluded pedestrians contribute to the recall rate; thus the recall rate should be higher actually.

    Fig.5 Results of three frames of Time-12-34

    Fig.6 shows the final results of three frames for Time-13-57. Obviously, most of the pedestrians not occluded are detected well, while a few false positives and miss detections also exist. In the first image, there are two false positives on the upper left. The left one is produced between two pedestrians. The other one is produced by the upper-body of three pedestrians, and one miss happens among the dense crowds. In the second image, the pedestrian occluded by the billboard is detected well, due to the role of the motion cue and the discriminative HTffOG. In the third image, the upper left dense crowds are detected with high recall performance. Those persons overlapped with nearby ones are detected precisely. The above experimental results indicate that the proposed method achieves good performance for these two sequences.

    Fig.6 Results of three frames of Time-13-57

    4 Conclusions

    This study has exploited the motion cue by effective Tff processing. Based on the Tff processing, discriminative TffMV and HTffOG are proposed. The pre-detector can preclude most background regions rapidly, and the pedestrian detector detects pedestrians from crowded scenes well. Experimental results indicate that our method is robust in complex scenes and suitable for real-time surveillance applications. Based on the proposed Tff processing, it’s meaningful to do research on more informative features, or develop methods to detect lower-body occluded pedestrians by combination with the body model[13]in the future.

    [ 1] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA,2005. 886-893

    [ 2] Wang X, Han T X, Yan S. An HOG-LBP human detector with partial occlusion handling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009. 32-39

    [ 3] Walk S, Majer N, Schindler K, et al. New Features and Insights for Pedestrian Detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010. 1030-1037

    [ 4] Viola P, Jones M J, Snow D. Detecting pedestrians using patterns of motion and appearance. In: Proceedings of the IEEE International Conference on Computer Vision, Nice, France, 2003. 734-741

    [ 5] Zhe L, Davis L S, Doermann D, et al. Hierarchical part-template matching for human detection and segmentation In: Proceedings of the IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007. 1-8

    [ 6] Beleznai C, Bischof H. Fast Human Detection in Crowded Scenes by Contour Integration and Local Shape Estimation In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009. 2246-2253

    [ 7] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001. 511-518

    [ 8] Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection. In: Proceedings of the IEEE International Conference on Computer Vision, Vancouver, British Columbia, Canada, 2001.438-445

    [ 9] Ferryman J, Shahrokni A. An overview of the pets2009 challenge. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Miami, USA, 2009. 25-30

    [10] Chang C C, Lin C J. LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001

    [11] Bolme D S, Lui M Y, Draper B A, et al. Simple real-time human detection using a single correlation filter. In: Proceedings of the IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, Miami, USA, 2009. 1-8

    [12] Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008. 1-8

    [13] Ramanan D. Learning to parse images of articulated bodies. In: Proceedings of the Conference on Neural Information Processing Systems, Vancouver, Canada, 2006. 1129-1136

    Lv Jingqin, born in 1984. He is currently a PhD candidate at the Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, China. He received his BS and MS in instrument science and technology from Harbin Institute of Technology, China, in 2005 and 2007, respectively. His research interests include visual surveillance, object detection, and pattern analysis.

    10.3772/j.issn.1006-6748.2015.03.013

    ①Supported by the National High Technology Research and Development Program of China (No.2007AA01Z164), and the National Natural Science Foundation of China (No.61273258).

    ②To whom correspondence should be addressed. E-mail: lvjingqin@sjtu.edu.cn Received on Jan. 7, 2014, Zhang Miaohui, Yang Jie

    亚洲七黄色美女视频| 日本熟妇午夜| 精品熟女少妇八av免费久了| 欧美日韩乱码在线| 亚洲av日韩精品久久久久久密| 国模一区二区三区四区视频| 精品日产1卡2卡| 久久久久精品国产欧美久久久| www.熟女人妻精品国产| 亚洲最大成人中文| 一个人看视频在线观看www免费 | 一级黄片播放器| 怎么达到女性高潮| 欧美一区二区精品小视频在线| 欧美黄色片欧美黄色片| 午夜精品在线福利| 99精品在免费线老司机午夜| 日本黄色视频三级网站网址| 国产欧美日韩精品亚洲av| 十八禁人妻一区二区| 亚洲男人的天堂狠狠| 国产精品一区二区免费欧美| 久久国产精品影院| 欧美bdsm另类| 成人高潮视频无遮挡免费网站| 亚洲成av人片免费观看| 亚洲精品一卡2卡三卡4卡5卡| 在线播放国产精品三级| 一本精品99久久精品77| 日韩欧美国产在线观看| 99热这里只有是精品50| 99热精品在线国产| 国产精品99久久久久久久久| 国产精品一区二区三区四区免费观看 | 男插女下体视频免费在线播放| 欧美乱妇无乱码| 国产美女午夜福利| 国产精品亚洲av一区麻豆| 亚洲在线自拍视频| 老熟妇仑乱视频hdxx| 深夜精品福利| 久久性视频一级片| 成人欧美大片| 午夜福利在线在线| a级毛片a级免费在线| 成人性生交大片免费视频hd| 午夜日韩欧美国产| 又粗又爽又猛毛片免费看| 哪里可以看免费的av片| 午夜激情欧美在线| 国产伦一二天堂av在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲欧美一区二区三区黑人| 亚洲不卡免费看| www日本在线高清视频| 亚洲乱码一区二区免费版| 淫秽高清视频在线观看| 欧美成人免费av一区二区三区| 欧美+日韩+精品| 最好的美女福利视频网| 91在线精品国自产拍蜜月 | 色综合亚洲欧美另类图片| 久久亚洲真实| 午夜久久久久精精品| 亚洲专区国产一区二区| 亚洲精品色激情综合| 青草久久国产| 天堂av国产一区二区熟女人妻| 免费在线观看影片大全网站| 欧美性猛交黑人性爽| 麻豆国产av国片精品| 精品一区二区三区av网在线观看| 欧美+亚洲+日韩+国产| 久久久久久大精品| 国产v大片淫在线免费观看| 熟妇人妻久久中文字幕3abv| av国产免费在线观看| av视频在线观看入口| 精品午夜福利视频在线观看一区| 黄色成人免费大全| 十八禁网站免费在线| 午夜精品在线福利| 91九色精品人成在线观看| 国产精品久久久久久亚洲av鲁大| 嫩草影院精品99| 99久久精品国产亚洲精品| 亚洲午夜理论影院| 亚洲片人在线观看| 欧美成狂野欧美在线观看| 国内精品久久久久精免费| av在线蜜桃| 少妇的逼好多水| 在线观看免费午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产主播在线观看一区二区| 一本一本综合久久| 亚洲无线观看免费| 婷婷六月久久综合丁香| 久久久久国内视频| 观看免费一级毛片| 午夜免费成人在线视频| 日韩av在线大香蕉| 久久久精品大字幕| 国产午夜精品久久久久久一区二区三区 | 亚洲人与动物交配视频| 91在线观看av| 亚洲美女视频黄频| 久9热在线精品视频| 国产伦精品一区二区三区四那| 国产三级中文精品| 亚洲av熟女| 日韩欧美在线二视频| av天堂中文字幕网| 天堂√8在线中文| 狂野欧美白嫩少妇大欣赏| 日韩欧美在线乱码| 久久亚洲精品不卡| 国产欧美日韩一区二区精品| 国产伦在线观看视频一区| 午夜福利在线在线| 亚洲真实伦在线观看| 精品国产三级普通话版| 成人特级av手机在线观看| 国模一区二区三区四区视频| 高清在线国产一区| 好男人电影高清在线观看| 乱人视频在线观看| 黄色丝袜av网址大全| 999久久久精品免费观看国产| 国产一区二区在线av高清观看| 亚洲人成伊人成综合网2020| 国产精品1区2区在线观看.| 亚洲激情在线av| 国产精品嫩草影院av在线观看 | 欧美色视频一区免费| 天堂av国产一区二区熟女人妻| 欧美日本亚洲视频在线播放| 日韩欧美精品免费久久 | 老熟妇仑乱视频hdxx| 极品教师在线免费播放| 内地一区二区视频在线| 伊人久久大香线蕉亚洲五| 观看美女的网站| 日韩欧美在线二视频| 国产午夜福利久久久久久| 久久久久久久午夜电影| 午夜精品久久久久久毛片777| 精品人妻一区二区三区麻豆 | 又黄又爽又免费观看的视频| 午夜两性在线视频| 国产精品综合久久久久久久免费| 免费av毛片视频| 欧美性猛交╳xxx乱大交人| 日本免费a在线| 国产精品嫩草影院av在线观看 | 人人妻人人澡欧美一区二区| 亚洲av成人av| 老鸭窝网址在线观看| 亚洲一区高清亚洲精品| 天堂av国产一区二区熟女人妻| 九九在线视频观看精品| 3wmmmm亚洲av在线观看| 深爱激情五月婷婷| 亚洲成人久久爱视频| 美女被艹到高潮喷水动态| 国产精品久久久久久亚洲av鲁大| 免费大片18禁| 亚洲av电影不卡..在线观看| 欧美最新免费一区二区三区 | 久久久久久久久大av| 黄片大片在线免费观看| 亚洲在线自拍视频| 91字幕亚洲| 国产精品爽爽va在线观看网站| bbb黄色大片| 老司机深夜福利视频在线观看| 国产伦精品一区二区三区视频9 | 精品一区二区三区视频在线观看免费| 欧美一区二区亚洲| xxx96com| 午夜福利欧美成人| 三级毛片av免费| 成人高潮视频无遮挡免费网站| 欧美黄色片欧美黄色片| 最新在线观看一区二区三区| 不卡一级毛片| 亚洲黑人精品在线| 中文资源天堂在线| 香蕉av资源在线| 黄色片一级片一级黄色片| 伊人久久精品亚洲午夜| 国产av不卡久久| www国产在线视频色| 在线天堂最新版资源| 亚洲狠狠婷婷综合久久图片| 午夜精品一区二区三区免费看| 精品人妻1区二区| 天天躁日日操中文字幕| 欧美日本视频| 男女床上黄色一级片免费看| 内地一区二区视频在线| 亚洲美女黄片视频| 亚洲成人久久爱视频| 日韩精品中文字幕看吧| 亚洲av电影在线进入| 亚洲不卡免费看| 91字幕亚洲| 欧美黑人巨大hd| 可以在线观看毛片的网站| 午夜福利欧美成人| 亚洲成a人片在线一区二区| 欧美最新免费一区二区三区 | 丝袜美腿在线中文| 中文资源天堂在线| 麻豆国产97在线/欧美| 色综合欧美亚洲国产小说| 动漫黄色视频在线观看| 女人十人毛片免费观看3o分钟| 脱女人内裤的视频| 他把我摸到了高潮在线观看| 国产单亲对白刺激| 大型黄色视频在线免费观看| 给我免费播放毛片高清在线观看| 国产精品一区二区三区四区免费观看 | 久久精品国产99精品国产亚洲性色| 熟女电影av网| 国产精品久久久久久人妻精品电影| 中文字幕久久专区| 搡女人真爽免费视频火全软件 | 国产99白浆流出| 性色av乱码一区二区三区2| 久久久久久久亚洲中文字幕 | 69人妻影院| 精品国内亚洲2022精品成人| 久久精品国产清高在天天线| 久久久国产成人精品二区| 国产99白浆流出| 最近最新中文字幕大全免费视频| 9191精品国产免费久久| 亚洲熟妇熟女久久| 国产aⅴ精品一区二区三区波| 午夜福利18| 亚洲成av人片免费观看| 小说图片视频综合网站| 狠狠狠狠99中文字幕| 免费观看精品视频网站| 色吧在线观看| 亚洲久久久久久中文字幕| 波多野结衣高清无吗| 久久久久国内视频| 白带黄色成豆腐渣| 搡老妇女老女人老熟妇| 91在线观看av| 国产欧美日韩精品亚洲av| 亚洲男人的天堂狠狠| 波多野结衣高清无吗| 嫁个100分男人电影在线观看| 亚洲一区二区三区不卡视频| 午夜福利免费观看在线| 啦啦啦韩国在线观看视频| 搡女人真爽免费视频火全软件 | 一进一出抽搐gif免费好疼| 老鸭窝网址在线观看| 在线播放无遮挡| www.999成人在线观看| 亚洲国产中文字幕在线视频| 18禁黄网站禁片免费观看直播| 国产美女午夜福利| 99久久久亚洲精品蜜臀av| 午夜福利在线观看吧| 欧美乱色亚洲激情| 国产精品爽爽va在线观看网站| 国产高清三级在线| 九九久久精品国产亚洲av麻豆| 色视频www国产| 三级国产精品欧美在线观看| 国产精华一区二区三区| 国产亚洲精品久久久久久毛片| 偷拍熟女少妇极品色| 国内精品久久久久精免费| 久久这里只有精品中国| 又爽又黄无遮挡网站| 午夜福利高清视频| 亚洲欧美日韩高清专用| 国产精品98久久久久久宅男小说| 久久久久久久久大av| 久久亚洲真实| 国产蜜桃级精品一区二区三区| 国产精品爽爽va在线观看网站| 很黄的视频免费| 欧美日韩国产亚洲二区| 人人妻,人人澡人人爽秒播| 乱人视频在线观看| 99久国产av精品| 精品福利观看| 在线免费观看的www视频| 久久久国产成人免费| 亚洲av中文字字幕乱码综合| 久久久久久九九精品二区国产| 午夜福利免费观看在线| 老司机午夜福利在线观看视频| 老熟妇乱子伦视频在线观看| 欧美黄色片欧美黄色片| 国产成人aa在线观看| 午夜免费男女啪啪视频观看 | 亚洲,欧美精品.| 99热这里只有精品一区| 五月伊人婷婷丁香| 国产单亲对白刺激| 好男人电影高清在线观看| 久久性视频一级片| 精品一区二区三区视频在线观看免费| 男人的好看免费观看在线视频| 日韩精品中文字幕看吧| 99国产精品一区二区蜜桃av| 亚洲欧美日韩东京热| 一个人免费在线观看的高清视频| 天堂av国产一区二区熟女人妻| 88av欧美| 午夜精品一区二区三区免费看| 免费av毛片视频| 欧美日韩亚洲国产一区二区在线观看| 日本五十路高清| 日韩有码中文字幕| 久久精品人妻少妇| 一级黄片播放器| 精品人妻偷拍中文字幕| 国产欧美日韩一区二区精品| 亚洲成人久久性| 俺也久久电影网| 黄色日韩在线| 久久久久国内视频| 成人永久免费在线观看视频| 免费av毛片视频| 国产日本99.免费观看| 精品一区二区三区视频在线观看免费| 国产亚洲精品久久久com| 精品不卡国产一区二区三区| 久久久久国内视频| 夜夜看夜夜爽夜夜摸| 一边摸一边抽搐一进一小说| 午夜两性在线视频| 青草久久国产| 精品一区二区三区人妻视频| 99在线视频只有这里精品首页| 亚洲精品在线美女| 久久久色成人| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 亚洲国产高清在线一区二区三| 中国美女看黄片| 国产精品99久久99久久久不卡| 69av精品久久久久久| 又黄又粗又硬又大视频| 搡老妇女老女人老熟妇| 欧美激情久久久久久爽电影| 母亲3免费完整高清在线观看| 在线十欧美十亚洲十日本专区| 偷拍熟女少妇极品色| av专区在线播放| 国产真人三级小视频在线观看| 九九热线精品视视频播放| 欧美在线黄色| 91久久精品国产一区二区成人 | 免费观看精品视频网站| 日本五十路高清| 亚洲黑人精品在线| 精品日产1卡2卡| 久久香蕉精品热| 深爱激情五月婷婷| 九色国产91popny在线| 伊人久久大香线蕉亚洲五| 欧美成人a在线观看| 精品久久久久久久人妻蜜臀av| 久久精品国产自在天天线| 国产欧美日韩一区二区精品| 日韩国内少妇激情av| 国产成人福利小说| 精品日产1卡2卡| 久久久久久九九精品二区国产| 欧美黑人巨大hd| 午夜免费男女啪啪视频观看 | 日本 欧美在线| 色老头精品视频在线观看| 99国产精品一区二区蜜桃av| 一级黄色大片毛片| 欧美成人一区二区免费高清观看| 九九在线视频观看精品| 亚洲欧美日韩高清专用| 91字幕亚洲| 国产中年淑女户外野战色| 国产精品影院久久| 又爽又黄无遮挡网站| 18禁黄网站禁片免费观看直播| 欧美成人免费av一区二区三区| 3wmmmm亚洲av在线观看| 99久久成人亚洲精品观看| 91麻豆精品激情在线观看国产| 一本精品99久久精品77| 天堂√8在线中文| a级一级毛片免费在线观看| 国产精品三级大全| 国产亚洲精品一区二区www| 日韩欧美免费精品| 亚洲va日本ⅴa欧美va伊人久久| 狠狠狠狠99中文字幕| 欧美不卡视频在线免费观看| 国模一区二区三区四区视频| 日本黄色视频三级网站网址| 亚洲成人久久爱视频| 国产精品久久久久久亚洲av鲁大| 免费看日本二区| 午夜a级毛片| 日韩欧美国产在线观看| 国产精品一区二区三区四区久久| 国产av麻豆久久久久久久| 国产亚洲欧美在线一区二区| 国产亚洲精品av在线| 免费看美女性在线毛片视频| 免费无遮挡裸体视频| 国模一区二区三区四区视频| 三级国产精品欧美在线观看| 一级黄片播放器| 国产真实伦视频高清在线观看 | 国产中年淑女户外野战色| 日韩中文字幕欧美一区二区| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 日本一二三区视频观看| 欧美精品啪啪一区二区三区| 叶爱在线成人免费视频播放| 激情在线观看视频在线高清| 最后的刺客免费高清国语| 身体一侧抽搐| 免费在线观看成人毛片| 精华霜和精华液先用哪个| 亚洲不卡免费看| 国产精品一及| 亚洲av中文字字幕乱码综合| 性色av乱码一区二区三区2| 免费无遮挡裸体视频| 俺也久久电影网| 12—13女人毛片做爰片一| 狂野欧美白嫩少妇大欣赏| 久久久久亚洲av毛片大全| 久久久国产成人精品二区| av欧美777| 天堂影院成人在线观看| 少妇的逼好多水| 中文资源天堂在线| 国产精品 国内视频| 久久香蕉精品热| 别揉我奶头~嗯~啊~动态视频| 波野结衣二区三区在线 | 人人妻人人看人人澡| 超碰av人人做人人爽久久 | 99在线人妻在线中文字幕| 久久久久久久久中文| 一夜夜www| 亚洲专区国产一区二区| tocl精华| 波多野结衣高清无吗| 婷婷丁香在线五月| 99热只有精品国产| 亚洲中文日韩欧美视频| 欧美zozozo另类| 成人特级黄色片久久久久久久| 亚洲国产色片| 亚洲自拍偷在线| 日本在线视频免费播放| АⅤ资源中文在线天堂| 国产免费男女视频| 久久久久九九精品影院| 日本免费一区二区三区高清不卡| 99久国产av精品| 亚洲激情在线av| 免费一级毛片在线播放高清视频| 亚洲七黄色美女视频| 国产亚洲精品久久久久久毛片| 日韩有码中文字幕| 欧美在线黄色| 欧美一级a爱片免费观看看| 午夜福利免费观看在线| 欧美日韩瑟瑟在线播放| 久久午夜亚洲精品久久| 村上凉子中文字幕在线| 女人被狂操c到高潮| 亚洲自拍偷在线| 色视频www国产| 国产精品1区2区在线观看.| 亚洲乱码一区二区免费版| 午夜精品久久久久久毛片777| 我的老师免费观看完整版| 国产成人影院久久av| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 叶爱在线成人免费视频播放| 韩国av一区二区三区四区| 天天添夜夜摸| 内射极品少妇av片p| 精品免费久久久久久久清纯| 日本熟妇午夜| 啪啪无遮挡十八禁网站| 欧美高清成人免费视频www| АⅤ资源中文在线天堂| 精品一区二区三区av网在线观看| 亚洲激情在线av| 国产av一区在线观看免费| 婷婷六月久久综合丁香| 国产成人啪精品午夜网站| 一a级毛片在线观看| 色综合欧美亚洲国产小说| 一级a爱片免费观看的视频| 99久国产av精品| 亚洲成人中文字幕在线播放| 老司机午夜福利在线观看视频| 成人三级黄色视频| 人妻久久中文字幕网| avwww免费| 国产av一区在线观看免费| 高清日韩中文字幕在线| 欧美大码av| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 亚洲av免费在线观看| 国产成人a区在线观看| 97超视频在线观看视频| 精品一区二区三区av网在线观看| 美女高潮喷水抽搐中文字幕| 99精品在免费线老司机午夜| 欧美zozozo另类| 日韩欧美 国产精品| 人妻久久中文字幕网| 国产高清激情床上av| svipshipincom国产片| 国产精品,欧美在线| 窝窝影院91人妻| 天天添夜夜摸| 99国产精品一区二区三区| av视频在线观看入口| 变态另类成人亚洲欧美熟女| 亚洲精品影视一区二区三区av| 久久国产精品影院| 国产成人影院久久av| 午夜福利在线观看免费完整高清在 | 国产午夜精品论理片| 18禁美女被吸乳视频| 亚洲国产精品合色在线| 欧美黑人巨大hd| 九九在线视频观看精品| 成年人黄色毛片网站| 国产午夜福利久久久久久| 亚洲国产色片| 精品人妻1区二区| 欧美极品一区二区三区四区| 久久香蕉国产精品| 黄色成人免费大全| 夜夜夜夜夜久久久久| 美女高潮喷水抽搐中文字幕| 伊人久久精品亚洲午夜| 国产真实乱freesex| 日本 av在线| 精品久久久久久久人妻蜜臀av| 精品久久久久久久末码| 人人妻人人澡欧美一区二区| 精品一区二区三区av网在线观看| 91在线精品国自产拍蜜月 | 老司机午夜福利在线观看视频| 国产av不卡久久| 网址你懂的国产日韩在线| 国内精品久久久久久久电影| 国产精品免费一区二区三区在线| 两性午夜刺激爽爽歪歪视频在线观看| 麻豆成人午夜福利视频| 男女做爰动态图高潮gif福利片| 9191精品国产免费久久| 欧美乱妇无乱码| 男人舔女人下体高潮全视频| 小蜜桃在线观看免费完整版高清| 国产精品久久视频播放| 亚洲精品一区av在线观看| 亚洲在线自拍视频| 欧美在线一区亚洲| 人人妻,人人澡人人爽秒播| 真实男女啪啪啪动态图| 69人妻影院| 嫩草影视91久久| 国产高清三级在线| 欧美激情在线99| 日韩精品青青久久久久久| 中文字幕人妻熟人妻熟丝袜美 | 99视频精品全部免费 在线| 欧美中文日本在线观看视频| 亚洲精品粉嫩美女一区| 日本成人三级电影网站| 亚洲精品456在线播放app | 久久久久久久久久黄片| 欧美激情久久久久久爽电影| 无人区码免费观看不卡| 久久久久久久久大av| 免费看光身美女| 无人区码免费观看不卡| 美女高潮喷水抽搐中文字幕| 欧美不卡视频在线免费观看| 欧美色欧美亚洲另类二区| 波多野结衣高清作品| 国产精品98久久久久久宅男小说| 最新在线观看一区二区三区| 19禁男女啪啪无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 欧美黄色淫秽网站| 女生性感内裤真人,穿戴方法视频| 欧美区成人在线视频| 老司机福利观看|