• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving the BER performance of turbo codes with short frame size based on union bound①

    2015-04-17 06:38:30ShaoXiaLiPingZhangWeidang
    High Technology Letters 2015年3期

    Shao Xia (邵 霞), Li Ping, Zhang Weidang

    (*Department of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, P.R.China)(**Department of Information Management, Shengda Trade Economics & Management College of Zhengzhou, 451191, P.R.China)(***School of Information Engineering, Zhengzhou University, Zhengzhou 450001, P.R.China)

    ?

    Improving the BER performance of turbo codes with short frame size based on union bound①

    Shao Xia (邵 霞)*, Li Ping**, Zhang Weidang②

    (*Department of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450011, P.R.China)(**Department of Information Management, Shengda Trade Economics & Management College of Zhengzhou, 451191, P.R.China)(***School of Information Engineering, Zhengzhou University, Zhengzhou 450001, P.R.China)

    In order to improve the bit error rate (BER) performance of turbo codes with short frame size at a wide range of signal to noise ratio (SNR), a new method by optimizing the bit energy is proposed. At first, a formula derived from the Union Bound is introduced. It describes the relations between the bit error rate distribution and the minimum weight distribution. And then, by mathematically optimizing the formula, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR region. At last, an adjustable parameter is employed to compensate the degradations of BER at low and moderate SNR regions. Case studies indicate that the improvements of BER for turbo codes with short frame size are significant at a wide range of SNR.

    channel coding, bit error rate (BER), energy allocation, turbo code

    0 Introduction

    How to improve the bit error rate (BER) performance of turbo codes[1]is the most important task. There are many methods toward this destination. One of them is to reallocate the energy of the bit in the bit stream of the codeword. These schemes have previously been proposed in Refs[2-8]. In Ref.[2], the author assigned less and less power to the parity bits as the noise level increased to avoid the traditional negative “coding gain” associated with all error correcting codes at high noise levels. Ref.[3] showed that the fraction of the total power that should be allocated to a systematic bit was usually lower than that of the parity bit. But the amount of improvement depends on the choice of component codes, interleaver length and signal to noise ratio. Ref.[4] also pointed out that if different energies were assigned to two outputs of a turbo encoder, the information bit and parity bit, then the performance would be changed according to the ratio of the information bit energy to the parity bit energy. The optimum point of the ratio may not be 1. As the rate of the turbo code is changed, the optimum point would also be changed. In Ref.[5], it concluded that for turbo codes with short frames operating in very low signal-to-noise environments, more energy should be assigned to the systematic bits so that the performance was improved. At higher signal-to-noise ratios, allocating less energy to the systematic bits improved the performance. Ref.[6] studied the effect of asymmetric energy allocations to the output bits of turbo codes. It showed that the error floor was improved as more energy was given to the non-systematic bits. However, due to the degradation in the convergence threshold of the code, tradeoff between the error floor and the convergence threshold appeared. Ref.[7] studied theoretically and empirically channels coding for nonuniform i.i.d. sequences using turbo codes with unequal energy allocation. It was shown that both systematic codes and non-systematic codes with unequal energy allocation were improved on equal energy allocation schemes. Ref.[8] introduced a method of reducing the error floor in parallel concatenated codes. It also pointed out that simple approaches based on modifying just the energy of the systematic and coded bits seemed very attractive. From the references listed above we can see that nearly all of them allocate the energies between the systematic bits and parity bits, but the merits of different strategies are sometimes not very clear, with different authors arriving to contradicting conclusions[6]. This is because that there is no theoretical base for the energy allocation between the information bits and parity check bits. The fraction of the total energy depends on the choice of the component codes, interleaver length, puncturing pattern and the signal to noise ratio.

    In Ref.[9], the authors allocated the bits’ energies among the codewords that have different weights instead of between the systematic and parity bits. In this scheme more energy is assigned to the codewords that have minimum (and second minimum) weight and the simulation results showed that the “error floor” of turbo codes was improved with no practical degradation in the waterfall region.

    In this work, a new method is presented to decrease the bit error rate (BER) by optimizing the bit energy. It is based on a formula, which describes the relationships between the bit error rate distribution and the minimum weight distribution, derived from the union bound. Through mathematical optimization, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR. Then by adding an adjustable parameter, the BER performance at low and moderate SNR regions is also improved.

    The paper is organized as follows. A formula to estimate the BER distributions based on the union bound is introduced in Section 1. In Section 2, we firstly derive a formula to optimize the bit energy based on the BER distribution. Then we introduce an adjustable parameter to modify the energy distribution so that it can be used at low and moderate SNR regions. In Section 3, more detailed optimizing procedures are provided and various types of turbo codes are simulated to show the efficiency of the scheme. Section 5 is the conclusion.

    1 Union bound and the formulas of the BER distribution

    Let c=(c0, c1,…,cN-1) be a binary codeword, where N is the code length, cj=0 or 1 is called the j-th bit of the codeword. If a codeword is with ci=1, it is said that the i-th bit connects to this codeword, or this codeword connects to the i-th bit.

    For an Additive White Gaussian Noise (AWGN) channel, the BER is bounded by the union bound as[10]

    (1)

    where wiand diare the information weight and total Hamming weight, respectively, of the i-th codeword. k is the input length. Rcis the code rate. Ebis the bit energy of the codeword and N0is the noise power spectrum density.

    From Eq.(1), a formula to estimate the bit error rate for every position at higher SNR can be derived as[11,12]

    (2)

    where dmin(j) is the lowest weight of the codeword(s) that connects to the j-th bit and nmin(j) is its multiplicity, where j=0,1,…,N-1. We call the sequence (dmin(j), nmin(j), j=0,1,…,N-1) the distribution of minimum weight codewords.

    Eq.(2) shows that, generally, bit error rates pb(j) are not identical for different j. For example, if a bit in the codeword sequence connects to a lower weight codeword, it will have a weaker error protection so the bit error rate for this bit will be higher. The average bit error rate of the code is dominated by such bits that connect to the low weight codewords. Therefore, if the bits’ energy is changed so that more energy is allocated to the bits that connect to low weight codewords and less energy to the bits that connect to high weight codewords, the average bit error rate will be decreased.

    2 Optimizing the bit energy with an adjustable parameter

    In Eq.(2), constant bit energy Ebby Eb(j) is replaced that is the optimized bit energy for the j-th bit and pb(j) is replaced by pob(j) that is the new bit error rate for bit j relating to Eb(j), then Eq.(2) becomes

    (3)

    (4)

    Now the minimum value of average BER expressed by Eq.(4) will be found with the binding condition of energy conservation:

    (5)

    Using the Lagrange multiplier method, let λ be the multiplier, the formula of calculating the optimized bit energy Eb(j) can be derived and the result is

    (6)

    where

    (7)

    So Eb(j) expressed by Eq.(6) is the optimized energy for bit j. It is determined by the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Apparently, if dmin(j), as well as nmin(j), are constant, then Eb(j)=Eb. In this case, there is no need to modify the bit energy, such as the equal-weight codes that have perfect construction. But there are many codes, especially such as turbo codes, that don’t have such perfect construction. Their dmin(j)s usually expend to a wide range. In this case, there are much more spaces for the bit energy to be optimized and noticeable improvements can be achieved.

    To calculate optimized bit energy Eb(j), the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1) should be found. If the code length is not long, for example, it is no longer than thousands bits, the methods presented in Refs[13-15] and [16] are very efficient to calculate the minimum distance of turbo codes. Through modifications, they can be used to find the parameters of dmin(j) and nmin(j).

    (8)

    where ρ is the adjustable parameter.

    Without loss of generality, assuming Eb=1, Eq.(9) can be got:

    (9)

    (10)

    3 Optimization procedures and simulation results

    The followings give the optimization procedures and simulation results. There are four turbo codes used in this section. The generator matrix for the four codes is the same, which is g=(1, 10001/10011). But they have different code lengths, different interleavers and different puncturing patterns. Code 1 is a turbo code with a 8×8 block interleaver of size 64 and without puncturing. So the code rate is 1/3. Another turbo code, noted as code 2, is with a 32×32 block interleaver. The puncturing pattern for this code is p=(10; 01). So the code rate is 1/2. There are other two turbo codes. Both of them use random interleavers, but the sizes are 64 and 1024 separately. The turbo code of size 64, noted as code 3, is not punctured. The turbo code of size 1024, noted as code 4, is punctured with puncturing pattern p = (10; 01). For all the turbo codes, the decoding algorithm is BCJR, the number of iteration is 5 and the two encoder components are both terminated. Binary antipodal signalling is used with an AWGN channel model. The SNR is measured in terms of energy per information bit, Eb, over the single-sided noise power spectral density, N0.

    Based on code 3, which has the code length of N=(64+4)×3=204, the practical procedures of optimization will be given and used to show the efficiency of the proposed scheme.

    Firstly, the minimum weight distribution (dmin(j), nmin(j) is searched, j=0,1,2,…,N-1) of the code by the method presented in Ref.[10] is searched. Fig.1 shows the distribution of the minimum weight (dmin(j), nmin(j), j=0,1,2,…,N-1) of code 3.

    Fig.1 The minimum weight distribution (dmin(j), nmin(j), j=0, 1, 2, …,N-1) of code 3 calculated by the method presented in Ref.[10]

    Secondly, the optimized bit energy distribution can be got by Eq.(6) with the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Fig.2 shows the bit energy distributions before and after energy optimization. Before energy optimization, the bit energy is the same for all bits in the codewords. The bit energy is assumed Eb=1. So curve 1 is a straight line with amplitude 1. After energy optimization, the distribution of bit energy is not even. Compared with Fig.1, apparently, more energy is allocated to the bits that connect to the lowest weight codeword and less energy is allocated to the bits connecting to high weight codewords.

    Fig.2 The bit energy distributions before and after energy optimization for code 3

    Fig.3 The BER distributions before and after energy optimization for code 3 at SNR=4dB

    Table 1 shows the values of BER at different SNRs without and with bit energy optimization separately. By examining Table 1 we find that at high SNR region, such as 4dB and 5dB, the average BERs are improved obviously. But at low and moderate SNR regions, there even some degradations appeared.

    Table 1 The average BER without and with energy optimization for code 3 at different SNRs

    Finally, by modifying the optimized bit energy with adjustable ρ expressed by Eq.(8), the lowest BER at a wide range of SNR is got.

    Table 2 shows the valid ranges of ρ constrained by Eq.(10) at some specific SNRs. The best values of ρ that produce the lowest BER at specific SNRs and the corresponding BERs are also displayed in the table. The best values of ρ are obtained by grid search within the valid ranges, starting from step size of 2, down to the finest step size of 0.25. From the table we can see that after modification with ρ, the BER performance is improved not only at high SNR region, but also at low and moderate SNR regions.

    Table 2 The valid ranges of ρ at different SNRs, the best values of ρ and the corresponding values of BER for code 3

    The BER improvements in the two figures are obvious. From the figures it can be seen that after energy optimizing, the BER curves corresponding to Eq.(6) are lower than the curves before energy optimizing at

    Fig.4 The simulation BER curves before and after optimizing for code 1 and code 2

    Fig.5 The simulation BER curves before and after optimizing for code 3 and code 4

    high SNR regions. For example, the improvements are more than 1 order of magnitude at 4.5dB for turbo code 3 and at 2.5dB for turbo code 4. In the two figures that, with modification of Eq.(8), the BER performance at low and moderate SNR regions is improved and all the curves corresponding to Eq.(8) have the best performance.

    So, by optimizing the bit energy distributions to the codeword sequences, the BER performance is improved noticeably. In fact, this scheme changes the weight of the codewords. For example, the minimum weight for code 3 is 7 before energy optimizing. After optimizing, this codeword’s weight is changed to 12 at 5dB. For code 2, the minimum weight is changed from 7 to 10 after optimizing at 4dB.

    4 Conclusion

    A new method to optimize the bit energy is presented in this work. By changing the bit energy allocation in an optimized way, the deviation of the BER distribution is decreased; the minimum weight of the codewords is increased; and the average BER is minimized over a wide range of SNR. However, this scheme is based on the minimum weight distribution (dmin(j), nmin(j), j=0,1,2,…,N-1). Finding the minimum weight distribution consume time very much especially when the code size is not short. Therefore the proposed scheme is suitable for turbo coded with short size. How to optimize the bit energy for the code with large size is further work.

    [ 1] Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error-correcting coding and decoding: Turbo codes. In: Proceedings of the IEEE International Conference Communications, Geneva, Switzerland, 1993. 1064-1070

    [ 2] Hokfelt J, Maseng T. Optimizing the energy of different bitstreams of turbo codes. In: Proceedings of the Turbo Coding Seminar, Lund, Sweden, 1998. 59-63

    [ 3] Duman T M, Salehi M. On optimal power allocation for turbo codes. ISIT 1997, Ulm, Germany, June-July: 104

    [ 4] Choi Y, Lee P. Analysis of turbo codes with asymmetric modulation, Electron. Lett., 1999, 35, (1): 35-36

    [ 5] Salah M M, Raines R A, Temple M A, et al. Energy allocation strategies for Turbo codes with short frames. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC 2000), Las Vegas, USA, 2000. 27-29

    [ 6] Cabarcas F, Garcia-Frias J. Asymmetric energy allocation strategies to improve Turbo codes performance. In: Proceedings of the Vehicular Technology Conference (VTC 2001 Fall). 2001, (3):1839-1842

    [ 7] Shamir G I, Souza R D, Garcia-Frias J. Unequal energy allocation with Turbo Codes for nonuniform sources. In: Proceedings of the Turbo-Coding-2006, Munich, Germany, 2006. 1-6

    [ 8] Garcia-Frias J, Cabarcas F. Reducing the error floor in turbo codes by using non-binary constituent encoders. In: Proceedings of the Vehicular Technology Conference, Boston, USA, 2000. 1230-1237

    [ 9] Zhang W, Wang X. Optimal energy allocations for turbo codes based on distributions of low weight codewords, Electronics Letters, 2004,19(40): 1205-1206

    [10] S. Benedetto, G. Montorsi, Unveiling turbo codes: Some results on parallel concatenated coding schemes, IEEE Trans. Inform. Theory, 1996,42(2): 1996. 409-428

    [11] Shao X, Zhang W D. Estimate the BER Distributions of Turbo Codes, Wireless and Microwave Technologies, 2012, 2:53-58

    [12] Zhang W D, Shao X, Torki M et al. Unequal error protection of JPEG2000 images using short block length turbo codes, Communications Letters, IEEE, 2011,15(6): 659-661

    [13] Roberto G, Paola P, Sergio B. Computing the free distance of turbo codes and serially concatenated codes with interleavers: algorithms and applications, IEEE Journal on Selected Areas in Commun, 2001,19(5): 800-812

    [14] Sandro S, Young-Jik K B, Harald E. A fast algorithm to estimate the distance spectrum of turbo codes. In: Proceedings of the 10th International Conference on Telecommunications (ICT 2003), Papeete, FR Polynesia, 2003. 90-95

    [15] Crozier S, Guinand P, Hunt A. Estimating the minimum distance of turbo codes using double and triple impulse methods, IEEE Communications Letters, 2005,(7): 631-633

    [16] Ould-Cheikh-Mouhamedou Y. Crozier S, Kabal P. Comparison of Distance Measurement Methods for Turbo codes. In: Proceedings of the 9th Canadian Workshop on Information Theory, Montreal, Canada, 2005. 36-39

    Shao Xia, born in 1970. She received her M.S. degree and B. S. degree from Zhengzhou University in 2007 and 1992 separately. Her research focuses on key techniques for telecommunication theory and engineering.

    10.3772/j.issn.1006-6748.2015.03.010

    ①Supported by the National High Technology Research and Development Programme of China (No. 2014AA01A705) and the National Natural Science Foundation of China (U1204607).

    ②To whom correspondence should be addressed. E-mail: zhangweidang@zzu.edu.cn Received on June 23, 2014***

    91久久精品电影网| 久久九九热精品免费| 成人二区视频| 日韩欧美在线乱码| 亚洲精品一卡2卡三卡4卡5卡| 一个人看的www免费观看视频| 三级国产精品欧美在线观看| 国产男人的电影天堂91| 麻豆成人午夜福利视频| 久久久精品大字幕| 日本黄大片高清| 高清日韩中文字幕在线| 亚洲精品久久国产高清桃花| 久久久久久久久久久丰满 | 日韩精品有码人妻一区| 欧美成人a在线观看| 亚洲人成伊人成综合网2020| 少妇的逼水好多| 国产老妇女一区| 成人国产麻豆网| 香蕉av资源在线| 亚洲熟妇中文字幕五十中出| 欧美黑人欧美精品刺激| 免费不卡的大黄色大毛片视频在线观看 | 亚洲自拍偷在线| 亚洲真实伦在线观看| 久久久久久久久大av| 深夜精品福利| 日本精品一区二区三区蜜桃| 亚洲av美国av| 久久精品影院6| 国产一区二区亚洲精品在线观看| 九九久久精品国产亚洲av麻豆| 午夜a级毛片| 国产精品日韩av在线免费观看| 桃红色精品国产亚洲av| 久久久久精品国产欧美久久久| 中文资源天堂在线| 久久国产乱子免费精品| 国产精品久久久久久av不卡| 亚洲不卡免费看| 国产精品国产高清国产av| 91av网一区二区| 日本免费a在线| 欧美色欧美亚洲另类二区| 中文字幕高清在线视频| 欧美日本亚洲视频在线播放| 极品教师在线免费播放| 夜夜夜夜夜久久久久| 在线播放无遮挡| 国产三级中文精品| 日韩强制内射视频| 老司机福利观看| 看免费成人av毛片| 免费av毛片视频| 精品久久久久久久末码| 淫妇啪啪啪对白视频| 日本-黄色视频高清免费观看| 黄色女人牲交| 日韩欧美精品免费久久| 亚洲三级黄色毛片| 国产精品一区二区性色av| 亚洲国产欧洲综合997久久,| 午夜精品久久久久久毛片777| 久久人妻av系列| 国产精品亚洲一级av第二区| 88av欧美| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| av在线观看视频网站免费| 听说在线观看完整版免费高清| 可以在线观看的亚洲视频| a级一级毛片免费在线观看| 国产爱豆传媒在线观看| 在线观看美女被高潮喷水网站| 亚洲人成伊人成综合网2020| 亚洲国产精品合色在线| 丰满人妻一区二区三区视频av| 嫩草影院入口| 精品久久久噜噜| 两个人的视频大全免费| 俄罗斯特黄特色一大片| 国产亚洲欧美98| 免费看光身美女| 欧美日韩精品成人综合77777| 欧美性感艳星| 欧洲精品卡2卡3卡4卡5卡区| 永久网站在线| 国产精品精品国产色婷婷| 成人二区视频| 亚洲成人免费电影在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产日本99.免费观看| 中文资源天堂在线| 男人舔女人下体高潮全视频| 好男人在线观看高清免费视频| 九色国产91popny在线| 国产午夜福利久久久久久| 国产av不卡久久| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 久久中文看片网| 在现免费观看毛片| 日日摸夜夜添夜夜添av毛片 | 亚洲精品乱码久久久v下载方式| 亚洲av五月六月丁香网| 国产av不卡久久| 亚洲人成伊人成综合网2020| 一个人看的www免费观看视频| 久久人人精品亚洲av| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 成人av一区二区三区在线看| 搡老妇女老女人老熟妇| 亚洲av免费在线观看| 最近在线观看免费完整版| 赤兔流量卡办理| 国产三级在线视频| 久久久久国内视频| 亚洲精华国产精华液的使用体验 | 国产免费一级a男人的天堂| 国产一区二区激情短视频| 久久国内精品自在自线图片| 在线观看舔阴道视频| 亚洲成人中文字幕在线播放| 一区二区三区免费毛片| 亚洲av中文字字幕乱码综合| avwww免费| 亚洲va在线va天堂va国产| 国产探花在线观看一区二区| 一级a爱片免费观看的视频| 亚洲精品影视一区二区三区av| 久久久久久久久久久丰满 | 亚洲性夜色夜夜综合| 国产精品伦人一区二区| 国产一区二区三区视频了| 成人特级av手机在线观看| 成人二区视频| 国产精品一区二区性色av| 我要看日韩黄色一级片| 一级黄片播放器| 国产精品不卡视频一区二区| 一本久久中文字幕| 毛片女人毛片| 99久国产av精品| 国产精品野战在线观看| 欧美日韩综合久久久久久 | 少妇人妻一区二区三区视频| 亚洲精品色激情综合| 亚洲aⅴ乱码一区二区在线播放| 在线观看舔阴道视频| 内射极品少妇av片p| 999久久久精品免费观看国产| 亚洲精品成人久久久久久| 美女黄网站色视频| 舔av片在线| 亚洲av免费高清在线观看| 免费看日本二区| 波多野结衣巨乳人妻| 国产亚洲精品久久久久久毛片| 精品一区二区三区人妻视频| 美女免费视频网站| 国产一区二区激情短视频| 午夜精品在线福利| 中国美白少妇内射xxxbb| 日本 av在线| 国产精品嫩草影院av在线观看 | 亚洲av中文av极速乱 | 麻豆成人av在线观看| 国产男人的电影天堂91| 免费看av在线观看网站| 欧美区成人在线视频| 国产成人福利小说| 久久精品国产亚洲av天美| 日韩欧美 国产精品| 午夜亚洲福利在线播放| 国产aⅴ精品一区二区三区波| 亚洲成人久久性| 在线观看美女被高潮喷水网站| 亚洲av电影不卡..在线观看| 亚洲第一区二区三区不卡| 露出奶头的视频| 精品99又大又爽又粗少妇毛片 | 国产日本99.免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚州av有码| 两人在一起打扑克的视频| 黄色日韩在线| 亚洲狠狠婷婷综合久久图片| 亚洲天堂国产精品一区在线| 亚洲成人中文字幕在线播放| 非洲黑人性xxxx精品又粗又长| 成人高潮视频无遮挡免费网站| 九九久久精品国产亚洲av麻豆| 国内精品宾馆在线| 一个人看的www免费观看视频| 国产男人的电影天堂91| 亚洲国产精品久久男人天堂| 成人国产一区最新在线观看| 久久久久九九精品影院| 日韩精品中文字幕看吧| 国产一区二区三区在线臀色熟女| 精品人妻一区二区三区麻豆 | www日本黄色视频网| 真人一进一出gif抽搐免费| 欧美绝顶高潮抽搐喷水| 亚洲av成人av| 别揉我奶头 嗯啊视频| 在线观看av片永久免费下载| 国产成人影院久久av| 91在线观看av| 国产精品一区二区三区四区久久| 色av中文字幕| 亚洲精品在线观看二区| 亚洲精品久久国产高清桃花| 黄色配什么色好看| 最近视频中文字幕2019在线8| 中文字幕免费在线视频6| 日本黄大片高清| 精品免费久久久久久久清纯| 久久久久久久久中文| 99久久精品热视频| 两人在一起打扑克的视频| 国产熟女欧美一区二区| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添av毛片 | 亚洲av中文字字幕乱码综合| 深夜精品福利| av黄色大香蕉| 最新中文字幕久久久久| 欧美丝袜亚洲另类 | 国产淫片久久久久久久久| 欧美日韩瑟瑟在线播放| 国产一区二区亚洲精品在线观看| 欧美极品一区二区三区四区| 日本免费一区二区三区高清不卡| 色精品久久人妻99蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 在线免费观看的www视频| 麻豆av噜噜一区二区三区| 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 国产精品乱码一区二三区的特点| 欧美性猛交黑人性爽| 精品人妻一区二区三区麻豆 | 婷婷六月久久综合丁香| 啦啦啦啦在线视频资源| 国产精品久久久久久亚洲av鲁大| 免费观看的影片在线观看| 日韩国内少妇激情av| 精品久久久久久久久av| 久久久久久久亚洲中文字幕| 香蕉av资源在线| 成人欧美大片| www.色视频.com| aaaaa片日本免费| 国产老妇女一区| 一个人免费在线观看电影| 大又大粗又爽又黄少妇毛片口| 亚洲成人精品中文字幕电影| aaaaa片日本免费| 国产极品精品免费视频能看的| 日韩欧美免费精品| 午夜视频国产福利| 国产男人的电影天堂91| 男女那种视频在线观看| 久久婷婷人人爽人人干人人爱| 一进一出抽搐动态| 九九在线视频观看精品| 男女视频在线观看网站免费| 国产精品乱码一区二三区的特点| 国产精品日韩av在线免费观看| 99热这里只有精品一区| 精华霜和精华液先用哪个| 能在线免费观看的黄片| 我的老师免费观看完整版| 日本 欧美在线| 欧美人与善性xxx| 国国产精品蜜臀av免费| 窝窝影院91人妻| 精品一区二区免费观看| 中文字幕免费在线视频6| av中文乱码字幕在线| 麻豆国产av国片精品| 黄色日韩在线| 亚洲精品影视一区二区三区av| 亚洲午夜理论影院| 国国产精品蜜臀av免费| 国产av麻豆久久久久久久| 我的女老师完整版在线观看| 级片在线观看| 久久久久久伊人网av| 蜜桃亚洲精品一区二区三区| 少妇人妻一区二区三区视频| 女人被狂操c到高潮| 成人国产一区最新在线观看| 18禁黄网站禁片午夜丰满| 久久精品91蜜桃| 日韩欧美免费精品| 老司机福利观看| 999久久久精品免费观看国产| 国产精品,欧美在线| 禁无遮挡网站| 欧美最黄视频在线播放免费| 午夜福利高清视频| 一个人免费在线观看电影| 热99re8久久精品国产| 天堂av国产一区二区熟女人妻| 亚洲专区中文字幕在线| 91麻豆精品激情在线观看国产| 久久国内精品自在自线图片| 国产av麻豆久久久久久久| 亚洲精品一区av在线观看| 搡老妇女老女人老熟妇| 精品人妻一区二区三区麻豆 | 亚洲午夜理论影院| 国产真实伦视频高清在线观看 | av在线亚洲专区| 精品久久国产蜜桃| 成人欧美大片| 国产精品日韩av在线免费观看| 国产又黄又爽又无遮挡在线| 久久精品国产清高在天天线| 老司机福利观看| 精品人妻视频免费看| 非洲黑人性xxxx精品又粗又长| 永久网站在线| 最近在线观看免费完整版| 夜夜看夜夜爽夜夜摸| 欧美xxxx黑人xx丫x性爽| 成人国产综合亚洲| 男女视频在线观看网站免费| 波野结衣二区三区在线| 中国美女看黄片| 白带黄色成豆腐渣| 日本 欧美在线| 成人国产综合亚洲| 性插视频无遮挡在线免费观看| 亚洲,欧美,日韩| 我要看日韩黄色一级片| 国产成人一区二区在线| 日本免费a在线| 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 免费一级毛片在线播放高清视频| 国产精品人妻久久久影院| 国产 一区 欧美 日韩| 99久久精品热视频| 国产综合懂色| 欧美精品国产亚洲| 日日夜夜操网爽| 波多野结衣高清作品| 亚洲人成网站高清观看| 国产男人的电影天堂91| 国产精品野战在线观看| 嫩草影院精品99| 少妇的逼水好多| 综合色av麻豆| 国产午夜精品论理片| 99九九线精品视频在线观看视频| 中文字幕高清在线视频| 欧美性感艳星| 亚洲最大成人中文| 99国产精品一区二区蜜桃av| av福利片在线观看| 美女cb高潮喷水在线观看| 中文亚洲av片在线观看爽| 日韩欧美精品免费久久| 免费观看在线日韩| 成人性生交大片免费视频hd| 12—13女人毛片做爰片一| 国产欧美日韩一区二区精品| 国产爱豆传媒在线观看| 久久久久性生活片| 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 国产精品久久久久久精品电影| 蜜桃久久精品国产亚洲av| 午夜a级毛片| 九九爱精品视频在线观看| 搡女人真爽免费视频火全软件 | 99热这里只有是精品50| 少妇的逼好多水| 啦啦啦韩国在线观看视频| 有码 亚洲区| 看片在线看免费视频| 国产精品三级大全| 免费av观看视频| 国产精品精品国产色婷婷| av在线亚洲专区| 一夜夜www| 又黄又爽又免费观看的视频| 一边摸一边抽搐一进一小说| av在线蜜桃| 99精品久久久久人妻精品| 国内少妇人妻偷人精品xxx网站| 一本一本综合久久| 久久久久久九九精品二区国产| 久久九九热精品免费| 国内精品美女久久久久久| 国产欧美日韩一区二区精品| 欧美又色又爽又黄视频| 国产v大片淫在线免费观看| 男人舔女人下体高潮全视频| 一本精品99久久精品77| 床上黄色一级片| 人人妻人人看人人澡| 深爱激情五月婷婷| 熟妇人妻久久中文字幕3abv| 色播亚洲综合网| 精品不卡国产一区二区三区| 精品一区二区三区视频在线| 亚洲真实伦在线观看| 蜜桃亚洲精品一区二区三区| 国产蜜桃级精品一区二区三区| 精品久久久久久成人av| 日韩欧美三级三区| 欧美潮喷喷水| 超碰av人人做人人爽久久| 亚洲最大成人中文| 日韩高清综合在线| 国产爱豆传媒在线观看| 成人鲁丝片一二三区免费| 少妇丰满av| 久久精品国产鲁丝片午夜精品 | 国产在线男女| 我要搜黄色片| 久久久久国产精品人妻aⅴ院| 岛国在线免费视频观看| 国产精品亚洲一级av第二区| 在现免费观看毛片| 久久热精品热| 99久国产av精品| 国产蜜桃级精品一区二区三区| 高清在线国产一区| 十八禁网站免费在线| 久久久久久久久中文| 午夜亚洲福利在线播放| 在线a可以看的网站| 69人妻影院| 网址你懂的国产日韩在线| 亚洲欧美清纯卡通| 亚洲精品亚洲一区二区| 精品午夜福利视频在线观看一区| 久久亚洲精品不卡| 又黄又爽又刺激的免费视频.| 国产精品免费一区二区三区在线| 久久久精品大字幕| 舔av片在线| 少妇熟女aⅴ在线视频| 性插视频无遮挡在线免费观看| av天堂中文字幕网| 麻豆成人午夜福利视频| 亚洲成人精品中文字幕电影| 国产在视频线在精品| 美女高潮喷水抽搐中文字幕| 午夜视频国产福利| 女人十人毛片免费观看3o分钟| 99久久九九国产精品国产免费| 性插视频无遮挡在线免费观看| 一级黄色大片毛片| 能在线免费观看的黄片| 97人妻精品一区二区三区麻豆| 亚洲av电影不卡..在线观看| 亚洲精品色激情综合| 亚洲中文日韩欧美视频| 亚洲欧美日韩卡通动漫| 国产一级毛片七仙女欲春2| 成人性生交大片免费视频hd| 美女大奶头视频| 国产在视频线在精品| 有码 亚洲区| 国产免费男女视频| 嫁个100分男人电影在线观看| 亚洲中文字幕一区二区三区有码在线看| 久久久色成人| 精品久久久久久,| 色尼玛亚洲综合影院| 国产欧美日韩精品亚洲av| 色5月婷婷丁香| 欧美成人a在线观看| 不卡视频在线观看欧美| 午夜亚洲福利在线播放| 中文资源天堂在线| 天堂√8在线中文| 久久久久久久亚洲中文字幕| 国产精品av视频在线免费观看| 国产日本99.免费观看| 又粗又爽又猛毛片免费看| 午夜精品久久久久久毛片777| 熟女电影av网| 欧美xxxx黑人xx丫x性爽| 婷婷精品国产亚洲av| 男女视频在线观看网站免费| 伦理电影大哥的女人| 丝袜美腿在线中文| 黄色一级大片看看| 丝袜美腿在线中文| 成人国产综合亚洲| 丝袜美腿在线中文| h日本视频在线播放| 免费搜索国产男女视频| 亚洲色图av天堂| 久久亚洲真实| 欧美最新免费一区二区三区| 欧美黑人巨大hd| 欧美日韩综合久久久久久 | 美女被艹到高潮喷水动态| 最近中文字幕高清免费大全6 | 69人妻影院| 精品一区二区三区视频在线观看免费| 51国产日韩欧美| 久久精品久久久久久噜噜老黄 | 欧美性猛交╳xxx乱大交人| 亚洲精品一卡2卡三卡4卡5卡| 久久午夜亚洲精品久久| 日韩欧美精品v在线| av黄色大香蕉| 亚洲性夜色夜夜综合| 国产老妇女一区| 久久精品国产亚洲网站| 高清日韩中文字幕在线| av在线亚洲专区| 久久久久九九精品影院| 久久人人精品亚洲av| 国产大屁股一区二区在线视频| 国产一区二区激情短视频| 黄色一级大片看看| 能在线免费观看的黄片| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久亚洲中文字幕| 校园人妻丝袜中文字幕| 永久网站在线| 国产精品久久久久久久久免| 国产亚洲91精品色在线| 欧美精品啪啪一区二区三区| 麻豆成人午夜福利视频| 一区福利在线观看| 亚洲中文日韩欧美视频| 一边摸一边抽搐一进一小说| 国产男靠女视频免费网站| 国产综合懂色| 超碰av人人做人人爽久久| 免费观看在线日韩| 99久国产av精品| 亚洲熟妇熟女久久| 日韩精品中文字幕看吧| 国产精品美女特级片免费视频播放器| 日本色播在线视频| 大又大粗又爽又黄少妇毛片口| av在线天堂中文字幕| 国产视频一区二区在线看| 99热6这里只有精品| 免费av毛片视频| 色5月婷婷丁香| 成年人黄色毛片网站| 日韩欧美精品v在线| 国产色婷婷99| 亚洲国产精品成人综合色| 大型黄色视频在线免费观看| 国产精品永久免费网站| 嫩草影院精品99| 亚洲电影在线观看av| 中出人妻视频一区二区| 女生性感内裤真人,穿戴方法视频| 人妻制服诱惑在线中文字幕| 亚洲国产色片| 在线观看一区二区三区| 色综合婷婷激情| 18禁裸乳无遮挡免费网站照片| 亚洲精品在线观看二区| 九色国产91popny在线| 国产伦人伦偷精品视频| 人妻夜夜爽99麻豆av| 亚洲久久久久久中文字幕| 露出奶头的视频| 亚洲电影在线观看av| 婷婷丁香在线五月| 琪琪午夜伦伦电影理论片6080| 亚洲av五月六月丁香网| aaaaa片日本免费| 亚州av有码| 色综合色国产| 亚洲人成伊人成综合网2020| 亚洲av免费在线观看| 看免费成人av毛片| 无人区码免费观看不卡| 丰满人妻一区二区三区视频av| 亚洲无线观看免费| 久久午夜亚洲精品久久| 在线观看一区二区三区| 亚洲午夜理论影院| 亚洲av免费高清在线观看| 日韩精品有码人妻一区| 在线观看舔阴道视频| 在现免费观看毛片| 婷婷六月久久综合丁香| 国产伦一二天堂av在线观看| 成人av在线播放网站| 久久久久久伊人网av| 国产免费男女视频| 18禁黄网站禁片午夜丰满| 丰满人妻一区二区三区视频av| 国产精品亚洲美女久久久| 成人性生交大片免费视频hd| 香蕉av资源在线| 亚洲欧美日韩东京热| 国产美女午夜福利| 在线免费观看的www视频| 欧美精品啪啪一区二区三区| 中文字幕精品亚洲无线码一区| 国产精品久久久久久精品电影| 欧美日本视频| 麻豆成人午夜福利视频| 亚洲av.av天堂|