涂 鳴,張國濤,夏 晨,胡大偉,曾 榮,周 勇
拖拉機排氣余熱板翅式蒸發(fā)器熱力性能分析與參數(shù)優(yōu)化
涂 鳴1,2,張國濤1,3,夏 晨1,胡大偉4,曾 榮1,2,周 勇1,2※
(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2. 農(nóng)業(yè)農(nóng)村部長江中下游農(nóng)業(yè)裝備重點實驗室,武漢 430070;3. 華中科技大學(xué)機械科學(xué)與工程學(xué)院,武漢 430074;4. Department of Mechanical Engineering, Michigan State University, East Lansing, 48824)
利用拖拉機排氣余熱能夠有效降低燃油消耗,其中基于有機朗肯循環(huán)(Organic Rankine Cycle, ORC)的余熱能量轉(zhuǎn)換效率最高。該研究根據(jù)拖拉機實際空間尺寸,試制了一種板翅式蒸發(fā)器用以回收柴油機排氣余熱?;谝苿舆吔绶ń⑴艢馀c工質(zhì)對流傳熱數(shù)值模型,結(jié)合臺架試驗數(shù)據(jù)驗證模型有效性,并定量分析了柴油機全工況下蒸發(fā)器熱力性能。為提高蒸發(fā)器傳熱量和適用范圍,采用CFD仿真和BP神經(jīng)網(wǎng)絡(luò)進一步分析非設(shè)計工況時蒸發(fā)器傳熱特性,并對結(jié)構(gòu)與工質(zhì)參數(shù)進行優(yōu)化。結(jié)果表明:1)蒸發(fā)器熱力性能隨轉(zhuǎn)速和負載增大而提高,最大傳熱量為69.89 kW,在中低轉(zhuǎn)速負載工況下,蒸發(fā)器出現(xiàn)傳熱不穩(wěn)定現(xiàn)象;2)增加接管倒角和改變翅片形狀,在蒸發(fā)器尺寸不變條件下傳熱量可提高5.2%,傳熱面積增大0.19 m2;3)通過優(yōu)化流道、工質(zhì)流量和進口溫度,能夠改善中低負載工況熱力性能,如柴油機1 500 r/min時,工質(zhì)流量可在0.03~0.08 kg/s范圍變化,最大傳熱量可達19.46 kW。研究結(jié)果可為蒸發(fā)器實際應(yīng)用于拖拉機及與柴油機工況匹配提供參考。
拖拉機;優(yōu)化;排氣余熱;蒸發(fā)器;熱力性能
拖拉機在田間作業(yè)時發(fā)動機燃油效率僅為15%~35%,排氣能量占到燃油釋放能量的38%~45%[1],回收再利用排氣余熱有助于提高燃油利用率,降低排放。研究表明,基于有機朗肯循環(huán)(Organic Rankine Ccycle, ORC)的排氣余熱能量轉(zhuǎn)換率最高[2-3]。蒸發(fā)器作為ORC系統(tǒng)關(guān)鍵部件,分析其在拖拉機空間受限條件下的熱力性能,可為蒸發(fā)器參數(shù)的優(yōu)化設(shè)計提出理論依據(jù),從而有效提高排氣余熱的利用率。
已有學(xué)者分析了拖拉機等農(nóng)機裝備田間作業(yè)時的排氣余熱能量。Lion等[4]估算了農(nóng)用機械發(fā)動機排氣余熱能量,分析了基于ORC的排氣余熱回收潛力。Punov等[5]的研究表明,拖拉機作業(yè)時80%時間段處于重載勻速工況,燃油能量損失達到28.9%~42.5%,采用ORC可回收排氣余熱能量的75%用于獲取額外功率。焦有宙等[6]在全負荷2個工況點分析了循環(huán)水和煙氣的可用余熱量,為余熱即時干燥糧食提供參考。白繼偉等[7]設(shè)計了拖拉機額定工況條件下發(fā)動機尾氣余熱利用換熱器及半干燥系統(tǒng)布置。魏名山等[8]選取輸出功率最大時刻數(shù)據(jù)驗證了R245fa作為工質(zhì)回收余熱的可行性。Wang等[9]分析了R245fa具有最佳經(jīng)濟性時所對應(yīng)的適宜溫度范圍。蒸發(fā)器的選擇設(shè)計需要考慮工質(zhì)與排氣熱源的匹配,以最大限度地減少傳熱損失。研究表明,蒸發(fā)器結(jié)構(gòu)型式會影響拖拉機排氣余熱的利用率[10],板翅式蒸發(fā)器具有結(jié)構(gòu)緊湊、質(zhì)量輕的特點[11],較管殼式蒸發(fā)器有較小的壓力損失和較大的傳熱面積[12-13],適用于空間受限時中低溫余熱能量的回收[14]。劉克濤等[15]發(fā)現(xiàn)板翅式蒸發(fā)器的最大傳熱系數(shù)約是管殼式的1.6倍,存在合適工質(zhì)流量使得系統(tǒng)性能最佳,蒸發(fā)空間是制約ORC系統(tǒng)性能的重要因素。董軍啟等[16]分析了11種不同結(jié)構(gòu)參數(shù)的板翅式蒸發(fā)器平直翅片傳熱和流動阻力,發(fā)現(xiàn)翅片間距對傳熱和流動阻力影響較小,而翅片長度和高度對其傳熱和流動阻力有重要影響。楊艷霞等[17]研究結(jié)果表明,人字形板式換熱器流道內(nèi)流速分布不均勻,存在渦流和傳熱死區(qū)的,會對傳熱性能造成一定的影響;通過數(shù)值模擬能較好地呈現(xiàn)流道內(nèi)流體的流動和傳熱死區(qū)分布。逆流式翅片蒸發(fā)器效能在發(fā)動機滿載工況下可達到最大值,優(yōu)化翅片后效能可提高10%~13%[18-19]。王明杰等[20]基于聯(lián)合收割機谷物干燥需求,建立了以換熱量和排氣背壓為目標(biāo)的換熱器優(yōu)化模型,以柴油機常見工況1 900 r/min驗證模型;羅小平等[21]通過改變換熱器微通道表面特性,研究微通道流動沸騰傳熱特性的影響。張紅光等[22-23]分析了蒸發(fā)器工質(zhì)相變傳熱特性及其對柴油機性能的影響。卜憲標(biāo)等[24]在熱負荷恒定和凈輸出功率最大兩種約束工況下,分析了蒸發(fā)器傳熱能力。
以上研究更多是分析發(fā)動機滿載等設(shè)計工況和特定約束工況下的排氣余熱可用能量及蒸發(fā)器結(jié)構(gòu)、翅片和工質(zhì)等參數(shù)對熱力性能的影響。然而,拖拉機實際作業(yè)時存在田間耕整、地頭轉(zhuǎn)向和怠速停車等不同工作模式切換下的發(fā)動機轉(zhuǎn)速和負載差異,會導(dǎo)致蒸發(fā)器工質(zhì)出口過熱度過低出現(xiàn)系統(tǒng)不穩(wěn)定情況,在這些非設(shè)計工況下無法確定蒸發(fā)器的熱力學(xué)性能,尤其是在中低轉(zhuǎn)速工況下傳熱量隨發(fā)動機負載降低而顯著下降,難以實現(xiàn)排氣余熱能量的有效回收。因此需要進一步分析發(fā)動機滿載或額定工況下等設(shè)計工況下的蒸發(fā)器熱力性能,研究非設(shè)計工況時的傳熱規(guī)律。本文首先針對拖拉機實際空間尺寸試制板翅式蒸發(fā)器,采用移動邊界法在Python中建立蒸發(fā)器工質(zhì)與排氣的對流傳熱數(shù)值計算模型,結(jié)合柴油機臺架試驗數(shù)據(jù)驗證模型有效性,定量分析蒸發(fā)器在柴油機全工況下的熱力性能;針對非設(shè)計工況下,結(jié)合BP神經(jīng)網(wǎng)絡(luò)預(yù)測算法,對蒸發(fā)器結(jié)構(gòu)和工質(zhì)參數(shù)進行優(yōu)化,提出適用于拖拉機不同工況下的蒸發(fā)器設(shè)計參數(shù),以最大程度地回收排氣余熱能量,從而為蒸發(fā)器實際用于拖拉機及與柴油機工況匹配提供參考。
設(shè)計選用蒸發(fā)器首先要考慮在拖拉機上的安裝位置,在測量東方紅804/854/954等不同馬力段拖拉機發(fā)動機蓋罩前部空間和駕駛室頂面尺寸后,確定板翅式蒸發(fā)器總體尺寸長×寬×高為68 cm×60 cm×16 cm,結(jié)構(gòu)參數(shù)和三維模型分別如表1和圖1所示,主要由3個板束體組成“三明治”夾層結(jié)構(gòu),板束體A置于中間層,由2組平直翅片對向插入形成,兩側(cè)為2個結(jié)構(gòu)尺寸相同的板束體B,A和B分別作為柴油機排氣和工質(zhì)流道,可實現(xiàn)蒸發(fā)器順流或逆流方向的單邊或雙邊傳熱。
表1 蒸發(fā)器結(jié)構(gòu)參數(shù)
在建立蒸發(fā)器對流傳熱模型時,為保證能獲取準(zhǔn)確的傳熱特性,同時簡化數(shù)值計算過程,作出如下假設(shè):
1)不考慮蒸發(fā)器散發(fā)至環(huán)境熱量損失;
2)不考慮蒸發(fā)器污垢系數(shù)和材料熱阻;
3)忽略蒸發(fā)器流體沿管路軸向熱傳導(dǎo)、勢能和動能的變化。
蒸發(fā)器傳熱面積一定時,逆流傳熱效果較順流好,工質(zhì)出口過熱度更高。因此本文采用逆流雙邊傳熱。蒸發(fā)器中工質(zhì)與柴油機排氣的傳熱過程如圖2所示,工質(zhì)在入口5處于未飽和液體狀態(tài),經(jīng)過預(yù)熱區(qū)后加熱到飽和液體;之后在兩相區(qū)中繼續(xù)吸收熱量后在狀態(tài)點7變?yōu)楦娠柡驼羝辉谶^熱區(qū)被高溫排氣進一步加熱后,最終變?yōu)檫^熱蒸汽。
蒸發(fā)器總傳熱量和每一區(qū)段傳熱量如計算如式(1)和(2),由能量平衡方程可計算出工質(zhì)吸熱量及各狀態(tài)點比焓和溫度。
式中為傳熱量,kW;為質(zhì)量流量,kg/s;為比焓,kJ/kg;下標(biāo)、、、分別代表總的、預(yù)熱區(qū)、兩相區(qū)和過熱區(qū);為柴油機排氣;為工質(zhì);數(shù)下標(biāo)1~8代表圖2中各狀態(tài)點。
圖1中蒸發(fā)器接管截面積為圓形,流道截面積為矩形,考慮不同截面形狀管內(nèi)對流傳熱排氣和工質(zhì)的努塞爾數(shù)計算如式(3)[25]。由結(jié)構(gòu)參數(shù)和對數(shù)平均溫差法可計算排氣和工質(zhì)各自傳熱系數(shù)、蒸發(fā)器總傳熱系數(shù)和傳熱面積,如式(4)~(6)[26],其中兩相態(tài)傳熱系數(shù)由式(7)確定[27]。
式中為努塞爾數(shù),0常數(shù)項,對于排氣0=8.24,對于工質(zhì)0=5.39[25];為雷諾數(shù),為普朗克常數(shù),為導(dǎo)熱系數(shù),W/(m·K);為水力直徑,mm;和分別為膜態(tài)沸騰和核態(tài)沸騰校正因子,h為核態(tài)沸騰傳熱系數(shù),W/(m2·K)。
蒸發(fā)器效能和傳熱單元數(shù)NTU是評價蒸發(fā)器和翅片傳熱性能重要指標(biāo)[28],計算如式(8)~(10)。效能是實際傳熱量與最大可能傳熱量比值,當(dāng)排氣或工質(zhì)的溫度變化等于蒸發(fā)器最大溫差時,蒸發(fā)器可達到最大可能傳熱量,根據(jù)能量平衡,排氣和工質(zhì)熱容流率中的較小值min將具有最大的溫差;NTU反映蒸發(fā)器流體傳熱過程的難易程度,翅片效率η為翅片實際傳熱量與假設(shè)整個翅片處于基準(zhǔn)溫度下的傳熱量比值。
式中為翅片厚度,cm;k為翅片導(dǎo)熱系數(shù),W/(m·K);為翅片高度,cm。
移動邊界法適用于存在多相的蒸發(fā)器,能夠很好地反映蒸發(fā)器內(nèi)部的傳熱過程,BP神經(jīng)網(wǎng)絡(luò)具有計算能力強、靈活性高、實時預(yù)測的特點,因此本文采用移動邊界法結(jié)合BP神經(jīng)網(wǎng)絡(luò)算法在Python環(huán)境中編寫數(shù)值計算程序,具體流程圖如圖3所示。
計算程序主要包含兩部分,第一部分輸入?yún)?shù)包括蒸發(fā)器結(jié)構(gòu)尺寸及臺架試驗測取的蒸發(fā)器排氣側(cè)和工質(zhì)側(cè)進口溫度、壓力和流量,程序設(shè)置排氣出口與工質(zhì)進口溫差在0.1 K時兩者溫度相等,由式(1)確定蒸發(fā)器排氣出口溫度閾值,由式(2)計算工質(zhì)出口溫度,并與當(dāng)前狀態(tài)下的臨界溫度相比較,得到工質(zhì)相態(tài);之后依據(jù)式(3)~(11)計算圖2中各狀態(tài)點溫度、傳熱系數(shù)和傳熱距離等參數(shù),如果計算得到總傳熱距離小于蒸發(fā)器流道長度,則認為排氣出口溫度等于工質(zhì)進口溫度,反之則采用二分法循環(huán)迭代求解排氣出口溫度。如果傳熱距離計算容差小于0.01 cm,表示排氣與工質(zhì)溫度處于熱平衡而不再發(fā)生傳熱,即認為假設(shè)的排氣出口溫度合理,否則以1 K為增量重新設(shè)定出口溫度并重復(fù)整個流程直至找到滿足的出口溫度為止,程序結(jié)束記錄結(jié)果。第二部分是以BP神經(jīng)網(wǎng)絡(luò)算法優(yōu)化蒸發(fā)器結(jié)構(gòu)和工質(zhì)參數(shù),將第一部分計算結(jié)果作為神經(jīng)網(wǎng)絡(luò)初始數(shù)據(jù)集,80%作為訓(xùn)練數(shù)據(jù),20%為預(yù)測數(shù)據(jù),以流道長度、工質(zhì)進口溫度和流量為優(yōu)化參數(shù),分析蒸發(fā)器非設(shè)計工況下的傳熱特性,最后記錄計算結(jié)果并建立預(yù)測函數(shù)。程序中排氣與工質(zhì)熱物性參數(shù)由CoolProp[29]實時調(diào)用以保證計算的準(zhǔn)確性。
采用NI LabVIEW和cDAQ軟硬件搭建數(shù)據(jù)采集系統(tǒng),圖4為試制的蒸發(fā)器實物圖。試驗時冷卻水溫度恒定為294 K,由于增壓泵能耗與工質(zhì)流量成正比,考慮到工質(zhì)安全性、系統(tǒng)密封與管路工作壓力,蒸發(fā)器工質(zhì)選用R245fa,壓力設(shè)定為2.08 MPa,流量為0.12 kg/s,增壓后的工質(zhì)在蒸發(fā)器進口處溫度為326 K。試驗發(fā)動機為排量2.0 L渦輪增壓柴油機,額定功率為118.7 kW(3 500 r/min),試驗測得柴油機怠速至最高轉(zhuǎn)速193個全工況點的性能數(shù)據(jù),得到有效功率、排氣溫度和流量萬有特性如圖5所示。考慮到拖拉機柴油機實際工況,選取850 r/min(怠速,最低排氣溫度,376 K)、1 250 r/min(地頭轉(zhuǎn)向)、2 250 r/min(最大轉(zhuǎn)矩,361.4 N·m)、3 500 r/min(額定功率,118.7 kW)、4 000 r/min(最高排氣溫度,950 K)和4 500 r/min(最高轉(zhuǎn)速)時不同負載試驗數(shù)據(jù)驗證數(shù)值計算結(jié)果,對比如表2所示,結(jié)果顯示蒸發(fā)器排氣側(cè)和工質(zhì)側(cè)出口溫度試驗與計算相對誤差最大為9.7%,驗證了數(shù)值模型的有效性和準(zhǔn)確性,可用于蒸發(fā)器內(nèi)部熱力性能的分析與參數(shù)優(yōu)化。
表2 臺架試驗與數(shù)值計算的各項溫度結(jié)果對比
注:OC為工況點;4和8分別為蒸發(fā)器排氣側(cè)和工質(zhì)側(cè)出口溫度,K;為相對誤差,%;Exp和Cal分別為試驗和計算結(jié)果;A~F依次代表轉(zhuǎn)速分別為850、1 250、2 250、3 500、4 000和4 500 r·min-1;0~4依次代表負載分別為空載、25%、50%、75%和滿載。
Note: OC is operation condition;4and8is evaporator exhaust and working fluid outlet temperature, respectively;is relative error, %; Exp and Cal is experiment and calculation, respectively; A-F represent the speed of 850, 1 250, 2 250, 3 500, 4 000 and 4 500 r·min-1, respectively; 0-4 represent the idle, load rate 25%, 50%, 75% and full load, respectively.
圖6a顯示蒸發(fā)器總傳熱量與柴油機有效功率變化趨勢一致,原因是隨轉(zhuǎn)速和負載增加各區(qū)段傳熱量逐漸增大,根據(jù)圖5,4 000 r/min滿載工況時排氣溫度達到最大為950 K,排氣流量較最大轉(zhuǎn)速時相差不大,因此在該工況蒸發(fā)器有最大總傳熱量69.89 kW。圖6b~6d為3個區(qū)段的傳熱量,中低轉(zhuǎn)速(850~2 000 r/min)時大部分負載范圍內(nèi)工質(zhì)始終處于過冷狀態(tài),主要是該范圍排氣流量和溫度較低,致使傳熱系數(shù)和熱容流率較小,同時工質(zhì)流量較大使得傳熱時間短,導(dǎo)致兩相區(qū)和過熱區(qū)傳熱量為0,降低了蒸發(fā)器適用范圍;轉(zhuǎn)速和負載升高后,排氣熱容流率和傳熱系數(shù)急劇增加,工質(zhì)達到飽和狀態(tài)后開始出現(xiàn)兩相區(qū)并逐漸轉(zhuǎn)變?yōu)闈耧柡驼羝?,由于工質(zhì)進口流量和壓力為定值,工質(zhì)的熱容流率和臨界溫度決定了預(yù)熱區(qū)和兩相區(qū)的最大傳熱量分別為13.39和12.84 kW,之后在中高轉(zhuǎn)速(2 250~4 500 r/min)排氣熱容流率持續(xù)增加使工質(zhì)最終轉(zhuǎn)變?yōu)檫^熱蒸汽,排氣溫度、流量和流道長度決定了過熱區(qū)傳熱量最高為43.66 kW。
圖7a顯示蒸發(fā)器總傳熱系數(shù)隨轉(zhuǎn)速和負載增加而增大,數(shù)值大小主要受限于工質(zhì)總傳熱系數(shù),主要原因是傳熱過程中預(yù)熱區(qū)占比最大,工質(zhì)的液態(tài)傳熱系數(shù)較小從而限制了蒸發(fā)器總傳熱系數(shù)提高,同時蒸發(fā)器總傳熱系數(shù)在同一轉(zhuǎn)速下隨負載的變化不大,隨轉(zhuǎn)速升高而有較大增加,主要是因為轉(zhuǎn)速升高排氣流量和雷諾數(shù)增大,使對流傳熱強度增大。圖7b中工質(zhì)在低轉(zhuǎn)速負載工況下處于預(yù)熱區(qū)傳熱系數(shù)較小,主要由于該范圍排氣溫度較低傳熱能力下降,隨轉(zhuǎn)速和負載升高預(yù)熱區(qū)中工質(zhì)吸熱量達到飽和后傳熱系數(shù)不再變化,蒸發(fā)器和工質(zhì)的最大傳熱系數(shù)均在4 000 r/min滿載工況有最大值,分別為80.95和89.21 W/(m2·K)。圖7c中工質(zhì)在兩相區(qū)中處于沸騰換熱階段,由液態(tài)逐漸轉(zhuǎn)變?yōu)闅鈶B(tài),傳熱系數(shù)急劇增大,膜態(tài)和核態(tài)蒸發(fā)提高了傳熱效果,最后在過熱區(qū)中轉(zhuǎn)變?yōu)檫^熱蒸汽后傳熱系數(shù)降低,但流動狀態(tài)由層流過渡到紊流,雷諾數(shù)和傳熱面積增大使得總傳熱系數(shù)持續(xù)增大。圖7d中由于排氣在傳熱過程中始終處于氣態(tài)單相流狀態(tài),雷諾數(shù)變化不大,因此總傳熱系數(shù)只隨流量和溫度升高而增大,在4 500 r/min滿載工況下有最大值492.61 W/(m2·K)。
在確定每一區(qū)段的排氣和工質(zhì)傳熱系數(shù)后,采用對數(shù)平均溫差法計算蒸發(fā)器總傳熱面積和各區(qū)段傳熱面積,如圖8所示。圖8a中為防止柴油機過載熄火,在850 r/min時增大了噴油量導(dǎo)致排氣流量增大,使得傳熱面積較大,總的來看,總傳熱面積隨轉(zhuǎn)速和負載的升高逐漸增大直至達到最大傳熱面積3.70 m2。圖8b中,由于低轉(zhuǎn)速負載工況排氣流量小熱容流率低,使蒸發(fā)器內(nèi)部傳熱時排氣溫度迅速下降,與工質(zhì)溫差達到設(shè)定夾點溫差1 K后不再發(fā)生傳熱,傳熱量飽和,因此總傳熱面積偏??;中轉(zhuǎn)速范圍傳熱大部分處于預(yù)熱區(qū),是因為排氣溫度和熱容流率較低使工質(zhì)未發(fā)生相變,在蒸發(fā)器中始終處于液態(tài)使傳熱面積達到最大值,之后排氣熱容流率和傳熱系數(shù)升高增大了預(yù)熱區(qū)傳熱能力,工質(zhì)開始在兩相區(qū)與過熱區(qū)傳熱,狀態(tài)點6位置提前使預(yù)熱區(qū)傳熱面積減小。圖8c中,兩相區(qū)傳熱面積先隨傳熱量增大而增加,之后工質(zhì)沸騰換熱使傳熱系數(shù)急劇增大,導(dǎo)致蒸發(fā)器總傳熱系數(shù)增大,同時排氣溫度提高,但工質(zhì)在兩相區(qū)內(nèi)飽和溫度不變,使平均溫差升高,狀態(tài)點7位置前移使傳熱面積開始減小。圖8d中,過熱區(qū)工質(zhì)轉(zhuǎn)變?yōu)檫^熱蒸汽后,傳熱系數(shù)降低,但平均溫差持續(xù)升高,綜合作用使傳熱面積緩慢增加。在大部分工況下預(yù)熱區(qū)傳熱面積最大,兩相區(qū)和過熱區(qū)傳熱面積較小,在中高轉(zhuǎn)速負載范圍內(nèi),由于傳熱量差異使得過熱區(qū)傳熱面積大于兩相區(qū)。
蒸發(fā)器傳熱特性如圖9所示。圖9a中,效能反映了熱容流率比和傳熱單元數(shù)對蒸發(fā)器的影響,在中低轉(zhuǎn)速效能最大為1,傳熱效果達到最大,之后隨轉(zhuǎn)速和負載升高而降低,這是由于排氣熱容流率增幅大于總傳熱量所造成的,在中高轉(zhuǎn)速負載范圍,如需進一步提高蒸發(fā)器效能,需要增大傳熱面積,但過大的傳熱面積會導(dǎo)致排氣出口溫度過度冷卻,析出冷凝水,因此需要確定柴油機最可能長時間運行的工況,以此確定合適的蒸發(fā)器結(jié)構(gòu)參數(shù)。圖9b傳熱單元數(shù)反映了排氣與工質(zhì)在蒸發(fā)器中的傳熱難易程度,由于工質(zhì)熱容流率為定值且為較大值,排氣與工質(zhì)的熱容流率比隨轉(zhuǎn)速和負載提高而增大,同時蒸發(fā)器總傳熱系數(shù)變化較小,總傳熱面積不變,排氣作為熱容流率較小的流體,隨轉(zhuǎn)速和負載的升高而增大最終引起傳熱單元數(shù)逐漸降低;但在高轉(zhuǎn)速范圍內(nèi),蒸發(fā)器總傳熱系數(shù)和排氣熱容流率增幅比例相近,導(dǎo)致傳熱單元數(shù)基本保持不變。圖10為翅片效率變化規(guī)律,由于工質(zhì)和排氣總傳熱系數(shù)隨轉(zhuǎn)速和負載升高而增大,導(dǎo)致熱量沿翅片表面散熱量增大,翅片效率降低。在同一工況下,由于翅片材料相同、兩側(cè)翅片厚度相差不大,工質(zhì)總傳熱系數(shù)增幅較排氣小,工質(zhì)吸熱量沿翅片表面散熱量少且翅片高度低熱阻小,使得工質(zhì)側(cè)翅片效率高于排氣側(cè)。
工質(zhì)與排氣在蒸發(fā)器接管與流道呈90°連接,會存在壓力與能量損失;根據(jù)數(shù)值計算結(jié)果可知,在中低轉(zhuǎn)速工況下,工質(zhì)在蒸發(fā)器出口處無法轉(zhuǎn)變?yōu)檫^熱蒸氣,出現(xiàn)傳熱量為0的情況,為促進蒸發(fā)器強制換熱,提高在非設(shè)計工況下的熱力性能,對其結(jié)構(gòu)與工質(zhì)參數(shù)進行優(yōu)化。
蒸發(fā)器板束體是傳熱主要部位,試驗時工質(zhì)與排氣處于穩(wěn)定流動狀態(tài),同時與對流傳熱模型假設(shè)保持一致,為保證獲取準(zhǔn)確的傳熱特性,在Fluent中模擬求解排氣和工質(zhì)在傳熱和流動過程時作出如下假設(shè)。
1)忽略蒸發(fā)器接管、外壁面、排氣和工質(zhì)散發(fā)至環(huán)境的熱量損失;
2)忽略蒸發(fā)器材料熱阻和污垢系數(shù);
3)排氣流動為湍流,流動和傳熱狀態(tài)為穩(wěn)態(tài),排氣進口側(cè)熱物性為定值。
采用有限體積法離散控制方程,工質(zhì)熱物性根據(jù)CoolProp溫度線性插值,湍流模型采用k-ε雙方程模型,近壁面處理采用Scalable壁面函數(shù),求解器采用Simplec壓力-速度耦合算法。
拖拉機田間作業(yè)時應(yīng)盡可能保持柴油機在最大轉(zhuǎn)矩和額定功率工況范圍內(nèi)運行以最大發(fā)揮柴油機性能,因此選取C4(2 250 r/min滿載)和D4(3 500 r/min滿載)工況分析蒸發(fā)器傳熱性能,表3為仿真邊界條件和熱物性參數(shù)[29]。
為驗證網(wǎng)格疏密對數(shù)值計算的結(jié)果影響,分別繪制網(wǎng)格數(shù)為1 171 868、2 110 242和2 810 831的3種不同數(shù)目網(wǎng)格進行無關(guān)性驗證,3種網(wǎng)格排氣和工質(zhì)出口平均溫度偏差均小于0.4%,因此本文選擇網(wǎng)格數(shù)為2 810 831的網(wǎng)格進行仿真模擬以保證最大的求解精度。
圖11為C4和D4工況下的蒸發(fā)器傳熱溫度云圖,排氣和工質(zhì)在蒸發(fā)器出口平面上的溫度分別為475和576、602和698 K,與試驗測量值相對誤差最大為9.4%。由此可見仿真結(jié)果雖然存在一定誤差,但仍能較為真實反映地蒸發(fā)器的工作狀況。
圖12為D4工況流體流速分布,結(jié)果表明流體在各流道內(nèi)分布不均,傳熱主要發(fā)生在距離接管進口較遠的流道內(nèi),而在較近的流道內(nèi)出現(xiàn)回流現(xiàn)象,主要原因是接管與流道方向呈90°,流體進入蒸發(fā)器時具有一定流速和慣性,導(dǎo)致高溫排氣和低溫工質(zhì)在進口較遠的流道內(nèi)積聚形成較大的溫度梯度,使得在該區(qū)域流道內(nèi)傳熱效率較高,而在近接管處流道內(nèi)排氣和工質(zhì)質(zhì)量分布較少,傳熱量較低使得排氣熱量未能充分利用;同時工質(zhì)在流道內(nèi)大多處于穩(wěn)定層流狀態(tài)也不利于邊界傳熱。
已有文獻[17]證明,采用波紋翅片形狀可以改善蒸發(fā)器內(nèi)流體流動和換熱情況,通過增加接管倒角,可以使近接管處流道內(nèi)部的流動更加均勻分布,以促進工質(zhì)與排氣的強制換熱,考慮接管直徑、流道長度和翅片加工工藝性后,確定排氣接管采用倒角為R53,波紋間距20 mm,波高5 mm的翅片結(jié)構(gòu),對蒸發(fā)器進行仿真結(jié)構(gòu)優(yōu)化,圖13為D4工況排氣流速與溫度分布圖,結(jié)果表明流速在各流道內(nèi)分布較之前均勻,整個高溫區(qū)域向接管進口前移使得流道利用率更高傳熱更為充分,工質(zhì)吸收更多排氣熱量。表4中傳熱結(jié)果顯示,結(jié)構(gòu)優(yōu)化后工質(zhì)在出口處過熱度提高了16 K,傳熱量最大增加5.2%,傳熱面積增大0.19 m2,體積僅增加0.002 m3。
蒸發(fā)器全工況分析結(jié)果表明,在中低轉(zhuǎn)速負載工況下,工質(zhì)未能充分利用排氣余熱,在蒸發(fā)器出口處無法轉(zhuǎn)變成過熱蒸汽而出現(xiàn)兩相區(qū)和過熱區(qū)傳熱量為0的情況。同時臺架試驗表明,冷卻水溫度為294~310 K時,工質(zhì)經(jīng)過增壓泵后升溫至314~344 K,且在624 K時50~100 h內(nèi)未發(fā)生分解,考慮增壓泵工作轉(zhuǎn)速范圍、拖拉機發(fā)動機蓋罩前部和駕駛室頂面實際空間后,選取工質(zhì)進口溫度314~344 K、流量0.01~0.30 kg/s和流道長度10~80 cm為變量范圍,步長分別為1 K、0.01 kg/s和10 cm,工質(zhì)壓力2.08 MPa時臨界和分解溫度397和624 K為約束條件,在蒸發(fā)器結(jié)構(gòu)參數(shù)不變條件下,以數(shù)值計算模型基礎(chǔ)上結(jié)合BP神經(jīng)網(wǎng)絡(luò)進一步分析蒸發(fā)器非設(shè)計工況下的傳熱特性。
表4 D4工況下不同結(jié)構(gòu)傳熱結(jié)果對比
圖14為1 250~2 000 r/min負載率50%工質(zhì)出口為過熱蒸汽時的流量、進口溫度和流道長度參數(shù)優(yōu)化結(jié)果,低轉(zhuǎn)速時由于排氣熱容流率和傳熱系數(shù)均較小,排氣能量低,需要減小工質(zhì)流量增大流道長度以充分換熱;之后隨著排氣熱容流率增大,工質(zhì)流量總體呈上升趨勢,且范圍增大,進口溫度對范圍影響較小;此外隨流道長度增加,流量可選范圍也增大,但長度的增加會導(dǎo)致蒸發(fā)器體積和成本的增加,因此在參數(shù)選擇時需要考慮蒸發(fā)器的最大熱力性能和最優(yōu)技術(shù)經(jīng)濟性。
由表5可知,已有蒸發(fā)器流道長度50 cm,進口溫度327 K時,除去1 250 r/min負載率25%時的單一工況點,工質(zhì)流量可變范圍和傳熱量會隨轉(zhuǎn)速和負載增大而變大,而不必局限于某一指定流量,因此為避免頻繁調(diào)整增壓泵轉(zhuǎn)速,可將同一轉(zhuǎn)速下流量的重疊區(qū)間設(shè)定為有效工作區(qū)間,從而提高中低轉(zhuǎn)速負載工況下的傳熱穩(wěn)定性和使用范圍,如1 500 r/min在中高負載時,流量可在0.03~0.08 kg/s變化;同時工質(zhì)與排氣流量的比值,也可為增壓泵與柴油機輸出轉(zhuǎn)速的傳動比和傳動裝置的選擇提供參考,如在1 500 r/min時傳動比可設(shè)置0.78~1.88。
表5 1 250~2 000 r·min-1下25%~100%負載率的工質(zhì)流量范圍及傳熱量
1)提出了一種基于移動邊界法的板翅式蒸發(fā)器的熱力性能數(shù)值計算方法,定量分析蒸發(fā)器在柴油機全工況下的傳熱特性。結(jié)果表明,蒸發(fā)器中高轉(zhuǎn)速負載工況下熱力性能較好,傳熱量在4 000 r/min滿載工況時達到最大69.89 kW;中低轉(zhuǎn)速負載下由于排氣熱容流率和傳熱系數(shù)較低,較大的工質(zhì)流量難以保證工質(zhì)轉(zhuǎn)變成過熱蒸汽,從而出現(xiàn)兩相區(qū)和過熱區(qū)傳熱量為0的情況;同時該種計算方法也可適用于不同工質(zhì)熱物性和結(jié)構(gòu)型式的蒸發(fā)器熱力性能計算。
2)為擴大蒸發(fā)器適用范圍,結(jié)合BP神經(jīng)網(wǎng)絡(luò)預(yù)測算法,以蒸發(fā)器流道長度、工質(zhì)流量和進口溫度為優(yōu)化參數(shù),進一步分析了蒸發(fā)器在非設(shè)計工況時的熱力性能,確定了中低轉(zhuǎn)速負載工況下的參數(shù)范圍,如柴油機1 500 r/min時,工質(zhì)流量可在0.03~0.08 kg/s范圍變化,最大傳熱量可達19.46 kW,工質(zhì)與排氣流量比為0.78~1.88,有效改善了中低轉(zhuǎn)速負載工況下蒸發(fā)器熱力性能的不足,同時為增壓泵與柴油機輸出轉(zhuǎn)速的傳動比和傳動裝置的選擇提供了參考,從而為實現(xiàn)蒸發(fā)器結(jié)構(gòu)及工質(zhì)參數(shù)與拖拉機的工況匹配提供理論依據(jù)。
[1] Lovarelli D, Fiala M, Larsson G. Fuel consumption and exhaust emissions during on-field tractor activity: a possible improving strategy for the environmental load of agricultural mechanization[J]. Computers and Electronics in Agriculture, 2018, 151: 238-248.
[2] Omara A, Saghafufar G, Mohammadi K. A review of unconventional bottoming cycles for waste heat recovery: part ii-applications[J]. Energy Conversion and Management, 2019, 180: 559-583.
[3] Punov P, Lacour S, Perilhon C, et al. Numerical study of the waste heat recovery potential of the exhaust gases from a tractor engine[J]. Proceeding of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2015, 230(1): 1-12.
[4] Lion S, Michosa C, Vlaskos I, et al. A review of waste heat recovery and organic Rankine cycles(ORC) in on-off highway vehicle heavy duty diesel engine applications[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 691-708.
[5] Punov P, Lacour S, Perilhon C, et al. Possibilities of waste heat recovery on tractor engines[C]. Proceedings of the International Scientific Conference on Aeronautics, Automotive and Railway Engineering and Technologies, 2013, 1-7.
[6] 焦有宙,田超超,賀超,等. 不同工質(zhì)對大型聯(lián)合收割機余熱回收的熱力學(xué)性能[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(5):32-38.
Jiao Youzhou, Tian Chaochao, He Chao, et al. Thermodynamic performance of waste heat collection for large combine harvester with different working fluids[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 32-38. (in Chinese with English abstract)
[7] 白繼偉,羅書強,葉進,等. 多功能拖拉機發(fā)動機余熱利用系統(tǒng)設(shè)計[J]. 農(nóng)機化研究,2008(12):195-197.
Bai Jiwei, Luo Shuqiang, Ye Jin, et al. Design of the waste heat utilizing system on multifunctional tractor[J]. Journal of Agricultural Mechanization Research, 2018(12): 195-197. (in Chinese with English abstract)
[8] 魏名山,史磊,宋盼盼,等.以R245fa為工質(zhì)的余熱回收系統(tǒng)試驗研究[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(3):26-31.
Wei Mingshan, Shi Lei, Song Panpan, et al. Experiment of waste heat recovery system with R245fa as working fluid[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(3): 26-31. (in Chinese with English abstract)
[9] Wang S K, Liu C, Li Q B, et al. Selection principle of working fluid for organic Rankine cycle based on environmental benefits and economic performance[J]. Applied Thermal Engineering, 2020, 178: 115598.
[10] Danel Q, Perilhon C, Lacour S. Waste heat recovery applied to a tractor engine[J]. Energy Procedia, 2015, 74: 331-343.
[11] Tian H, Liu P, Shu G Q. Challenges and opportunities of Rankine cycle for waste heat recovery from internal combustion engine[J]. Progress in Energy and Combustion Science, 2021, 84: 100906.
[12] Li X Y, Song J, Yu G, et al. Organic Rankine cycle systems for engine waste-heat recovery: heat exchanger design in space-constrained applications[J]. Energy Conversion and Management, 2019, 119: 111968.
[13] Zheng X , Luo X , Luo J , et al. Experimental investigation of operation behavior of plate heat exchangers and their influences on organic Rankine cycle performance[J]. Energy Conversion and Management 2020, 207: 112528.
[14] Erguvan M, Macphee W. Second law optimization of heat exchangers in waste heat recovery[J]. International Journal of Energy Research. 2019, 43: 5714-5734.
[15] 劉克濤,朱家玲,胡開永,等. 不同類型蒸發(fā)器對ORC系統(tǒng)影響的實驗研究[J]. 太陽能學(xué)報,2017,38(10):2749-2755.
Liu Ketao, Zhu Jialing, Hu Kaiyong, et al. Experiment study of effect of different evaporators on ORC systems[J]. Acta Energiae Solaris Sinica, 2017, 38(10): 2749-2755. (in Chinese with English abstract)
[16] 董軍啟,陳江平,袁慶豐,等. 板翅換熱器平直翅片的傳熱與阻力性能試驗[J]. 農(nóng)業(yè)機械學(xué)報,2007,38(8): 53-56.
Dong Junqi, Chen Jiangping, Yuan Qingfeng, et al. Flow and heat transfer on compact smooth fin surfaces[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(8): 53-56. (in Chinese with English abstract)
[17] 楊艷霞,馬晴嬋,左玉清. 人字形板式換熱器流道傳熱特性及參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(21):210-215.
Yang Yanxia, Ma Qingchan, Zuo Yuqing. Heat transfer characteristics and parameter optimization of flow passage of herringbone heat transfer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 210-215. (in Chinese with English abstract)
[18] Anish A, Raj B, Thirumalai T. A review on plate fin heat exchanger[J]. International Journal of Mechanical Engineering, 2017, 4(4): 33-47.
[19] Rybinski W, Mikielewicz J. Statistical method for the determination of the mini channel heat exchanger’s thermal characteristics[J]. Energy, 2018, 158: 139-147.
[20] 王明杰,陳平錄,許靜,等. 聯(lián)合收割機排氣余熱回收用熱管換熱器結(jié)構(gòu)參數(shù)優(yōu)化[J]. 中國農(nóng)機化學(xué)報,2020,41(7):164-170.
Wang Mingjie, Chen Pinglu, Xu Jing, et al. Optimizing the structure parameters of heat pipe exchanger for exhaust heat recovery of combine harvester[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 164-170. (in Chinese with English abstract)
[21] 羅小平,王文,張超勇,等. 換熱器鋁基微細通道微納結(jié)構(gòu)表面制備及其傳熱特性[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(20):216-224.
Luo Xiaoping, Wang Wen, Zhang Chaoyong, et al. Micro-nano structures surface preparation and its heat transfer characteristics of aluminum-based microchannel in heat exchangers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 216-224. (in Chinese with English abstract)
[22] 張紅光,貝晨,楊富斌,等. ORC系統(tǒng)蒸發(fā)器性能分析及其對柴油機性能影響[J]. 太陽能學(xué)報,2016,37(2):462-468.
Zhang Hongguang, Bei Cheng, Yang Fubin, et al. Performance analysis and influence of evaporator on diesel engine characteristics used in organic Rankine cycle (ORC) system[J]. Acta Energiae Solaris Sinica, 2016, 37(2): 462-468. (in Chinese with English abstract)
[23] 劉宏達,張紅光,于飛,等. ORC系統(tǒng)管翅式蒸發(fā)器管側(cè)工質(zhì)相變傳熱特性分析[J]. 太陽能學(xué)報,2018,39(10):2753-2759.
Liu Hongda, Zhang Hongguang, Yu Fei, et al. Analysis of flow and phase change heat transfer characteristics in tube side of fin-and-tube evaporator for organic rankine cycle (ORC) system[J]. Acta Energiae Solaris Sinica, 2018, 39(10): 2753-2759. (in Chinese with English abstract)
[24] 卜憲標(biāo),劉茜,李華山,等. 換熱器傳熱能力對有機朗肯循環(huán)性能的影響分析[J]. 哈爾濱工程大學(xué)學(xué)報,2018,39(8):1302-1307.
Bu Xianbiao, Liu Xi, Li Huashan, et al. Effects of the heat transfer capacity of heat exchangers on the performance of organic rankine cycle[J]. Journal of Harbin Engineering University, 2018, 39(8): 1302-1307. (in Chinese with English abstract)
[25] Bejan A. Convection Heat Transfer, 4th[M]. New Jersey: Wiley, 2013.
[26] Moran M, Shapiro H, Boettner D, et al. Fundamentals of engineering thermodynamics, 9th[M]. New Jersey: Wiley, 2018.
[27] Ghiaasiaan S. Two-phase Flow, Boiling and Condensation: In Conventional and Miniature Systems, 2nd[M]. New York: Cambridge University Press, 2017.
[28] Shah R, Sekulic D. Fundamentals of Heat Exchanger Design[M]. New Jersey: Wiley, 2013.
[29] Bell I, Wronski J, Quoilin S[EB/OL]. [2021-02-01]. http://coolprop.sourceforge.net/.
Thermal performance analysis and parameter optimization of a tractor exhaust waste heat plate-fin evaporator
Tu Ming1,2, Zhang Guotao1,3, Xia Chen1, Hu Dawei4, Zeng Rong1,2, Zhou Yong1,2※
(1.430070,; 2.430070; 3.,430074,; 4.,, 48824,.)
The fuel efficiency of the engine is only 15%-35% while the tractor is working in the field, and the exhaust energy accounts for 38%-45% of the energy released by the fuel. The recovery and reuse of exhaust heat energy could help improve fuel efficiency and reduce emissions. Studies have shown that the exhaust waste heat energy based on the Organic Rankine Cycle (ORC) is the highest. The evaporator is a key component of the ORC system, analyzing its thermal performance under limited space conditions of the tractor could provide a theoretical basis for the optimal design of evaporator parameters, thereby effectively improving the utilization of exhaust heat. This study according to the actual size of the tractor, a plate-fin evaporator was trial-produced to recover diesel exhaust waste heat. A numerical model of convective heat transfer between evaporator exhaust and working fluid based on moving boundary method was established and was verified the validity by combining with bench test data, the thermal performance of the evaporator under full operating conditions of the diesel engine was quantitatively analyzed; meanwhile in order to improve the heat transfer and scope of application of the evaporator, CFD simulation and BP neural network methods were used to further analyze the heat transfer characteristics of the evaporator under off-design conditions, the structure and working fluid parameters were optimized. The results showed that: 1) the evaporator had better thermal performance under medium and high speed load conditions, and the heat transfer reached a maximum of 69.89 kW under 4 000 r/min full load conditions, and the heat transfer of the evaporator would be unstable under medium and low speed load conditions due to the lower exhaust heat capacity flow rate, heat transfer coefficient, and a larger working fluid mass flow rate, resulting in the flow was difficult to ensure that the working fluid was transformed into superheated steam, so that the heat transfer in the two-phase zone and the superheat zone was zero within the evaporator. 2) in order to improve the distribution and turbulence of the fluid in the flow channel, increasing the pipe chamfer and adopting the corrugated fin shape to promote forced heat exchange, the CFD simulation showed the entire high-temperature area moved forward to the inlet of the nozzle to make the flow channel utilization rate higher and heat transfer more. With the optimized structure of the evaporator, the working fluid had a higher degree of overheating under the condition of the same overall size, the maximum heat transfer increased by 5.2%, the heat transfer area increased by 0.19 m2, and the volume only increased by 0.002 m3. 3) combined with the BP neural network algorithm, the evaporator flow channel length, working fluid flow and inlet temperature were optimized parameters, and the thermal performance of the evaporator under off-design working conditions was further analyzed, and the parameter range under the medium and low speed load conditions is determined. Thus, the selection range of the working fluid flow rate at different speeds was proposed, which effectively improving the thermal performance of the evaporator under low-to-medium speed load conditions, and providing a reference for the selection of the transmission ratio of the booster pump and the output speed of the diesel engine and the selection of the transmission device. For example, when 1 500 r/min was under a medium and high load, the flow rate could be changed from 0.03 kg/s to 0.08 kg/s and the maximum heat transfer up to 19.46 kW; at the same time, the transmission ratio could be set to 0.78-1.88 at 1 500 r/min. The results of the study are of great significance and present the fluid flow and heat transfer characteristics of the evaporator, which provide a reference for the actual use of the evaporator in tractors and matching with diesel engine operating conditions.
tractors; optimization; exhaust waste heat; evaporator; thermal performance
涂鳴,張國濤,夏晨,等. 拖拉機排氣余熱板翅式蒸發(fā)器熱力性能分析與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2021,37(19):7-17.doi:10.11975/j.issn.1002-6819.2021.19.002 http://www.tcsae.org
Tu Ming, Zhang Guotao, Xia Chen, et al. Thermal performance analysis and parameter optimization of a tractor exhaust waste heat plate-fin evaporator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 7-17. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.19.002 http://www.tcsae.org
2021-08-16
2021-09-26
國家自然科學(xué)基金(51605182);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-24-D-02);農(nóng)業(yè)農(nóng)村部長江中下游農(nóng)業(yè)裝備重點實驗室開放課題(2662020GXPY016)
涂鳴,講師,博士,研究方向為農(nóng)機裝備余熱利用及節(jié)能減排。Email:mingtu@mail.hzau.edu.cn
周勇,副教授,博士,研究方向為智能農(nóng)機裝備。Email:zhyong@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2021.19.002
S218.5; TK11+5
A
1002-6819(2021)-19-0007-11