• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diversity-multiplexing tradeoff of half-duplex multi-input multi-output two-way relay channel with decode-and-forward protocol①

    2015-04-17 06:27:11SuYuping蘇玉萍
    High Technology Letters 2015年3期

    Su Yuping (蘇玉萍)

    (State Key Lab of ISN, Xidian University, Xi’an 710071, P.R.China)

    ?

    Diversity-multiplexing tradeoff of half-duplex multi-input multi-output two-way relay channel with decode-and-forward protocol①

    Su Yuping (蘇玉萍)②

    (State Key Lab of ISN, Xidian University, Xi’an 710071, P.R.China)

    A multi-input multi-output (MIMO) separated two-way relay channel (STWRC) is considered, where two users exchange their messages via a relay node. When each link is quasi-static Rayleigh fading, the achievable diversity-multiplexing tradeoff (DMT) of the half-duplex STWRC is analyzed. Firstly, the achievable DMT of the STWRC with static decode-and-forward (DF) protocol is obtained. Then, a dynamic decode-and-forward (DDF) protocol for the STWRC is proposed, where the relay listening time varies dynamically with the channel qualities of the links between two users and the relay. Finally, the achievable DMT of the proposed DDF protocol is derived in a case-by-case manner. Numerical examples are also provided to verify the theoretical analysis of both protocols.

    two-way relay channel (TWRC), half-duplex, diversity-multiplexing tradeoff (DMT), decode-and-forward (DF), outage probability

    0 Introduction

    Recently, relay techniques have attracted increasing attentions due to their ability of increasing reliability and throughput of the system. For slow fading relay channels, the diversity-multiplexing tradeoff (DMT)[1]is often analyzed to describe the tradeoff between the transmission rate and the reliability at high signal-to-noise ratio (SNR) regime. Existing works related to the DMT analysis mainly focus on two kinds of relay channels: one-way relay channels[2,3]and two-way relay channels (TWRCs)[4,5]. In the one-way relay channel, a source unidirectionally transmits messages to the destination via relay node(s). On the contrary, in the TWRC, two sources exchange their messages via relay node(s) and data flows bidirectionally.

    According to whether a relay node can transmit and receive messages simultaneously, the relay channels can operate in the full-duplex mode or the half-duplex mode. For TWRC, existing works mainly focus on the DMT analysis of the full-duplex relay[4,5]. Specifically, for the separated two-way relay channel (STWRC) where two users cannot overhear each other directly, it is shown in Ref.[4] that the compress-and-forward (CF) strategy achieves the optimal DMT. Similarly, for TWRC where a direct link exist between two users, its optimal DMT is also obtained by using the CF protocol[5]. For multi-way relay channels, the optimal DMT for the full-duplex relay is studied in Ref.[6]. Recently, the finite-SNR DMT analysis of TWRC is also studied[7,8]. Besides, spatial channel pairing and beamforming for the multi-pair two-way relay networks are also investigated in Refs[9] and [10], respectively.

    To the best of our knowledge, there's no work focusing on the DMT analysis of the half-duplex STWRC. As a result, the paper focuses on the achievable DMT of the STWRC with half-duplex relay. When each link is of frequency non-selective quasi-static Rayleigh fading, the achievable DMT of the multi-input multi-output (MIMO) STWRC with decode-and-forward (DF) protocol is analyzed. Firstly, the achievable DMT of the static DF protocol is obtained by scaling the DMT curve of the full-duplex case[4]. Then, a dynamic decode-and-forward (DDF) protocol is proposed, in which the listening time of the relay varies dynamically with the channel qualities of the links from two users to the relay. Finally, the achievable DMT of the proposed DDF protocol is derived in a case-by-case manner. Numerical examples are also provided to illustrate the achievable DMT performance for both protocols.

    This paper is organized as follows. In Section 1, the channel model is introduced. In Section 2, the achievable DMT for both static and dynamic DF protocols is investigated. The paper is finally concluded in Section 3.

    1 Channel model

    The STWRC model, where two users exchange messages with the assistance of a single relay, is shown in Fig.1. User i, i∈A={1,2}, is equipped with Miantennas and the relay is equipped with N antennas. A channel such as (M1, N, M2)-STWRC system is refered. It is assumed the channel operates in the time-division duplex (TDD) mode and all the nodes are of half-duplex. Let the codeword of each user consisting of L symbols and t (t∈(0,1)) be the time fraction of the relay to listen. During the first tL symbol intervals, the relay only listens to the users transmission (listening phase) and during the remaining (1-t)L symbol intervals, the relay transmits its own codeword to two users (transmission phase). All the links in the STWRC are assumed to be frequency non-selective quasi-static fading and the codeword length L is assumed to be sufficiently long so that the error probability is dominated by the channel outage probability.

    Fig.1 Channel model of separated two-way relay channel

    During the listening phase, the received signal at the relay node is

    During the transmission phase, the received signal at user i is

    where Xi∈Mi×1,i∈A, and Xr∈N×1are the transmitted signal vectors at user i and the relay, respectively. Vectors Wr∈N×1and Wi∈Mi×1, i∈A, are the additive noise, whose entries are independent and identically distributed (i.i.d.) complex Gaussian CN(0,1) random variables. Matrices Hi∈N×Miand Gi∈Mi×N, i∈A, are the channel matrices with i.i.d. CN(0,1) entries. Due to the reciprocity of channel matrices in the TDD mode, we have, where (·)Hdenotes the matrix conjugate transpose. SNR is the average signal-to-noise ratio at each receive antenna.

    2 Achievable DMT of MIMO STWRC

    In this section, the achievable DMT of the MIMO STWRC with DF protocols is derived, including both static and dynamic cases.

    Before proceeding, first some definitions are given as in Ref.[1]. a scheme is considered as a sequence of codes {C(SNR)}, where for each SNR, the corresponding code C(SNR) consists of 2LR1(SNR)×2LR2(SNR) codewords and the code rate for user i is Ri(SNR), i∈A.

    For this sequence of codes, multiplexing gain of user i is riif

    holds. Symbol “?” is used to denote exponential equality, i.e., the equality f(SNR)?SNRbto denote

    2.1 DMT of MIMO STWRC with static DF protocol

    For the static DF protocol, the time allocation between the listening phase and the transmission phase is fixed and independent of the channel realization. Such a protocol is referred to as DF with fixed time allocation (fDF). For the DF protocols, due to the decoding requirement of both messages at the relay, the DMT analysis for different diversity requirement becomes very difficult[11]. Thus, it is assumed that two users have the same diversity gain requirement d. The achievable DMT of the fDF protocol is given as follows.

    Proposition 1: The achievable DMT of the half-duplex STWRC with fDF protocol is

    (1)

    Proof: The achievable DMT of a half-duplex STWRC with fDF protocol can be directly obtained by scaling the DMT curve of the full-duplex case[4]with time division coefficients.

    When r1=r2=r, the achievable symmetric DMT is got as

    (2)

    Fig.2 Achievable symmetric DMT for a (4,2,3)-STWRC system

    2.2 DDF Protocol for MIMO STWRC

    In Ref.[13], the DDF protocol for the cooperative relay channel with single antenna is proposed. In DDF for the relay channel, the relay listens until the accumulated mutual information over the source-relay channel is sufficient for the transmission rate. Here, DDF is considered for the MIMO STWRC. During the listening phase, the message transmission from two users to the relay is a multiple-access channel (MAC), and its instantaneous capacity region is characterized as[12]

    RS≤I(XS; Yr|XSc)IS,R, S?A

    (3)

    where RS=∑i∈SRi, XS={Xi:i∈S} and Scis the complement of S in A. To ensure that the relay can decode two users' messages successfully, accumulated mutual information tLIS,Rmust exceed LRSfor each S?A. Therefore, time fraction t is chosen as

    (4)

    where RS/IS,Ris the ratio between the real transmission rate and the corresponding mutual information (referred to as rate-to-mutual information ratio (RMR)).

    In Eq.(4), each term (i.e.,RS/IS,R) in the bracket is a random variable that depends on the channel state between users and the relay. Time fraction t is the maximum of such three random variables. As a result, t is also a random variable depending on the channel state. Unfortunately, the probability density function (p.d.f) of each RMR is very complex and they are not independent with each other, so p.d.f of t is very difficult to obtain. As an alternative method,some simulation results of the percentage are given that t is equal to each RMR in Eq.(4). The simulation result is obtained in the following way. Given multiplexing gain r1, r2and the end step numstop. For each SNR, Rayleigh fading matrices H1, H2are generated to compute the values of three RMRs. At each SNR, that is done for numstoptimes and finally the percentage is computed when each RS/IS,Ris the maximum among the three RMRs.

    For the (4, 2, 3) and (5, 8, 7)-STWRC system, the percentage of each RMR is illustrated when it is the maximum among the three RMRs in Fig.3~Fig.6. It is shown in Fig.3~Fig.5 that if r1≥r2when M1≥M2, the percentage of (R1+R2)/IA,Rwhen it is the maximum among the three approaches 1 with the increase of SNR. Intuitively, the real transmission rate

    Fig.3 Percentage of each RMR when it is the maximum among the three RMRs for a (4, 2, 3)-STWRC system with r1=0.6, r2=0.4

    Fig.4 Percentage of each RMR when it is the maximum among the three RMRs for a (4, 2, 3)-STWRC system with r1=0.1, r2=0.1

    Fig.5 Percentage of each RMR when it is the maximum among the three RMRs for a (5, 8, 7)-STWRC system with r1=0.3, r2=0.6

    Fig.6 Percentage of each RMR when it is the maximum among the three RMRs for a (5, 8, 7)-STWRC system with r1=0.5, r2=0.3

    which has the form of rlog SNR increases faster with SNR than the corresponding instantaneous mutual information. Therefore, the term (R1+R2)/IA,Rincreases faster since the sum transmission rate has the largest multiplexing gain. If user’s real transmission rate is inversely proportional to its number of antenna, just as shown in Fig.6, time allocation fraction t is determined with a large probability by RMR which corresponds to higher transmission rate but smaller mutual information.

    When t≥1, the channel is in outage during the MAC phase. When t<1, the relay decodes two users' messages and transmits them to both users. This message transmitting from the relay to two users is in fact a broadcast channel (BC) with receiver side information. For the BC phase transmission, if the transmission rate pair (R1, R2) does not lie in the corresponding achievable rate region, the channel is also in outage.

    2.3 DMT of MIMO STWRC with DDF protocol

    Since the p.d.f of t is difficult to obtain, a case-by-case method is developed to analyze the achievable DMT of the DDF relay protocol. The main result of this subsection is given in the following theorem.

    Theorem 1: For the (M1, N, M2)-STWRC system with given multiplexing gain pair (r1, r2), the achievable DMT of the DDF protocol is given as follows.

    Case 1: If R1/I1,R=max{RS/IS,R,S?A}, the achievable diversity gain satisfies

    dDDF(r1,r2)=min{dN,M*(2r1),dN,M1(r1+r2)}

    (5)

    Case 2: If R2/I2,R=max{RS/IS,R,S?A}, the achievable diversity gain satisfies

    dDDF(r1,r2)=min{dN,M*(2r2),dN,M2(r1+r2)}

    (6)

    Case 3: If (R1+R2)/IA,R=max{RS/IS,R,S?A}, the achievable diversity gain satisfies

    dDDF(r1,r2)=dM*,N(2(r1+r2))

    (7)

    Proof: The proof is given in the Appendix.

    Symmetric Tradeoff: Assuming that each user has symmetric multiplexing gain, i.e., R1=R2=R=rlogSNR, the tradeoff region can be further simplified.

    Theorem 2: For the (M1, N, M2)-STWRC system and given common multiplexing gain r, the achievable diversity gain of DDF protocol is given as follows.

    Case 1: If R/I1,R=max{|S|R/IS,R,S?A}or R/I2,R=max{|S|R/IS,R,S?A}, the achievable diversity gain satisfies

    (8)

    Case 2: If 2R/IA,R=max{|S|R/IS,R,S?A}, the achievable diversity gain satisfies

    (9)

    where |S| denotes the cardinality of set S.

    Proof: This theorem can be easily proved by using the similar steps as the proof of Theorem 1 by replacing R1and R2with R=r logSNR.

    For case 1, it can be seen that its achievable symmetric DMT is the same as the outer bound of the fixed time allocation scheme and thus the DDF protocol is superior to any fDF protocol in this case. For case 2, its achievable symmetric DMT is equal to that of fDF protocol when t=0.5. The achievable symmetric diversity gain of a (2, 2, 2)-STWRC with static and dynamic protocols is illustrated in Fig. 7. Just as the analysis above, it is shown that the achievable symmetric DMT of case 1 for DDF is better than that of the fDF protocol with various time allocations (t=0.2, 0.5, 0.8). Case 2 for DDF has the same symmetric DMT performance as the fDF protocol when t=0.5.

    Fig.7 The achievable symmetric DMT of a half-duplex (2, 2, 2)-STWRC with static and dynamic protocols

    3 Conclusion

    The achievable DMT of MIMO STWRC with half-duplex relay is derived. Both static DF and DDF protocols are considered, which shows that the DDF protocol achieves better DMT performance than the static DF protocol for some cases. Besides, finding the optimal DMT performance of the half-duplex STWRC is still a challenge problem, which will be our future work.

    Appendix: Proof of Theorem 1

    In the DDF protocol, the achievable rate region of the BC phase is[14]

    Ri≤I(Xr; YA{i})IR,A{i}, i∈A

    (10)

    (11)

    (12)

    Define

    According to the outage events analysis in Section 2.2, the overall outage probability of the DDF protocol is upper bounded as

    Pout≤P{t>1}+P{t<1∩R1>(1-t)IR,2} +P{t<1∩R2>(1-t)IR,1} ≤P{t>1}+P{R1>(1-t)IR,2} +P{R2>(1-t)IR,1}

    (13)

    In the following, the proof for each case is given.

    where step (a) is due to that the constant before SNR can be ignored on the scale of DMT analysis [1] and step (b) follows from the DMT result for the MIMO point-to-point channel [1, Theorem 2].

    The second term in Eq.(13) is computed as

    where (c) follows from Lemma 3 in Ref.[2].

    Similarly, the last term in (13) is computed as

    Thus, the overall outage probability is upper bounded as

    and the achievable diversity gain for this case satisfies

    d≤min{dN,M*(2r1),dN,M1(r1+r2)}

    Using the similar steps as for case 1, the achievable diversity gain is obtained as

    d≤min{dN,M*(2r2),dN,M2(r1+r2)}

    This condition implies that

    For this case, t=(R1+R2)/IA,Ris chosen. The first term in Eq.(13) is easily computed as

    P{t≥1}?SNR-dM1+M2,N(r1+r2)

    The second term in Eq.(13) is computed as

    where (f) is due to the fact that R1≤(R1+R2)I1,R/IA,Rfrom Eq.(14) and (g) follows from the fact that IA,R≥I1,Rsince logdet(·) is a monotonically increasing function in the cone of psd matrices. The last term is similarly computed as

    By using the results obtained above, we have the achievable diversity gain for this case as

    d≤dM*,N(2(r1+r2))

    Combining the results for the three cases yields Theorem 1.

    Reference

    [ 1] Zheng L, Tse D. Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory, 2003, 49(4): 1073-1096

    [ 2] Yuksel M, Erkip E. Multi-antenna cooperative wireless systems: a diversity multiplexing tradeoff perspective. IEEE Transactions on Information Theory, 2007, 53(10): 3371-3393

    [ 3] Gündüz D, Khojastepour M A, Goldsmith A, et al. Multi-hop MIMO relay networks: diversity-multiplexing trade-off analysis. IEEE Transactions on Wireless Communication, 2010, 9(5): 1738-1747

    [ 4] Gündüz D, Goldsmith A, Poor H V. MIMO two-way relay channel: diversity-multiplexing tradeoff analysis. In: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2008. 1474-1478

    [ 5] Vaze R, Heath R W. On the capacity and diversity-multiplexing tradeoff of the two-way relay channel. IEEE Transactions on Information Theory, 2011, 57(7): 4219-4234

    [ 6] Su Y, Li Y. Optimal diversity-multiplexing tradeoff of MIMO multi-way relay channel. ETRI Journal, 2013, 35(5): 919-922

    [ 7] Wang L, Cai Y, Yang W. On the finite-SNR DMT of two-way AF relaying with imperfect CSI, IEEE Wireless Communications Letters, 2012, 1(3): 161-164

    [ 8] Lin X, Tao M, Xu Y, et al. Finite-SNR diversity-multiplexing tradeoff for two-way relay fading channel, IEEE Transactions on Vehicular Technology, 2013, 62(7): 3123-3136

    [ 9] Shu F, Chen Y, You X H, et al. Low-complexity optimal spatial channel pairing for AF-based multi-pair two-way relay networks, Science China Information Sciences, 2014, 57(10): 1-10

    [10] Shu F, Lu Y Z, Chen Y, et al. High-sum-rate beamformers for multi-pair two-way relay networks with amplify-and-forward relaying strategy, Science China Information Sciences, 2014, 57(2): 1-11

    [11] Tse D, Viswanath P, Zheng L. Diversity-multiplexing tradeoff in multiple access channels. IEEE Transactions on Information Theory, 2004, 50(9): 1859-1874

    [12] Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley-Interscience, 1991. 389,445

    [13] Azarian K, Gamal H E, Schniter P. On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory, 2005, 51(12): 4152-4172

    Su Yuping, born in 1988. She is now studying for a doctor’s degree in State Key Lab of ISN, Xidian University. She received her B.S. degree from Henan Normal University in 2009. Her research interests include cooperative users and relay systems for wireless communications.

    10.3772/j.issn.1006-6748.2015.03.018

    ①Supported by the National Basic Research Program of China (No.2012CB316100) and National Natural Science Foundation of China (No. 61072064, 61301177).

    ②To whom correspondence should be addressed. E-mail: ypsuxidian@gmail.com Received on Apr. 14, 2014, Li Ying, Liu Yang

    欧美成人性av电影在线观看| 在线观看一区二区三区| 国产精品爽爽va在线观看网站 | 在线国产一区二区在线| 好男人电影高清在线观看| 久久婷婷人人爽人人干人人爱| 亚洲狠狠婷婷综合久久图片| aaaaa片日本免费| 欧美久久黑人一区二区| 精品国产超薄肉色丝袜足j| avwww免费| 欧美日韩乱码在线| e午夜精品久久久久久久| 精品高清国产在线一区| 人人妻,人人澡人人爽秒播| 99精品欧美一区二区三区四区| 亚洲国产精品成人综合色| 三级毛片av免费| 国产99久久九九免费精品| 亚洲成人免费电影在线观看| 欧美黑人欧美精品刺激| 91国产中文字幕| 亚洲天堂国产精品一区在线| 国产一级毛片七仙女欲春2 | 国产成+人综合+亚洲专区| 亚洲av成人不卡在线观看播放网| 久久香蕉国产精品| 99热6这里只有精品| 国产精品电影一区二区三区| 男人舔奶头视频| 久久香蕉国产精品| 久久这里只有精品19| 脱女人内裤的视频| 成人国产一区最新在线观看| 国内毛片毛片毛片毛片毛片| aaaaa片日本免费| 亚洲av成人一区二区三| 精品电影一区二区在线| 亚洲人成77777在线视频| 国产精品美女特级片免费视频播放器 | 欧美黄色片欧美黄色片| 久久午夜亚洲精品久久| 脱女人内裤的视频| 国产男靠女视频免费网站| 天天添夜夜摸| 精品欧美一区二区三区在线| 国语自产精品视频在线第100页| 国产又色又爽无遮挡免费看| 日本 欧美在线| 亚洲avbb在线观看| 精品不卡国产一区二区三区| www.999成人在线观看| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 999精品在线视频| 亚洲国产欧洲综合997久久, | 最好的美女福利视频网| 国产成人精品久久二区二区91| 老司机午夜福利在线观看视频| 欧美性长视频在线观看| 久久婷婷人人爽人人干人人爱| 国产精品 国内视频| 一卡2卡三卡四卡精品乱码亚洲| 又黄又粗又硬又大视频| 久久精品aⅴ一区二区三区四区| 色播亚洲综合网| 久久伊人香网站| 欧美性长视频在线观看| 国产精品香港三级国产av潘金莲| 久久久久九九精品影院| 国产激情欧美一区二区| 日本免费一区二区三区高清不卡| 国产精品精品国产色婷婷| 99久久精品国产亚洲精品| 精品国产国语对白av| 国产男靠女视频免费网站| 欧美激情高清一区二区三区| 美女扒开内裤让男人捅视频| 精品国产亚洲在线| 淫秽高清视频在线观看| 午夜福利成人在线免费观看| 午夜两性在线视频| a级毛片a级免费在线| 国产日本99.免费观看| 91九色精品人成在线观看| 2021天堂中文幕一二区在线观 | 欧美成人午夜精品| 亚洲熟妇熟女久久| 在线观看日韩欧美| 老司机深夜福利视频在线观看| 美女大奶头视频| 国产高清有码在线观看视频 | 国产又黄又爽又无遮挡在线| 精华霜和精华液先用哪个| 免费观看人在逋| 免费在线观看成人毛片| 少妇熟女aⅴ在线视频| 99re在线观看精品视频| 成人手机av| 国内精品久久久久精免费| 午夜视频精品福利| 免费女性裸体啪啪无遮挡网站| 精品午夜福利视频在线观看一区| 一级a爱视频在线免费观看| 欧美av亚洲av综合av国产av| 这个男人来自地球电影免费观看| 中文字幕高清在线视频| 日韩 欧美 亚洲 中文字幕| 国产高清有码在线观看视频 | 夜夜躁狠狠躁天天躁| 欧美亚洲日本最大视频资源| 成在线人永久免费视频| 国产精品永久免费网站| 熟女电影av网| 一个人免费在线观看的高清视频| www.精华液| 女同久久另类99精品国产91| 黄色视频不卡| 特大巨黑吊av在线直播 | 91国产中文字幕| 成人欧美大片| 亚洲第一av免费看| 亚洲成av人片免费观看| 中文资源天堂在线| 久久亚洲精品不卡| 免费在线观看黄色视频的| 精品久久久久久久人妻蜜臀av| 日本五十路高清| 制服丝袜大香蕉在线| 日韩欧美在线二视频| 少妇 在线观看| 欧美黄色片欧美黄色片| 国产单亲对白刺激| 成人国产综合亚洲| 亚洲av成人av| 亚洲人成伊人成综合网2020| 成年版毛片免费区| 亚洲精品国产精品久久久不卡| 久99久视频精品免费| 欧美日本视频| 在线永久观看黄色视频| 日韩有码中文字幕| 国产精品国产高清国产av| 久久婷婷人人爽人人干人人爱| 欧美成狂野欧美在线观看| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆 | 无限看片的www在线观看| 在线观看一区二区三区| 日韩有码中文字幕| 婷婷精品国产亚洲av| 黄片小视频在线播放| 国产欧美日韩一区二区精品| 欧美精品啪啪一区二区三区| 婷婷六月久久综合丁香| 午夜激情福利司机影院| 国语自产精品视频在线第100页| 波多野结衣高清作品| 99久久国产精品久久久| 国产精品1区2区在线观看.| 免费高清视频大片| 精品久久蜜臀av无| 国产高清视频在线播放一区| 两个人视频免费观看高清| 中文字幕最新亚洲高清| 久久国产乱子伦精品免费另类| 亚洲一码二码三码区别大吗| 成人精品一区二区免费| 亚洲精品久久成人aⅴ小说| 久久午夜亚洲精品久久| 女性被躁到高潮视频| 免费电影在线观看免费观看| 久久精品国产99精品国产亚洲性色| 国产精品98久久久久久宅男小说| 听说在线观看完整版免费高清| 欧美一级毛片孕妇| 999久久久国产精品视频| 极品教师在线免费播放| 亚洲在线自拍视频| 亚洲国产看品久久| av福利片在线| 在线观看免费视频日本深夜| 成在线人永久免费视频| 人人澡人人妻人| 国产精品久久久久久亚洲av鲁大| 久久天躁狠狠躁夜夜2o2o| 一级毛片精品| 一区福利在线观看| aaaaa片日本免费| 老司机在亚洲福利影院| 亚洲人成77777在线视频| 亚洲avbb在线观看| 免费看a级黄色片| 一级片免费观看大全| 亚洲人成网站高清观看| 欧美在线黄色| 亚洲成av人片免费观看| 超碰成人久久| 在线天堂中文资源库| 欧美色欧美亚洲另类二区| 亚洲精品一卡2卡三卡4卡5卡| 变态另类丝袜制服| 日韩欧美国产在线观看| 好男人电影高清在线观看| 久久亚洲真实| 亚洲中文日韩欧美视频| 黄片小视频在线播放| av片东京热男人的天堂| 亚洲精品在线美女| 日韩av在线大香蕉| 一区二区三区国产精品乱码| 国产私拍福利视频在线观看| 成年女人毛片免费观看观看9| 精品国产亚洲在线| 大型av网站在线播放| 国产激情欧美一区二区| 在线观看一区二区三区| aaaaa片日本免费| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 亚洲国产欧美网| 两个人免费观看高清视频| 美女 人体艺术 gogo| 曰老女人黄片| 嫩草影院精品99| 精品第一国产精品| 欧美av亚洲av综合av国产av| 99久久国产精品久久久| 亚洲精品在线美女| 中国美女看黄片| 色播在线永久视频| 十八禁网站免费在线| 欧美黄色淫秽网站| 亚洲全国av大片| 国产成人精品无人区| 脱女人内裤的视频| 亚洲男人天堂网一区| 最新在线观看一区二区三区| 久久久久久免费高清国产稀缺| 国产精品av久久久久免费| 久久热在线av| 美女午夜性视频免费| 真人一进一出gif抽搐免费| 少妇熟女aⅴ在线视频| 久久精品影院6| 亚洲国产精品久久男人天堂| 久久国产乱子伦精品免费另类| 国产av又大| 欧美绝顶高潮抽搐喷水| 99在线人妻在线中文字幕| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久亚洲av鲁大| 久久香蕉激情| 精品一区二区三区视频在线观看免费| 99久久无色码亚洲精品果冻| 亚洲自偷自拍图片 自拍| 日本精品一区二区三区蜜桃| 亚洲国产精品久久男人天堂| 最好的美女福利视频网| 亚洲成人久久爱视频| 国产精品亚洲一级av第二区| 中文字幕另类日韩欧美亚洲嫩草| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| 久久久国产成人精品二区| 久久婷婷成人综合色麻豆| 国产成人精品无人区| 亚洲av中文字字幕乱码综合 | 91在线观看av| 国产黄a三级三级三级人| 成熟少妇高潮喷水视频| 国产精品久久久久久亚洲av鲁大| 精品人妻1区二区| 大香蕉久久成人网| 国产精品99久久99久久久不卡| 国产一区二区三区在线臀色熟女| 日日摸夜夜添夜夜添小说| 色综合亚洲欧美另类图片| 最新在线观看一区二区三区| 亚洲av成人不卡在线观看播放网| 国产精品美女特级片免费视频播放器 | 国产成人啪精品午夜网站| 日韩欧美国产一区二区入口| av福利片在线| 少妇粗大呻吟视频| 欧美乱妇无乱码| 久久久久国产精品人妻aⅴ院| 亚洲精品国产精品久久久不卡| 亚洲第一电影网av| 男女下面进入的视频免费午夜 | 身体一侧抽搐| 国产精品 国内视频| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| 久久人妻av系列| 一本综合久久免费| av有码第一页| 看免费av毛片| 国产精品一区二区三区四区久久 | 男女午夜视频在线观看| 中文字幕精品亚洲无线码一区 | 日本 欧美在线| 欧美乱色亚洲激情| 日韩视频一区二区在线观看| 免费一级毛片在线播放高清视频| 天堂√8在线中文| 国产成人啪精品午夜网站| 午夜影院日韩av| av福利片在线| 少妇粗大呻吟视频| 精品熟女少妇八av免费久了| 国产一级毛片七仙女欲春2 | 婷婷精品国产亚洲av在线| 午夜福利视频1000在线观看| 女同久久另类99精品国产91| 啪啪无遮挡十八禁网站| 麻豆成人午夜福利视频| 一区二区三区激情视频| 午夜福利在线观看吧| 久久久久久久久免费视频了| 91成人精品电影| 99在线视频只有这里精品首页| 精品久久久久久久人妻蜜臀av| 国产又爽黄色视频| 可以免费在线观看a视频的电影网站| 18禁观看日本| 午夜老司机福利片| 伊人久久大香线蕉亚洲五| 午夜免费激情av| 女性被躁到高潮视频| 亚洲人成77777在线视频| 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三| 国产97色在线日韩免费| 老熟妇仑乱视频hdxx| 高清毛片免费观看视频网站| 亚洲色图av天堂| 久久人妻福利社区极品人妻图片| 香蕉久久夜色| 天天添夜夜摸| 午夜日韩欧美国产| 国产黄a三级三级三级人| 国产在线精品亚洲第一网站| 亚洲av美国av| 午夜久久久久精精品| 啦啦啦免费观看视频1| 午夜老司机福利片| 日韩精品青青久久久久久| 国产极品粉嫩免费观看在线| 欧美一区二区精品小视频在线| 久久久久九九精品影院| 成人特级黄色片久久久久久久| 又大又爽又粗| 国产精品一区二区精品视频观看| 国产成人精品久久二区二区91| 一本大道久久a久久精品| 黑丝袜美女国产一区| 国产激情欧美一区二区| 老汉色av国产亚洲站长工具| 欧美久久黑人一区二区| 午夜免费观看网址| 级片在线观看| 久久中文看片网| 中文字幕最新亚洲高清| 少妇被粗大的猛进出69影院| svipshipincom国产片| 久久国产精品男人的天堂亚洲| 狂野欧美激情性xxxx| av中文乱码字幕在线| 在线观看日韩欧美| 亚洲 国产 在线| 午夜精品在线福利| 久久香蕉精品热| 嫁个100分男人电影在线观看| av免费在线观看网站| 国产高清有码在线观看视频 | 欧美精品亚洲一区二区| 亚洲精华国产精华精| 岛国在线观看网站| 男女之事视频高清在线观看| 日本熟妇午夜| 免费搜索国产男女视频| 国产精品亚洲一级av第二区| av超薄肉色丝袜交足视频| 免费在线观看视频国产中文字幕亚洲| 久久中文字幕人妻熟女| 欧美 亚洲 国产 日韩一| 中文字幕另类日韩欧美亚洲嫩草| 无限看片的www在线观看| 亚洲性夜色夜夜综合| 看免费av毛片| 视频区欧美日本亚洲| 国产1区2区3区精品| 亚洲成av片中文字幕在线观看| 国产aⅴ精品一区二区三区波| 亚洲精品久久成人aⅴ小说| 可以免费在线观看a视频的电影网站| 亚洲真实伦在线观看| 免费在线观看成人毛片| 午夜免费成人在线视频| 国产日本99.免费观看| 日韩精品青青久久久久久| 热99re8久久精品国产| 亚洲精品在线观看二区| 女人被狂操c到高潮| 国产野战对白在线观看| 亚洲成国产人片在线观看| 国产亚洲精品第一综合不卡| 成年女人毛片免费观看观看9| 波多野结衣av一区二区av| 最新在线观看一区二区三区| 精华霜和精华液先用哪个| 亚洲精品国产一区二区精华液| 日本 av在线| 欧洲精品卡2卡3卡4卡5卡区| 久久亚洲精品不卡| 亚洲国产精品久久男人天堂| 88av欧美| 成人一区二区视频在线观看| 国产午夜精品久久久久久| 怎么达到女性高潮| 亚洲狠狠婷婷综合久久图片| av电影中文网址| 黄色视频,在线免费观看| 中文字幕高清在线视频| 欧美性猛交╳xxx乱大交人| 国产熟女xx| 免费观看人在逋| 亚洲最大成人中文| 丝袜人妻中文字幕| 999精品在线视频| 91国产中文字幕| 日韩免费av在线播放| 国产极品粉嫩免费观看在线| 亚洲 国产 在线| 99热6这里只有精品| 最好的美女福利视频网| 国产成人啪精品午夜网站| 一区二区日韩欧美中文字幕| 国产av一区在线观看免费| 久久亚洲精品不卡| 午夜免费鲁丝| 国产精品日韩av在线免费观看| 啦啦啦韩国在线观看视频| 亚洲精品美女久久av网站| 黑人欧美特级aaaaaa片| 女性生殖器流出的白浆| 又黄又粗又硬又大视频| 免费人成视频x8x8入口观看| 精品不卡国产一区二区三区| 久久久国产成人免费| 黄片小视频在线播放| 国产精品永久免费网站| 天堂动漫精品| 在线国产一区二区在线| 日日干狠狠操夜夜爽| 亚洲av五月六月丁香网| 久久天躁狠狠躁夜夜2o2o| 亚洲中文字幕一区二区三区有码在线看 | 97人妻精品一区二区三区麻豆 | 最好的美女福利视频网| 婷婷丁香在线五月| 国产精品久久久人人做人人爽| 一本精品99久久精品77| 亚洲熟妇中文字幕五十中出| 美国免费a级毛片| 亚洲av第一区精品v没综合| 欧美国产精品va在线观看不卡| 免费人成视频x8x8入口观看| 999精品在线视频| 国产精品美女特级片免费视频播放器 | 日韩大尺度精品在线看网址| 国产精品九九99| 午夜日韩欧美国产| 国产成人精品无人区| 日本黄色视频三级网站网址| 中文字幕人妻熟女乱码| 人人妻人人澡欧美一区二区| 99热这里只有精品一区 | 亚洲一区二区三区色噜噜| 国产精品美女特级片免费视频播放器 | 99国产精品99久久久久| 亚洲欧美一区二区三区黑人| 侵犯人妻中文字幕一二三四区| 国产亚洲av嫩草精品影院| 91字幕亚洲| 久久草成人影院| 亚洲片人在线观看| 黑人欧美特级aaaaaa片| 欧美性猛交黑人性爽| 亚洲国产日韩欧美精品在线观看 | 久热爱精品视频在线9| 久久久久九九精品影院| 国产爱豆传媒在线观看 | 搞女人的毛片| a在线观看视频网站| 自线自在国产av| 欧美丝袜亚洲另类 | 国产99白浆流出| 别揉我奶头~嗯~啊~动态视频| 日韩精品青青久久久久久| 成人亚洲精品av一区二区| 99热只有精品国产| 免费一级毛片在线播放高清视频| 黄频高清免费视频| 女同久久另类99精品国产91| 精品无人区乱码1区二区| 精华霜和精华液先用哪个| 国产av一区在线观看免费| 19禁男女啪啪无遮挡网站| 色婷婷久久久亚洲欧美| 嫁个100分男人电影在线观看| 午夜视频精品福利| 成人国语在线视频| 国产91精品成人一区二区三区| 99精品在免费线老司机午夜| 欧美激情高清一区二区三区| 亚洲三区欧美一区| 日本一区二区免费在线视频| 18禁黄网站禁片免费观看直播| 国产片内射在线| 成人免费观看视频高清| 超碰成人久久| 久久久久九九精品影院| 成人国产一区最新在线观看| 国内久久婷婷六月综合欲色啪| 88av欧美| 中文资源天堂在线| 亚洲五月天丁香| www.自偷自拍.com| 欧美日韩亚洲国产一区二区在线观看| 十八禁网站免费在线| 不卡av一区二区三区| 一边摸一边抽搐一进一小说| 精品电影一区二区在线| 久久久国产成人精品二区| 免费在线观看完整版高清| 色综合婷婷激情| 69av精品久久久久久| 亚洲一区二区三区色噜噜| 精品欧美一区二区三区在线| 亚洲成av片中文字幕在线观看| 黑人操中国人逼视频| 亚洲黑人精品在线| 精品电影一区二区在线| 精品午夜福利视频在线观看一区| 岛国视频午夜一区免费看| 在线国产一区二区在线| 国产成人影院久久av| 亚洲专区中文字幕在线| 成人三级做爰电影| 国产精品一区二区三区四区久久 | 国产精品九九99| 美女国产高潮福利片在线看| 一本一本综合久久| 日本五十路高清| 欧美国产日韩亚洲一区| 亚洲av成人av| 亚洲av五月六月丁香网| 麻豆成人午夜福利视频| 一级a爱片免费观看的视频| 国内精品久久久久精免费| 91av网站免费观看| 亚洲国产高清在线一区二区三 | 黄色 视频免费看| 欧美一级毛片孕妇| 久久久久久国产a免费观看| 少妇熟女aⅴ在线视频| 亚洲成av人片免费观看| 色在线成人网| 淫妇啪啪啪对白视频| 国产伦人伦偷精品视频| 欧美三级亚洲精品| 成人三级做爰电影| 久久精品影院6| 欧美性长视频在线观看| 久久午夜亚洲精品久久| 精华霜和精华液先用哪个| 精品久久久久久久久久免费视频| 日韩视频一区二区在线观看| 一级黄色大片毛片| 久久久国产成人精品二区| 免费在线观看完整版高清| 91九色精品人成在线观看| 在线观看午夜福利视频| 午夜影院日韩av| 亚洲在线自拍视频| 黄频高清免费视频| 999久久久国产精品视频| 国产激情久久老熟女| 成人亚洲精品一区在线观看| 国产亚洲av高清不卡| 最新在线观看一区二区三区| 在线免费观看的www视频| 精品国产国语对白av| 桃红色精品国产亚洲av| 日韩 欧美 亚洲 中文字幕| 啦啦啦韩国在线观看视频| 大型av网站在线播放| 国产精品久久久久久亚洲av鲁大| 高清在线国产一区| 久久久精品欧美日韩精品| 国产午夜福利久久久久久| 色综合欧美亚洲国产小说| 变态另类丝袜制服| 精品不卡国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 午夜免费观看网址| 99久久99久久久精品蜜桃| 免费看十八禁软件| 午夜福利18| 欧美久久黑人一区二区| 免费看美女性在线毛片视频| 国产精品综合久久久久久久免费| 丰满人妻熟妇乱又伦精品不卡|