• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diversity-multiplexing tradeoff of half-duplex multi-input multi-output two-way relay channel with decode-and-forward protocol①

    2015-04-17 06:27:11SuYuping蘇玉萍
    High Technology Letters 2015年3期

    Su Yuping (蘇玉萍)

    (State Key Lab of ISN, Xidian University, Xi’an 710071, P.R.China)

    ?

    Diversity-multiplexing tradeoff of half-duplex multi-input multi-output two-way relay channel with decode-and-forward protocol①

    Su Yuping (蘇玉萍)②

    (State Key Lab of ISN, Xidian University, Xi’an 710071, P.R.China)

    A multi-input multi-output (MIMO) separated two-way relay channel (STWRC) is considered, where two users exchange their messages via a relay node. When each link is quasi-static Rayleigh fading, the achievable diversity-multiplexing tradeoff (DMT) of the half-duplex STWRC is analyzed. Firstly, the achievable DMT of the STWRC with static decode-and-forward (DF) protocol is obtained. Then, a dynamic decode-and-forward (DDF) protocol for the STWRC is proposed, where the relay listening time varies dynamically with the channel qualities of the links between two users and the relay. Finally, the achievable DMT of the proposed DDF protocol is derived in a case-by-case manner. Numerical examples are also provided to verify the theoretical analysis of both protocols.

    two-way relay channel (TWRC), half-duplex, diversity-multiplexing tradeoff (DMT), decode-and-forward (DF), outage probability

    0 Introduction

    Recently, relay techniques have attracted increasing attentions due to their ability of increasing reliability and throughput of the system. For slow fading relay channels, the diversity-multiplexing tradeoff (DMT)[1]is often analyzed to describe the tradeoff between the transmission rate and the reliability at high signal-to-noise ratio (SNR) regime. Existing works related to the DMT analysis mainly focus on two kinds of relay channels: one-way relay channels[2,3]and two-way relay channels (TWRCs)[4,5]. In the one-way relay channel, a source unidirectionally transmits messages to the destination via relay node(s). On the contrary, in the TWRC, two sources exchange their messages via relay node(s) and data flows bidirectionally.

    According to whether a relay node can transmit and receive messages simultaneously, the relay channels can operate in the full-duplex mode or the half-duplex mode. For TWRC, existing works mainly focus on the DMT analysis of the full-duplex relay[4,5]. Specifically, for the separated two-way relay channel (STWRC) where two users cannot overhear each other directly, it is shown in Ref.[4] that the compress-and-forward (CF) strategy achieves the optimal DMT. Similarly, for TWRC where a direct link exist between two users, its optimal DMT is also obtained by using the CF protocol[5]. For multi-way relay channels, the optimal DMT for the full-duplex relay is studied in Ref.[6]. Recently, the finite-SNR DMT analysis of TWRC is also studied[7,8]. Besides, spatial channel pairing and beamforming for the multi-pair two-way relay networks are also investigated in Refs[9] and [10], respectively.

    To the best of our knowledge, there's no work focusing on the DMT analysis of the half-duplex STWRC. As a result, the paper focuses on the achievable DMT of the STWRC with half-duplex relay. When each link is of frequency non-selective quasi-static Rayleigh fading, the achievable DMT of the multi-input multi-output (MIMO) STWRC with decode-and-forward (DF) protocol is analyzed. Firstly, the achievable DMT of the static DF protocol is obtained by scaling the DMT curve of the full-duplex case[4]. Then, a dynamic decode-and-forward (DDF) protocol is proposed, in which the listening time of the relay varies dynamically with the channel qualities of the links from two users to the relay. Finally, the achievable DMT of the proposed DDF protocol is derived in a case-by-case manner. Numerical examples are also provided to illustrate the achievable DMT performance for both protocols.

    This paper is organized as follows. In Section 1, the channel model is introduced. In Section 2, the achievable DMT for both static and dynamic DF protocols is investigated. The paper is finally concluded in Section 3.

    1 Channel model

    The STWRC model, where two users exchange messages with the assistance of a single relay, is shown in Fig.1. User i, i∈A={1,2}, is equipped with Miantennas and the relay is equipped with N antennas. A channel such as (M1, N, M2)-STWRC system is refered. It is assumed the channel operates in the time-division duplex (TDD) mode and all the nodes are of half-duplex. Let the codeword of each user consisting of L symbols and t (t∈(0,1)) be the time fraction of the relay to listen. During the first tL symbol intervals, the relay only listens to the users transmission (listening phase) and during the remaining (1-t)L symbol intervals, the relay transmits its own codeword to two users (transmission phase). All the links in the STWRC are assumed to be frequency non-selective quasi-static fading and the codeword length L is assumed to be sufficiently long so that the error probability is dominated by the channel outage probability.

    Fig.1 Channel model of separated two-way relay channel

    During the listening phase, the received signal at the relay node is

    During the transmission phase, the received signal at user i is

    where Xi∈Mi×1,i∈A, and Xr∈N×1are the transmitted signal vectors at user i and the relay, respectively. Vectors Wr∈N×1and Wi∈Mi×1, i∈A, are the additive noise, whose entries are independent and identically distributed (i.i.d.) complex Gaussian CN(0,1) random variables. Matrices Hi∈N×Miand Gi∈Mi×N, i∈A, are the channel matrices with i.i.d. CN(0,1) entries. Due to the reciprocity of channel matrices in the TDD mode, we have, where (·)Hdenotes the matrix conjugate transpose. SNR is the average signal-to-noise ratio at each receive antenna.

    2 Achievable DMT of MIMO STWRC

    In this section, the achievable DMT of the MIMO STWRC with DF protocols is derived, including both static and dynamic cases.

    Before proceeding, first some definitions are given as in Ref.[1]. a scheme is considered as a sequence of codes {C(SNR)}, where for each SNR, the corresponding code C(SNR) consists of 2LR1(SNR)×2LR2(SNR) codewords and the code rate for user i is Ri(SNR), i∈A.

    For this sequence of codes, multiplexing gain of user i is riif

    holds. Symbol “?” is used to denote exponential equality, i.e., the equality f(SNR)?SNRbto denote

    2.1 DMT of MIMO STWRC with static DF protocol

    For the static DF protocol, the time allocation between the listening phase and the transmission phase is fixed and independent of the channel realization. Such a protocol is referred to as DF with fixed time allocation (fDF). For the DF protocols, due to the decoding requirement of both messages at the relay, the DMT analysis for different diversity requirement becomes very difficult[11]. Thus, it is assumed that two users have the same diversity gain requirement d. The achievable DMT of the fDF protocol is given as follows.

    Proposition 1: The achievable DMT of the half-duplex STWRC with fDF protocol is

    (1)

    Proof: The achievable DMT of a half-duplex STWRC with fDF protocol can be directly obtained by scaling the DMT curve of the full-duplex case[4]with time division coefficients.

    When r1=r2=r, the achievable symmetric DMT is got as

    (2)

    Fig.2 Achievable symmetric DMT for a (4,2,3)-STWRC system

    2.2 DDF Protocol for MIMO STWRC

    In Ref.[13], the DDF protocol for the cooperative relay channel with single antenna is proposed. In DDF for the relay channel, the relay listens until the accumulated mutual information over the source-relay channel is sufficient for the transmission rate. Here, DDF is considered for the MIMO STWRC. During the listening phase, the message transmission from two users to the relay is a multiple-access channel (MAC), and its instantaneous capacity region is characterized as[12]

    RS≤I(XS; Yr|XSc)IS,R, S?A

    (3)

    where RS=∑i∈SRi, XS={Xi:i∈S} and Scis the complement of S in A. To ensure that the relay can decode two users' messages successfully, accumulated mutual information tLIS,Rmust exceed LRSfor each S?A. Therefore, time fraction t is chosen as

    (4)

    where RS/IS,Ris the ratio between the real transmission rate and the corresponding mutual information (referred to as rate-to-mutual information ratio (RMR)).

    In Eq.(4), each term (i.e.,RS/IS,R) in the bracket is a random variable that depends on the channel state between users and the relay. Time fraction t is the maximum of such three random variables. As a result, t is also a random variable depending on the channel state. Unfortunately, the probability density function (p.d.f) of each RMR is very complex and they are not independent with each other, so p.d.f of t is very difficult to obtain. As an alternative method,some simulation results of the percentage are given that t is equal to each RMR in Eq.(4). The simulation result is obtained in the following way. Given multiplexing gain r1, r2and the end step numstop. For each SNR, Rayleigh fading matrices H1, H2are generated to compute the values of three RMRs. At each SNR, that is done for numstoptimes and finally the percentage is computed when each RS/IS,Ris the maximum among the three RMRs.

    For the (4, 2, 3) and (5, 8, 7)-STWRC system, the percentage of each RMR is illustrated when it is the maximum among the three RMRs in Fig.3~Fig.6. It is shown in Fig.3~Fig.5 that if r1≥r2when M1≥M2, the percentage of (R1+R2)/IA,Rwhen it is the maximum among the three approaches 1 with the increase of SNR. Intuitively, the real transmission rate

    Fig.3 Percentage of each RMR when it is the maximum among the three RMRs for a (4, 2, 3)-STWRC system with r1=0.6, r2=0.4

    Fig.4 Percentage of each RMR when it is the maximum among the three RMRs for a (4, 2, 3)-STWRC system with r1=0.1, r2=0.1

    Fig.5 Percentage of each RMR when it is the maximum among the three RMRs for a (5, 8, 7)-STWRC system with r1=0.3, r2=0.6

    Fig.6 Percentage of each RMR when it is the maximum among the three RMRs for a (5, 8, 7)-STWRC system with r1=0.5, r2=0.3

    which has the form of rlog SNR increases faster with SNR than the corresponding instantaneous mutual information. Therefore, the term (R1+R2)/IA,Rincreases faster since the sum transmission rate has the largest multiplexing gain. If user’s real transmission rate is inversely proportional to its number of antenna, just as shown in Fig.6, time allocation fraction t is determined with a large probability by RMR which corresponds to higher transmission rate but smaller mutual information.

    When t≥1, the channel is in outage during the MAC phase. When t<1, the relay decodes two users' messages and transmits them to both users. This message transmitting from the relay to two users is in fact a broadcast channel (BC) with receiver side information. For the BC phase transmission, if the transmission rate pair (R1, R2) does not lie in the corresponding achievable rate region, the channel is also in outage.

    2.3 DMT of MIMO STWRC with DDF protocol

    Since the p.d.f of t is difficult to obtain, a case-by-case method is developed to analyze the achievable DMT of the DDF relay protocol. The main result of this subsection is given in the following theorem.

    Theorem 1: For the (M1, N, M2)-STWRC system with given multiplexing gain pair (r1, r2), the achievable DMT of the DDF protocol is given as follows.

    Case 1: If R1/I1,R=max{RS/IS,R,S?A}, the achievable diversity gain satisfies

    dDDF(r1,r2)=min{dN,M*(2r1),dN,M1(r1+r2)}

    (5)

    Case 2: If R2/I2,R=max{RS/IS,R,S?A}, the achievable diversity gain satisfies

    dDDF(r1,r2)=min{dN,M*(2r2),dN,M2(r1+r2)}

    (6)

    Case 3: If (R1+R2)/IA,R=max{RS/IS,R,S?A}, the achievable diversity gain satisfies

    dDDF(r1,r2)=dM*,N(2(r1+r2))

    (7)

    Proof: The proof is given in the Appendix.

    Symmetric Tradeoff: Assuming that each user has symmetric multiplexing gain, i.e., R1=R2=R=rlogSNR, the tradeoff region can be further simplified.

    Theorem 2: For the (M1, N, M2)-STWRC system and given common multiplexing gain r, the achievable diversity gain of DDF protocol is given as follows.

    Case 1: If R/I1,R=max{|S|R/IS,R,S?A}or R/I2,R=max{|S|R/IS,R,S?A}, the achievable diversity gain satisfies

    (8)

    Case 2: If 2R/IA,R=max{|S|R/IS,R,S?A}, the achievable diversity gain satisfies

    (9)

    where |S| denotes the cardinality of set S.

    Proof: This theorem can be easily proved by using the similar steps as the proof of Theorem 1 by replacing R1and R2with R=r logSNR.

    For case 1, it can be seen that its achievable symmetric DMT is the same as the outer bound of the fixed time allocation scheme and thus the DDF protocol is superior to any fDF protocol in this case. For case 2, its achievable symmetric DMT is equal to that of fDF protocol when t=0.5. The achievable symmetric diversity gain of a (2, 2, 2)-STWRC with static and dynamic protocols is illustrated in Fig. 7. Just as the analysis above, it is shown that the achievable symmetric DMT of case 1 for DDF is better than that of the fDF protocol with various time allocations (t=0.2, 0.5, 0.8). Case 2 for DDF has the same symmetric DMT performance as the fDF protocol when t=0.5.

    Fig.7 The achievable symmetric DMT of a half-duplex (2, 2, 2)-STWRC with static and dynamic protocols

    3 Conclusion

    The achievable DMT of MIMO STWRC with half-duplex relay is derived. Both static DF and DDF protocols are considered, which shows that the DDF protocol achieves better DMT performance than the static DF protocol for some cases. Besides, finding the optimal DMT performance of the half-duplex STWRC is still a challenge problem, which will be our future work.

    Appendix: Proof of Theorem 1

    In the DDF protocol, the achievable rate region of the BC phase is[14]

    Ri≤I(Xr; YA{i})IR,A{i}, i∈A

    (10)

    (11)

    (12)

    Define

    According to the outage events analysis in Section 2.2, the overall outage probability of the DDF protocol is upper bounded as

    Pout≤P{t>1}+P{t<1∩R1>(1-t)IR,2} +P{t<1∩R2>(1-t)IR,1} ≤P{t>1}+P{R1>(1-t)IR,2} +P{R2>(1-t)IR,1}

    (13)

    In the following, the proof for each case is given.

    where step (a) is due to that the constant before SNR can be ignored on the scale of DMT analysis [1] and step (b) follows from the DMT result for the MIMO point-to-point channel [1, Theorem 2].

    The second term in Eq.(13) is computed as

    where (c) follows from Lemma 3 in Ref.[2].

    Similarly, the last term in (13) is computed as

    Thus, the overall outage probability is upper bounded as

    and the achievable diversity gain for this case satisfies

    d≤min{dN,M*(2r1),dN,M1(r1+r2)}

    Using the similar steps as for case 1, the achievable diversity gain is obtained as

    d≤min{dN,M*(2r2),dN,M2(r1+r2)}

    This condition implies that

    For this case, t=(R1+R2)/IA,Ris chosen. The first term in Eq.(13) is easily computed as

    P{t≥1}?SNR-dM1+M2,N(r1+r2)

    The second term in Eq.(13) is computed as

    where (f) is due to the fact that R1≤(R1+R2)I1,R/IA,Rfrom Eq.(14) and (g) follows from the fact that IA,R≥I1,Rsince logdet(·) is a monotonically increasing function in the cone of psd matrices. The last term is similarly computed as

    By using the results obtained above, we have the achievable diversity gain for this case as

    d≤dM*,N(2(r1+r2))

    Combining the results for the three cases yields Theorem 1.

    Reference

    [ 1] Zheng L, Tse D. Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory, 2003, 49(4): 1073-1096

    [ 2] Yuksel M, Erkip E. Multi-antenna cooperative wireless systems: a diversity multiplexing tradeoff perspective. IEEE Transactions on Information Theory, 2007, 53(10): 3371-3393

    [ 3] Gündüz D, Khojastepour M A, Goldsmith A, et al. Multi-hop MIMO relay networks: diversity-multiplexing trade-off analysis. IEEE Transactions on Wireless Communication, 2010, 9(5): 1738-1747

    [ 4] Gündüz D, Goldsmith A, Poor H V. MIMO two-way relay channel: diversity-multiplexing tradeoff analysis. In: Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2008. 1474-1478

    [ 5] Vaze R, Heath R W. On the capacity and diversity-multiplexing tradeoff of the two-way relay channel. IEEE Transactions on Information Theory, 2011, 57(7): 4219-4234

    [ 6] Su Y, Li Y. Optimal diversity-multiplexing tradeoff of MIMO multi-way relay channel. ETRI Journal, 2013, 35(5): 919-922

    [ 7] Wang L, Cai Y, Yang W. On the finite-SNR DMT of two-way AF relaying with imperfect CSI, IEEE Wireless Communications Letters, 2012, 1(3): 161-164

    [ 8] Lin X, Tao M, Xu Y, et al. Finite-SNR diversity-multiplexing tradeoff for two-way relay fading channel, IEEE Transactions on Vehicular Technology, 2013, 62(7): 3123-3136

    [ 9] Shu F, Chen Y, You X H, et al. Low-complexity optimal spatial channel pairing for AF-based multi-pair two-way relay networks, Science China Information Sciences, 2014, 57(10): 1-10

    [10] Shu F, Lu Y Z, Chen Y, et al. High-sum-rate beamformers for multi-pair two-way relay networks with amplify-and-forward relaying strategy, Science China Information Sciences, 2014, 57(2): 1-11

    [11] Tse D, Viswanath P, Zheng L. Diversity-multiplexing tradeoff in multiple access channels. IEEE Transactions on Information Theory, 2004, 50(9): 1859-1874

    [12] Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley-Interscience, 1991. 389,445

    [13] Azarian K, Gamal H E, Schniter P. On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory, 2005, 51(12): 4152-4172

    Su Yuping, born in 1988. She is now studying for a doctor’s degree in State Key Lab of ISN, Xidian University. She received her B.S. degree from Henan Normal University in 2009. Her research interests include cooperative users and relay systems for wireless communications.

    10.3772/j.issn.1006-6748.2015.03.018

    ①Supported by the National Basic Research Program of China (No.2012CB316100) and National Natural Science Foundation of China (No. 61072064, 61301177).

    ②To whom correspondence should be addressed. E-mail: ypsuxidian@gmail.com Received on Apr. 14, 2014, Li Ying, Liu Yang

    在线免费观看的www视频| 国产午夜精品论理片| 老司机深夜福利视频在线观看| 日日爽夜夜爽网站| 成人高潮视频无遮挡免费网站| 一级黄色大片毛片| 人人妻,人人澡人人爽秒播| 99久久精品热视频| 五月伊人婷婷丁香| 精品乱码久久久久久99久播| 欧美日韩亚洲综合一区二区三区_| 18美女黄网站色大片免费观看| x7x7x7水蜜桃| 91大片在线观看| 免费在线观看视频国产中文字幕亚洲| 老司机靠b影院| 草草在线视频免费看| 黄色视频,在线免费观看| 国产精华一区二区三区| 女警被强在线播放| 欧美成人免费av一区二区三区| 国产成人影院久久av| 黄频高清免费视频| 亚洲精品中文字幕一二三四区| 欧美日韩乱码在线| 成在线人永久免费视频| 国产一区二区三区在线臀色熟女| 一个人免费在线观看电影 | 三级毛片av免费| 国产熟女午夜一区二区三区| 嫁个100分男人电影在线观看| 久久久国产成人免费| 久久香蕉激情| 丝袜人妻中文字幕| 亚洲精品中文字幕一二三四区| 一级片免费观看大全| 母亲3免费完整高清在线观看| 久久精品成人免费网站| www.www免费av| 国产熟女午夜一区二区三区| xxxwww97欧美| 国产日本99.免费观看| 99久久精品国产亚洲精品| 国产av又大| 午夜激情福利司机影院| 亚洲五月天丁香| 欧美成人一区二区免费高清观看 | 亚洲精品国产一区二区精华液| 亚洲男人的天堂狠狠| 9191精品国产免费久久| 欧美精品啪啪一区二区三区| 久久 成人 亚洲| 一级毛片女人18水好多| 亚洲午夜精品一区,二区,三区| 麻豆成人av在线观看| 黄色 视频免费看| 99久久精品热视频| 国产91精品成人一区二区三区| 久久久久久国产a免费观看| 久久人妻福利社区极品人妻图片| 啪啪无遮挡十八禁网站| 嫁个100分男人电影在线观看| 两性夫妻黄色片| 国产激情久久老熟女| 欧美久久黑人一区二区| 麻豆一二三区av精品| 亚洲国产欧美网| 国产又黄又爽又无遮挡在线| 精品第一国产精品| 亚洲免费av在线视频| 午夜成年电影在线免费观看| 国产成人av激情在线播放| 看黄色毛片网站| 国产精品国产高清国产av| 黄色 视频免费看| 亚洲美女黄片视频| 久久精品aⅴ一区二区三区四区| 美女高潮喷水抽搐中文字幕| 久久久精品欧美日韩精品| 狠狠狠狠99中文字幕| 一个人观看的视频www高清免费观看 | 日韩大码丰满熟妇| 欧美人与性动交α欧美精品济南到| 成年免费大片在线观看| 午夜成年电影在线免费观看| 欧美一级a爱片免费观看看 | 国产精品九九99| 舔av片在线| 亚洲国产精品成人综合色| 午夜福利视频1000在线观看| 久久这里只有精品19| 99久久综合精品五月天人人| 中文在线观看免费www的网站 | 深夜精品福利| 久久久久久久午夜电影| 亚洲精品中文字幕一二三四区| www.www免费av| x7x7x7水蜜桃| 久久伊人香网站| 一本大道久久a久久精品| 亚洲国产精品合色在线| 999久久久精品免费观看国产| 亚洲精品一区av在线观看| av欧美777| 色综合站精品国产| 亚洲av熟女| 午夜福利视频1000在线观看| 免费在线观看黄色视频的| 男人的好看免费观看在线视频 | 久久香蕉激情| aaaaa片日本免费| 成人欧美大片| 国语自产精品视频在线第100页| 悠悠久久av| 日韩欧美精品v在线| 久久99热这里只有精品18| 久久久精品欧美日韩精品| 国产精品久久久久久人妻精品电影| www国产在线视频色| 一本精品99久久精品77| 亚洲av中文字字幕乱码综合| 久久久久国产精品人妻aⅴ院| 亚洲国产高清在线一区二区三| 免费av毛片视频| 91av网站免费观看| 久久久久九九精品影院| 久久久久性生活片| 成人18禁高潮啪啪吃奶动态图| 国语自产精品视频在线第100页| 人妻夜夜爽99麻豆av| 一区二区三区激情视频| 久久婷婷成人综合色麻豆| 巨乳人妻的诱惑在线观看| 亚洲精品粉嫩美女一区| 99在线视频只有这里精品首页| 又爽又黄无遮挡网站| 日韩欧美国产在线观看| 真人做人爱边吃奶动态| 一级毛片女人18水好多| 亚洲最大成人中文| 日本黄色视频三级网站网址| 午夜福利18| 国产成年人精品一区二区| 国产精品自产拍在线观看55亚洲| 夜夜爽天天搞| 在线观看免费日韩欧美大片| 一级作爱视频免费观看| 国产单亲对白刺激| 久久午夜综合久久蜜桃| 中文字幕高清在线视频| 国产aⅴ精品一区二区三区波| 国产激情欧美一区二区| 日韩国内少妇激情av| 欧美一区二区精品小视频在线| 亚洲乱码一区二区免费版| 精品乱码久久久久久99久播| 听说在线观看完整版免费高清| 在线观看66精品国产| 2021天堂中文幕一二区在线观| 18禁国产床啪视频网站| 极品教师在线免费播放| 午夜免费激情av| 老司机午夜十八禁免费视频| 精品久久久久久久久久久久久| 中文字幕av在线有码专区| 亚洲中文日韩欧美视频| 激情在线观看视频在线高清| 12—13女人毛片做爰片一| 巨乳人妻的诱惑在线观看| 国产黄a三级三级三级人| 国产成人影院久久av| 亚洲一区高清亚洲精品| 桃色一区二区三区在线观看| 欧洲精品卡2卡3卡4卡5卡区| 91麻豆av在线| 欧洲精品卡2卡3卡4卡5卡区| 最近最新中文字幕大全电影3| 中文字幕最新亚洲高清| 亚洲国产欧美网| 夜夜看夜夜爽夜夜摸| 精品久久久久久,| 日本精品一区二区三区蜜桃| 哪里可以看免费的av片| 啪啪无遮挡十八禁网站| av视频在线观看入口| 国产麻豆成人av免费视频| 法律面前人人平等表现在哪些方面| 亚洲 欧美一区二区三区| 岛国在线观看网站| 一进一出抽搐gif免费好疼| 亚洲自拍偷在线| 亚洲av美国av| 亚洲av第一区精品v没综合| 亚洲欧美日韩高清专用| 亚洲第一电影网av| 国产伦在线观看视频一区| 亚洲精品在线美女| 一区二区三区激情视频| 日韩成人在线观看一区二区三区| 免费电影在线观看免费观看| 国产精品精品国产色婷婷| 男插女下体视频免费在线播放| 亚洲免费av在线视频| 亚洲欧洲精品一区二区精品久久久| 淫妇啪啪啪对白视频| 久久国产精品影院| 一级a爱片免费观看的视频| 一二三四社区在线视频社区8| 国产精品久久视频播放| 精品欧美一区二区三区在线| 亚洲精品av麻豆狂野| 精品少妇一区二区三区视频日本电影| 男女午夜视频在线观看| 久久久久久久久久黄片| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9| 精品久久久久久久久久免费视频| 老司机深夜福利视频在线观看| 国产精品综合久久久久久久免费| 亚洲美女视频黄频| 嫩草影院精品99| 亚洲国产欧美一区二区综合| 午夜激情福利司机影院| 观看免费一级毛片| 三级男女做爰猛烈吃奶摸视频| 在线视频色国产色| 久久久水蜜桃国产精品网| 免费看美女性在线毛片视频| cao死你这个sao货| 又爽又黄无遮挡网站| 亚洲精品av麻豆狂野| 在线观看www视频免费| 久久这里只有精品中国| 亚洲性夜色夜夜综合| 精品无人区乱码1区二区| 国产精品一区二区免费欧美| 看片在线看免费视频| 日本黄色视频三级网站网址| 中文字幕人成人乱码亚洲影| 亚洲av日韩精品久久久久久密| 欧美色视频一区免费| 亚洲av成人精品一区久久| 日韩欧美在线二视频| 亚洲午夜理论影院| 亚洲专区中文字幕在线| 岛国视频午夜一区免费看| 久久久久国内视频| 欧美久久黑人一区二区| 精品少妇一区二区三区视频日本电影| 日韩中文字幕欧美一区二区| 久久久水蜜桃国产精品网| 毛片女人毛片| 欧美大码av| 变态另类成人亚洲欧美熟女| 在线观看一区二区三区| 制服丝袜大香蕉在线| 黄色丝袜av网址大全| 国内精品一区二区在线观看| 精品久久久久久,| 欧美日韩亚洲综合一区二区三区_| 操出白浆在线播放| 淫妇啪啪啪对白视频| 欧美三级亚洲精品| 美女高潮喷水抽搐中文字幕| 免费在线观看成人毛片| 亚洲av片天天在线观看| 日韩免费av在线播放| 天堂动漫精品| 精品欧美国产一区二区三| 女人爽到高潮嗷嗷叫在线视频| 97碰自拍视频| 欧美日韩中文字幕国产精品一区二区三区| 可以在线观看的亚洲视频| 精品国内亚洲2022精品成人| 亚洲乱码一区二区免费版| 国产精品日韩av在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成人中文字幕在线播放| 天天添夜夜摸| 老司机午夜十八禁免费视频| 日本成人三级电影网站| 久久天堂一区二区三区四区| 久久性视频一级片| 精品久久久久久久久久久久久| 亚洲 国产 在线| 黄色视频,在线免费观看| 最新在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区二区三区在线观看| 一个人观看的视频www高清免费观看 | 亚洲成人精品中文字幕电影| 国产精品av久久久久免费| 很黄的视频免费| 精品国产乱子伦一区二区三区| 一区二区三区高清视频在线| 麻豆国产97在线/欧美 | 又爽又黄无遮挡网站| 动漫黄色视频在线观看| 岛国视频午夜一区免费看| 99riav亚洲国产免费| 级片在线观看| 精品不卡国产一区二区三区| 亚洲国产欧洲综合997久久,| 一本一本综合久久| 亚洲一区中文字幕在线| 一区福利在线观看| 日韩大码丰满熟妇| 怎么达到女性高潮| 国产真人三级小视频在线观看| 日本a在线网址| 国产激情久久老熟女| 婷婷精品国产亚洲av| 国产不卡一卡二| 亚洲国产欧洲综合997久久,| 又爽又黄无遮挡网站| 一本大道久久a久久精品| 欧美av亚洲av综合av国产av| 欧美性猛交黑人性爽| 国产av又大| 在线播放国产精品三级| 又黄又爽又免费观看的视频| 丁香欧美五月| 听说在线观看完整版免费高清| 制服诱惑二区| 国产精品一区二区免费欧美| 一边摸一边做爽爽视频免费| 亚洲激情在线av| 亚洲七黄色美女视频| 精品一区二区三区四区五区乱码| 欧美最黄视频在线播放免费| 精品国产超薄肉色丝袜足j| 久久精品国产亚洲av香蕉五月| 欧美zozozo另类| 亚洲免费av在线视频| netflix在线观看网站| 人妻夜夜爽99麻豆av| 亚洲av美国av| 久久久久国内视频| www.熟女人妻精品国产| 老司机在亚洲福利影院| 国产真人三级小视频在线观看| 精品国产乱码久久久久久男人| 久久这里只有精品19| 国产av麻豆久久久久久久| 国产一级毛片七仙女欲春2| 五月玫瑰六月丁香| 久久精品成人免费网站| 欧美黄色淫秽网站| 99久久综合精品五月天人人| 国产伦在线观看视频一区| 午夜福利在线在线| 国产精品一区二区三区四区久久| 在线观看午夜福利视频| 欧美国产日韩亚洲一区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲片人在线观看| 欧美成人性av电影在线观看| 两人在一起打扑克的视频| 看片在线看免费视频| 嫩草影视91久久| 宅男免费午夜| 老鸭窝网址在线观看| 精品日产1卡2卡| 亚洲av五月六月丁香网| 国产精品久久久av美女十八| 搡老妇女老女人老熟妇| 国产v大片淫在线免费观看| 欧美乱色亚洲激情| 午夜福利18| 1024香蕉在线观看| 色精品久久人妻99蜜桃| 级片在线观看| 在线观看免费视频日本深夜| 国产真人三级小视频在线观看| 欧美成人性av电影在线观看| 黄色毛片三级朝国网站| 日韩精品免费视频一区二区三区| 中国美女看黄片| 久久久久免费精品人妻一区二区| 一区二区三区激情视频| 国产私拍福利视频在线观看| 日韩av在线大香蕉| 成人欧美大片| 日韩免费av在线播放| 精品久久久久久久毛片微露脸| 精品无人区乱码1区二区| 亚洲av成人一区二区三| 激情在线观看视频在线高清| 91麻豆精品激情在线观看国产| 色精品久久人妻99蜜桃| 久久热在线av| 精品少妇一区二区三区视频日本电影| 日韩欧美一区二区三区在线观看| a在线观看视频网站| 久久国产精品人妻蜜桃| 国产精品综合久久久久久久免费| 变态另类丝袜制服| 久久久久久久精品吃奶| 91麻豆av在线| 亚洲国产精品合色在线| 国产高清激情床上av| 国产亚洲精品久久久久5区| www国产在线视频色| 天堂av国产一区二区熟女人妻 | 搞女人的毛片| 男人舔女人的私密视频| 国产欧美日韩一区二区三| 男人的好看免费观看在线视频 | 午夜福利在线在线| 宅男免费午夜| 1024视频免费在线观看| 精品一区二区三区av网在线观看| 老汉色∧v一级毛片| 99在线人妻在线中文字幕| 免费在线观看亚洲国产| 亚洲专区字幕在线| 日本 av在线| 亚洲五月天丁香| 久久人妻av系列| ponron亚洲| 免费看美女性在线毛片视频| 成年女人毛片免费观看观看9| 黑人欧美特级aaaaaa片| 一进一出抽搐gif免费好疼| 亚洲av电影在线进入| 欧美日韩亚洲国产一区二区在线观看| 小说图片视频综合网站| 亚洲乱码一区二区免费版| 深夜精品福利| 亚洲一卡2卡3卡4卡5卡精品中文| 成人精品一区二区免费| 久久精品人妻少妇| 国产精品精品国产色婷婷| 99热这里只有精品一区 | 一二三四在线观看免费中文在| 国内揄拍国产精品人妻在线| 成年人黄色毛片网站| 中文在线观看免费www的网站 | 深夜精品福利| 欧美日韩福利视频一区二区| 一卡2卡三卡四卡精品乱码亚洲| 三级男女做爰猛烈吃奶摸视频| 哪里可以看免费的av片| 99久久精品国产亚洲精品| 不卡av一区二区三区| 国内揄拍国产精品人妻在线| 免费看十八禁软件| 最新在线观看一区二区三区| 精品福利观看| 国产成人系列免费观看| 黄片大片在线免费观看| 黄色毛片三级朝国网站| 一二三四社区在线视频社区8| 精品久久久久久久久久久久久| 一a级毛片在线观看| 精品久久蜜臀av无| 村上凉子中文字幕在线| 99久久国产精品久久久| 12—13女人毛片做爰片一| 国产亚洲av嫩草精品影院| 变态另类成人亚洲欧美熟女| 久久亚洲真实| 欧美性长视频在线观看| 精品国产乱码久久久久久男人| 中文字幕高清在线视频| 99re在线观看精品视频| 色精品久久人妻99蜜桃| 91老司机精品| 欧美日韩黄片免| 欧美日韩亚洲综合一区二区三区_| 国内久久婷婷六月综合欲色啪| 全区人妻精品视频| 亚洲精品久久成人aⅴ小说| 又大又爽又粗| 黄色毛片三级朝国网站| 国产精品免费视频内射| 欧美黑人欧美精品刺激| 狂野欧美白嫩少妇大欣赏| 91老司机精品| 亚洲 国产 在线| 男女视频在线观看网站免费 | 亚洲av片天天在线观看| 国产不卡一卡二| 精品久久久久久久末码| 99国产精品99久久久久| 18禁黄网站禁片免费观看直播| 亚洲国产欧美一区二区综合| 国产精品电影一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人影院久久av| 18美女黄网站色大片免费观看| 夜夜躁狠狠躁天天躁| 神马国产精品三级电影在线观看 | 亚洲人成77777在线视频| 精品欧美一区二区三区在线| 亚洲 欧美 日韩 在线 免费| 国产高清视频在线观看网站| www国产在线视频色| 一区二区三区激情视频| 久久人妻福利社区极品人妻图片| 国产aⅴ精品一区二区三区波| 波多野结衣高清无吗| 国内毛片毛片毛片毛片毛片| 美女扒开内裤让男人捅视频| 国产99白浆流出| 91av网站免费观看| 两个人看的免费小视频| 亚洲专区中文字幕在线| 最近最新免费中文字幕在线| 日韩欧美在线乱码| 免费av毛片视频| 在线看三级毛片| 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清 | av在线天堂中文字幕| 老司机福利观看| 精品电影一区二区在线| 两个人视频免费观看高清| 国内精品久久久久精免费| 少妇人妻一区二区三区视频| 嫁个100分男人电影在线观看| 老司机午夜福利在线观看视频| 婷婷精品国产亚洲av| 国产三级黄色录像| 老司机午夜福利在线观看视频| 日韩中文字幕欧美一区二区| 九色成人免费人妻av| 久久精品国产99精品国产亚洲性色| 一区二区三区激情视频| 91麻豆精品激情在线观看国产| 免费在线观看黄色视频的| 欧美日韩瑟瑟在线播放| 琪琪午夜伦伦电影理论片6080| 最近最新中文字幕大全电影3| 午夜影院日韩av| 久久香蕉激情| 久久香蕉精品热| 91av网站免费观看| 啦啦啦韩国在线观看视频| avwww免费| 免费在线观看亚洲国产| 午夜视频精品福利| 1024视频免费在线观看| 中文在线观看免费www的网站 | 午夜福利欧美成人| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av在线| tocl精华| 欧美 亚洲 国产 日韩一| 欧美午夜高清在线| 精品久久蜜臀av无| 久久久久久人人人人人| 成人午夜高清在线视频| 欧美最黄视频在线播放免费| 亚洲专区中文字幕在线| 久久久久久久精品吃奶| 欧美高清成人免费视频www| 亚洲成人久久性| 国产精品久久久久久人妻精品电影| 欧洲精品卡2卡3卡4卡5卡区| 国产三级在线视频| 在线观看日韩欧美| 在线观看免费视频日本深夜| 九九热线精品视视频播放| 一本一本综合久久| 亚洲欧美精品综合一区二区三区| 免费看美女性在线毛片视频| 久久午夜综合久久蜜桃| www日本黄色视频网| 精品无人区乱码1区二区| 亚洲国产高清在线一区二区三| 国产三级黄色录像| 久久热在线av| 婷婷六月久久综合丁香| 亚洲成a人片在线一区二区| 亚洲自偷自拍图片 自拍| 国产一区二区在线av高清观看| 国产人伦9x9x在线观看| 亚洲国产精品sss在线观看| 老司机午夜十八禁免费视频| 欧美乱码精品一区二区三区| 国产av不卡久久| 国产av一区在线观看免费| 18禁黄网站禁片免费观看直播| 黄色片一级片一级黄色片| 在线观看www视频免费| 色精品久久人妻99蜜桃| 成人高潮视频无遮挡免费网站| 色综合站精品国产| 热99re8久久精品国产| 麻豆久久精品国产亚洲av| 丝袜人妻中文字幕| 欧美日韩瑟瑟在线播放| 午夜免费观看网址| 亚洲avbb在线观看| 国产精品免费视频内射| 欧美日韩乱码在线| 天堂影院成人在线观看| www日本黄色视频网| 国产69精品久久久久777片 | 91成年电影在线观看| 91老司机精品| 美女大奶头视频| 桃色一区二区三区在线观看| 久久人人精品亚洲av| 午夜福利成人在线免费观看| bbb黄色大片| 老汉色∧v一级毛片| 首页视频小说图片口味搜索| 一进一出好大好爽视频| 一级毛片精品| 日本a在线网址| 国产午夜福利久久久久久| av片东京热男人的天堂| 少妇被粗大的猛进出69影院|