趙麗清,段東瑤,殷元元,鄭映暉,徐 鑫,孫 穎,薛懿威
基于PSO-Elman算法的茶葉烘干含水率預測
趙麗清,段東瑤,殷元元,鄭映暉,徐 鑫,孫 穎,薛懿威
(青島農(nóng)業(yè)大學機電工程學院,青島 266109)
為研究茶葉熱風烘干過程中內(nèi)部水分的變化規(guī)律,該試驗以綠茶為例,通過對揉捻后的茶葉進行動態(tài)熱風烘干,監(jiān)測不同喂入量(800~1 200 g)、烘干溫度(90~120 ℃)、滾筒轉(zhuǎn)速(20~30 r/min)下的茶葉含水率變化。試驗采用烘干法測定含水率,將烘干溫度、滾筒轉(zhuǎn)速、烘干初始水分、預測時間作為輸入,含水率作為輸出,分別利用多元線性回歸、BP(Back Propagation)神經(jīng)網(wǎng)絡、Elman神經(jīng)網(wǎng)絡以及粒子群優(yōu)化的Elman神經(jīng)網(wǎng)絡(PSO-Elman)算法建立烘干過程茶葉含水率預測模型。結(jié)果表明,溫度對烘干過程影響最大,喂入量以茶葉鋪滿滾筒壁形成完美拋撒料幕為宜,過多容易造成受熱不均,整個烘干過程茶葉含水率降低速率呈現(xiàn)先快后慢的趨勢,烘干結(jié)束時含水率基本穩(wěn)定在4%~5%。分別對建立的多元線性回歸、BP、Elman以及PSO-Elman含水率預測模型進行驗證和誤差分析,模型測試集決定系數(shù)分別為0.960 9、0.998 0、0.998 5和0.999 4,且BP和Elman,PSO-Elman模型的平均絕對誤差僅為0.035%、0.026%和0.014%,而傳統(tǒng)線性回歸模型的平均絕對誤差高達2.414%,相比傳統(tǒng)線性回歸模型,3種神經(jīng)網(wǎng)絡算法均表現(xiàn)出了更好的預測效果,能更好的預測茶葉烘干過程的含水率變化。研究結(jié)果可為茶葉熱風烘干工藝和過程提供理論依據(jù),為指導茶葉加工生產(chǎn),提高加工效率和茶葉品質(zhì)提供參考依據(jù)。
含水率;干燥;茶葉;動態(tài)規(guī)律;神經(jīng)網(wǎng)絡;預測模型
茶是世界三大飲料(可可,咖啡,茶)中最具生命力、最具市場前景的飲料,已被證明可用于降低如癌癥和心血管等慢性病的發(fā)生率[1-2]。水分是茶葉加工過程中葉片內(nèi)部一系列化學反應的介質(zhì),是衡量茶葉加工過程中最重要的品質(zhì)因子,因此水分的散失程度以及速度極大影響了茶葉品質(zhì)[3]。茶葉生產(chǎn)需要經(jīng)過多道加工工序,其中烘干過程作為茶葉加工的最后一道工序,隨著茶葉水分散失鞏固外形,茶葉內(nèi)部成分發(fā)生微妙反應,是形成茶葉色澤、香氣以及滋味的重要過程[4-6]。傳統(tǒng)茶葉烘干依靠工人師傅的主觀判斷來控制茶葉品質(zhì),穩(wěn)定性不足,通常采用茶葉機械輔助茶葉加工過程,研究茶葉烘干過程中的含水率變化規(guī)律,建立精確的水分預測模型對于指導茶葉機械化加工以及提升茶葉品質(zhì)具有重要意義[7-8]。
神經(jīng)網(wǎng)絡(Neural Networks)擁有出色的數(shù)據(jù)處理,擬合和分類能力,廣泛應用于非線性模型的建立,其出色的預測能力得到廣泛認可。高震宇等[9]結(jié)合機器視覺以及卷積神經(jīng)網(wǎng)絡算法,設計了茶葉分選模型;張帥堂等[10]利用高光譜成像技術(shù)和遺傳優(yōu)化神經(jīng)網(wǎng)絡實現(xiàn)對茶葉病斑的準確快速識別;王勝鵬等[11]以神經(jīng)網(wǎng)絡為基礎建立了青磚茶壓制壓力定量分析模型,為青磚茶產(chǎn)品的研發(fā)和品質(zhì)的快速檢測奠定了理論基礎;王近近等[12]設計試驗研究足火工藝參數(shù)對工夫紅茶熱風干燥特性和品質(zhì)的影響,為優(yōu)質(zhì)工夫紅茶標準化加工工藝參數(shù)的優(yōu)化提供理論依據(jù)。近年來關(guān)于預測模型的研究較多[13-16],但是目前來看,大部分研究都忽略了茶葉在加工過程中含水率的動態(tài)變化規(guī)律。本文選取綠茶為試驗對象,探究不同烘干條件下茶葉烘干過程中的水分變化規(guī)律,采用神經(jīng)網(wǎng)絡算法,以烘干溫度、滾筒轉(zhuǎn)速、茶葉喂入量、茶葉初始含水率以及烘干時間作為輸入?yún)?shù),建立精確的茶葉烘干過程含水率預測模型,為茶葉烘干過程中水分的快速檢測提供新的思路,為指導茶葉加工,提升茶葉品質(zhì)以及茶葉烘干過程的智能控制提供理論依據(jù)。
茶鮮葉采摘于山東日照嗣晨茶葉有限公司茶園,為標準一芽一葉、一芽兩葉鮮葉,品種為鳩坑早。
MB45鹵素水分分析儀,上海奧豪斯儀器有限公司;YH型電子天平,上海英衡稱重有限公司;6CST-100L型茶葉清潔化生產(chǎn)流水線,日照春茗機械制造有限公司;6CH-2A型迷你滾筒烘干機,日照春茗機械制造有限公司;DHG-9140A型電熱鼓風干燥箱,上海一恒科學儀器有限公司。除此之外還有密實袋、保鮮膜、鋁盒、烘干皿、計算機等輔助用具。
將采摘的標準一芽一葉、一芽兩葉鮮葉(含水率76%~80%),置于室溫(18~22℃)下攤青(厚度3 cm)10 h使含水率降至70%左右,依照山東省日照嗣晨茶葉有限公司設定生產(chǎn)條件(溫度300℃,滾筒轉(zhuǎn)速30 r/min,時間3~4min)、回潮(室溫18~22℃,時間1 h)投入6CST-100L型茶葉清潔化生產(chǎn)流水線經(jīng)殺青、揉捻(時間20~30min)后將茶葉用密實袋密封。在室溫22 ℃下靜置1 h使茶葉水分均勻分布,此時茶葉含水率在49%~51%,通過6CH-2A型烘干機進行烘干試驗。6CH-2A型迷你滾筒烘干機主要技術(shù)參數(shù)和結(jié)構(gòu)圖分別如表1和圖1所示,由烘干機結(jié)構(gòu)可知,烘干過程茶葉含水率變化的主要影響因素為茶葉喂入量、烘干溫度、滾筒轉(zhuǎn)速以及烘干時間,此外,烘干過程茶葉的初始含水率是決定能否進行烘干的重要因素。設置時間梯度對烘干過程進行梯度采樣,記錄初始含水率49%~51%的茶葉樣本在不同喂入量、烘干溫度、滾筒轉(zhuǎn)速的條件下烘干過程(烘干結(jié)束含水率約為4%~5%)含水率的變化情況。
表1 6CH-2A型滾筒烘干機主要技術(shù)參數(shù)
茶葉含水率檢測主要包括直接法和間接法[17-19],本文采用120℃水分快速測定法(直接法)對茶葉樣本進行水分檢測。其水分測量如式(1)所示:
式中為所測樣品的含水率,%;1為樣品的初始質(zhì)量,g;2為樣品烘干后的質(zhì)量,g。對樣品測試3次,取平均值作為當前樣品的含水率。
為對茶葉烘干過程中含水率動態(tài)變化過程進行準確的預測,本文基于烘干試驗所得數(shù)據(jù)集,分別以BP(Back Propagation)神經(jīng)網(wǎng)絡、Elman神經(jīng)網(wǎng)絡以及PSO-Elman神經(jīng)網(wǎng)絡算法建立不同烘干條件下的茶葉含水率預測模型,采用平均絕對誤差MAE、均方根誤差RMSE和決定系數(shù)2作為模型評價指標,2越接近1,平均絕對誤差、均方根誤差越接近于0,表明模型的預測效果越好[20],尋找最優(yōu)模型以解決茶葉烘干過程中含水率動態(tài)預測的問題。
Elman神經(jīng)網(wǎng)絡是一種應用廣泛的反饋型神經(jīng)網(wǎng)絡模型,在BP神經(jīng)網(wǎng)絡的基礎上,增加了一個承接層,使網(wǎng)絡具有局部記憶和反饋的能力[21]。Elman網(wǎng)絡的結(jié)構(gòu)如圖2所示,分為輸入層、隱含層、承接層和輸出層,增加的承接層與隱含層神經(jīng)元數(shù)量一致,從隱含層接收反饋信號,將上一時刻的隱層狀態(tài)連同當前時刻的輸入一起作為隱層的輸入,從而達到記憶的目的?;谶@種結(jié)構(gòu)使得Elman網(wǎng)絡能夠內(nèi)部反饋、存儲和利用過去時刻的輸出信息,相比BP網(wǎng)絡,其計算能力和網(wǎng)絡穩(wěn)定性都表現(xiàn)的更好[22]。
隱含層的層數(shù)和節(jié)點數(shù)的設置對網(wǎng)絡的性能影響很大,過多會增加網(wǎng)絡的復雜度和計算量,甚至產(chǎn)生過擬合,過少則會影響網(wǎng)絡的性能??紤]到網(wǎng)絡復雜性,一般設置網(wǎng)絡隱含層為1層,根據(jù)經(jīng)驗公式(2)和試湊法確定隱含層神經(jīng)元數(shù)目:
式中為隱含層節(jié)點數(shù)目,為輸出層節(jié)點數(shù)目,為輸入層節(jié)點數(shù)目,為調(diào)節(jié)常數(shù),取1~10范圍內(nèi)進行訓練找到最優(yōu)值。
各層之間神經(jīng)元互相連接,通過不同的權(quán)值和閾值實現(xiàn)信息的傳遞。設輸入層和隱含層之間的權(quán)值為w,承接層和隱含層之間權(quán)值為w,閾值為b,則隱含層每個節(jié)點的輸出值由式(3)、(4)決定:
輸出層每個節(jié)點的輸出值由式(5)決定:
式中=1,2,3,…,,=1,2,3,…,。(·)為輸出層激活函數(shù),b為第個節(jié)點的閾值。(·)與(·)不一定相同。
采用經(jīng)典的梯度下降法實現(xiàn)信息反向傳遞更新權(quán)值和閾值,取式(6)作為誤差函數(shù):
式中d為真實值,y為預測值,為誤差函數(shù)。
隱含層到輸出層之間的權(quán)值和閾值更新如式(7)、(8)所示
輸入層和承接層到隱含層之間的權(quán)值和閾值更新如式(9)、(10)、(11)所示:
Elman神經(jīng)網(wǎng)絡能夠做到內(nèi)部反饋、存儲和利用過去時刻輸出信息,實現(xiàn)動態(tài)系統(tǒng)的映射并直接反映系統(tǒng)的動態(tài)特性,在計算能力及網(wǎng)絡穩(wěn)定性方面都比BP神經(jīng)網(wǎng)絡更勝一籌。但是其權(quán)值和閾值的更新與BP神經(jīng)網(wǎng)絡一樣,首先對初始的權(quán)值和閾值進行隨機賦值,然后基于梯度下降法對網(wǎng)絡進行訓練,容易陷入局部最小值,較難達到全局最優(yōu)[23-24]。為了增強網(wǎng)絡全局尋優(yōu)的能力,引入粒子群優(yōu)化算法對Elman網(wǎng)絡進行優(yōu)化,避免網(wǎng)絡陷入局部最小值。
2.2.1 粒子群算法
粒子群優(yōu)化算法(PSO,Particle Swarm Optimization)模擬了自然界鳥群和魚群捕食的過程。中心思想是通過群體信息的共享找到全局最優(yōu)解,在群體活動中,每一個個體都受益于所有個體在優(yōu)化過程中發(fā)現(xiàn)和積累的經(jīng)驗,不存在局部收斂問題[25]。粒子群算法的核心思想如式(12)、(13):
式中v是粒子速度;x是本次粒子位置;′是上次粒子位置,是慣性因子;是介于(0,1)之間的隨機數(shù);1和2是學習因子,通常取固定值2;pbest為個體歷史最優(yōu)值;gbest為全局歷史最優(yōu)值。
采用粒子群算法對網(wǎng)絡進行初始尋優(yōu),使網(wǎng)絡在訓練前已經(jīng)接近全局最優(yōu)解,在此基礎上網(wǎng)絡再次進行尋優(yōu)訓練,提高網(wǎng)絡尋優(yōu)效率的同時避免陷入局部最優(yōu)。
2.2.2 PSO-Elman算法
粒子群算法優(yōu)化Elman神經(jīng)網(wǎng)絡分為三部分:Elman神經(jīng)網(wǎng)絡結(jié)構(gòu)的確定,粒子群算法優(yōu)化以及Elman神經(jīng)網(wǎng)絡預測。Elman根據(jù)輸入輸出參數(shù)個數(shù)確定網(wǎng)絡結(jié)構(gòu),從而確定粒子群需要優(yōu)化的權(quán)值和閾值個數(shù),再通過粒子群算法對網(wǎng)絡初始的權(quán)值和閾值進行優(yōu)化,以提高網(wǎng)絡全局尋優(yōu)的能力。這里粒子群中的每個粒子個體都包含了網(wǎng)絡的所有權(quán)值和閾值,通過適應度函數(shù)計算個體的適應度值,不斷迭代更新每個粒子的速度和位置,找到最優(yōu)適應度的粒子對網(wǎng)絡的初始權(quán)值和閾值進行賦值,網(wǎng)絡經(jīng)過訓練后輸出樣本預測值[26]。PSO優(yōu)化Elman神經(jīng)網(wǎng)絡的算法流程圖如圖3所示。
基于相同的數(shù)據(jù)集分別以BP、Elman以及PSO-Elman神經(jīng)網(wǎng)絡算法建立茶葉烘干過程的含水率預測模型,模型均為4輸入(分別對應烘干溫度、滾筒轉(zhuǎn)速、初始含水率以及烘干時間)1輸出(對應烘干過程含水率),通過參數(shù)尋優(yōu)確定最優(yōu)網(wǎng)絡參數(shù)(權(quán)值和閾值)進行訓練。
充電電流是電池的充電速度、效率以及充電電量及其重要的影響因素,因此先采用田口法來對5階充電電流進行優(yōu)化,得到相應的優(yōu)化值。
3.1.1 不同喂入量下茶葉含水率的變化規(guī)律
茶葉初始含水率為50%左右,調(diào)整茶葉喂入量進行烘干試驗,根據(jù)烘干機筒壁容積設置喂入量變化范圍為800~1 200 g,茶葉烘干時的含水率變化規(guī)律如圖4所示,結(jié)果表明,在800~1 000 g喂入量情況下茶葉烘干效果較好,超過1 000 g烘干效果明顯降低,這是因為當滾筒轉(zhuǎn)動時會帶動茶葉顆粒使其進行拋撒形成料幕,與滾筒內(nèi)熱空氣接觸[27-28],當喂入量較少時,滾筒內(nèi)茶葉顆粒分布較為稀疏,茶葉在筒體內(nèi)與熱空氣充分接觸,烘干均勻性高,效果較好,當喂入量較高時,茶葉顆粒之間接觸較為緊密,在筒體內(nèi)運動時茶葉間互相粘連,受熱不均使得烘干效果降低,可見對于烘干過程,適當增加喂入量可提高茶葉生產(chǎn)效率,同時有利于茶葉品質(zhì)的提高。
3.1.2 不同轉(zhuǎn)速下茶葉含水率的變化規(guī)律
喂入量設置為1000 g,茶葉初始含水率均控制在49%~51%之間,固定烘干機溫度90℃,設置滾筒轉(zhuǎn)速分別為20、25、30 r/min進行烘干試驗,茶葉投入前對烘干機進行預熱,達到指定的溫度后開始烘干。茶葉含水率變化規(guī)律如圖5所示,結(jié)果表明,在相同的溫度下,滾筒轉(zhuǎn)速越高,茶葉含水率降低越快,且高水狀態(tài)下茶葉的失水速度明顯高于低水狀態(tài)的失水速度,烘干后期茶葉失水速度變緩,這是由于滾筒轉(zhuǎn)速較低時,滾筒帶動茶葉轉(zhuǎn)動形成的料幕面積較小[29],茶葉與筒體內(nèi)熱空氣接觸不充分,含水率變化緩慢,當轉(zhuǎn)速過高時,茶葉失水速度提高,加之茶葉與滾筒內(nèi)壁碰撞加劇,使得部分茶葉破碎。因此在茶葉烘干過程應適當增加滾筒轉(zhuǎn)速,在保證合理的碎茶率的基礎上能形成良好的料幕,提高茶葉品質(zhì)。
3.1.3 不同溫度下茶葉含水率的變化規(guī)律
茶葉初始含水率為50%,改變溫度進行烘干試驗,茶葉含水率的變化規(guī)律如圖6所示。試驗結(jié)果表明,相比于轉(zhuǎn)速,茶葉含水率的變化受溫度的影響更為明顯,在低溫90 ℃下茶葉失水較為平緩,在高溫120 ℃下茶葉失水迅速,但是容易造成水分變化不均勻,出現(xiàn)焦邊、糊邊、爆點等現(xiàn)象,對茶葉品質(zhì)有較大影響[30]。由圖6可知,中間溫度100 ℃、110 ℃相比于90 ℃下的水分變化更為迅速,同時不會像120 ℃高溫對茶葉品質(zhì)影響較大,可見在茶葉烘干過程中,溫度的控制至關(guān)重要,如果溫度過低,茶葉失水緩慢,茶葉香氣散失,生產(chǎn)效率低且影響茶葉品質(zhì),如果溫度過高,雖然失水迅速,但是茶葉失水不均勻,容易出現(xiàn)焦邊、糊邊現(xiàn)象。因此茶葉烘干過程中應嚴格控制烘干溫度,使茶葉在快速失水的同時固定品質(zhì),整形做形,發(fā)展茶香。
3.1.4 茶葉評分影響因子的顯著性分析
為探究溫度、轉(zhuǎn)速、喂入量對茶葉烘干效果的影響程度,對不同溫度(90~120 ℃)、轉(zhuǎn)速(20~30 r/min)、喂入量(800~1 200 g)下茶葉烘干的效果進行評價計分,評分標準遵循“效率高、質(zhì)量好”的原則,計算茶葉烘干過程含水率下降速率并邀請嗣晨茶葉有限公司的3位制茶師傅對烘干結(jié)束的茶葉進行評價打分,每個試驗進行3次取平均值,最后以速率和質(zhì)量占比3∶7進行綜合評分。設計3因素5水平二次回歸正交試驗探究各影響因素對茶葉烘干過程的影響效果,試驗因素編碼與組合試驗結(jié)果如表2、表3所示,其中在第10組試驗中評分達到83.78,說明溫度為120 ℃、喂入量為1 000 g、轉(zhuǎn)速為25 r/min時烘干效果較好。采用Design Expert軟件進行二次多項式回歸分析,結(jié)果如表4所示。
表2 試驗因素與編碼水平
表3 組合試驗結(jié)果
在主效應檢驗中,發(fā)現(xiàn)溫度1、喂入量2、轉(zhuǎn)速3的值分別為0.000 1、0.003 1、0.027 2,均小于0.05,說明溫度、轉(zhuǎn)速、喂入量對烘干效果均有顯著影響,根據(jù)值大小順序可知對茶葉烘干效果的影響程度由大到小排序為溫度、喂入量、轉(zhuǎn)速。
表4 回歸模型的顯著性分析
3.2.1 預測模型的建立
為了準確預測不同條件下茶葉烘干過程中的含水率,固定喂入量(根據(jù)滾筒尺寸確定,以旋轉(zhuǎn)時茶葉能均勻拋撒形成料幕為宜,本試驗喂入量為1 000 g),以茶葉初始含水率、烘干溫度、滾筒轉(zhuǎn)速以及烘干時間為輸入,干燥后含水率為輸出分別建立了BP、Elman以及PSO-Elman神經(jīng)網(wǎng)絡茶葉含水率動態(tài)預測模型,總數(shù)據(jù)量為190組。根據(jù)經(jīng)驗公式(2)取隱含層神經(jīng)元為1~13,通過試驗確定神經(jīng)網(wǎng)絡結(jié)構(gòu),圖7為不同隱含層神經(jīng)元對模型MAE、RMSE以及2的影響,結(jié)果表明,在多數(shù)情況下,Elman神經(jīng)網(wǎng)絡的預測效果均優(yōu)于BP神經(jīng)網(wǎng)絡,這是因為Elman網(wǎng)絡的承接層使得網(wǎng)絡能夠內(nèi)部反饋、存儲和利用過去時刻的輸出信息,相比BP有更好的計算能力和網(wǎng)絡穩(wěn)定性,通過試驗確定BP隱含層神經(jīng)元個數(shù)為11,Elman隱含層神經(jīng)元個數(shù)為13。在此結(jié)構(gòu)基礎上引入粒子群算法對Elman網(wǎng)絡的初始權(quán)值和閾值進行優(yōu)化,增強網(wǎng)絡全局尋優(yōu)的能力,避免陷入局部最優(yōu)。
3.2.2 預測模型對比分析
在確定網(wǎng)絡的基本結(jié)構(gòu)的基礎上分別建立BP、Elman及PSO-Elman茶葉含水率預測模型。將實際烘干試驗得到的190組數(shù)據(jù)集按照8:2[31]的比例分為152組訓練集與38組測試集,分別使用3個網(wǎng)絡模型進行預測,采用傳統(tǒng)線性擬合方式建立多元回歸模型作為對比參考,模型方程如式(14)所示:
=52.165 51?0.257 21?0.384 292+0.647 583?0.655 934(14)
式中為預測含水率值,%;1為滾筒烘干溫度,℃;2為烘干滾筒轉(zhuǎn)速,r/min;3為待烘干茶葉的初始含水率,%;4為烘干時間,s。
同樣采用MAE、RMSE以及R作為模型的評價指標,預測結(jié)果如表5、圖8、圖9所示。結(jié)果表明,采用同樣的數(shù)據(jù)集建立的線性擬合、BP、Elman以及PSO-Elman預測模型的2分別為0.960 9、0.998 0、0.998 5和0.999 4,說明基于神經(jīng)網(wǎng)絡算法所建立的模型相比傳統(tǒng)的線性擬合方法表現(xiàn)出了明顯的優(yōu)勢,其中,PSO-Elman預測模型的預測效果優(yōu)于BP和Elman預測模型。通過對不同烘干條件下的茶葉含水率預測模型的誤差分析可知,采用PSO-Elman神經(jīng)網(wǎng)絡算法建立的水分預測模型預測更加精確,網(wǎng)絡表現(xiàn)更好,故PSO-Elman動態(tài)水分預測模型更加適用于指導茶葉烘干過程。
表5 BP、Elman和PSO-Elman含水率預測模型比較
本研究以日照綠茶為研究對象,采用熱風烘干方式進行茶葉烘干試驗,對比不同烘干條件下茶葉含水率變化差異,分析茶葉烘干過程中的含水率動態(tài)變化規(guī)律,建立了烘干過程茶葉含水率預測模型,得出以下主要結(jié)論:
1)經(jīng)過揉捻的茶葉含水率基本保持在49%~51%之間,即為烘干工序茶葉的初始含水率,烘干條件對茶葉含水率的監(jiān)測表明,茶葉烘干過程含水率總體呈先快后慢的趨勢降低,其主要影響指標依次為烘干溫度以及滾筒轉(zhuǎn)速,而茶葉喂入量應根據(jù)實際滾筒尺寸確定,旋轉(zhuǎn)時茶葉能均勻拋撒形成料幕且與熱空氣充分接觸為宜。試驗表明:隨著溫度升高,滾筒轉(zhuǎn)速對于含水率的變化影響程度逐漸減小,轉(zhuǎn)速過快會使碎茶率升高。因此對于茶葉烘干過程,應充分考慮溫度以及轉(zhuǎn)速對水分變化的影響,以動態(tài)含水率變化規(guī)律作為指導茶葉烘干過程的依據(jù)。
2)為準確預測不同烘干條件下茶葉含水率的變化規(guī)律,分別采用BP神經(jīng)網(wǎng)絡(Back Propagation neural network)、Elman神經(jīng)網(wǎng)絡(Elman neural network)以及PSO-Elman神經(jīng)網(wǎng)絡(PSO-Elman neural network)三種模型,以茶葉初始含水率、烘干溫度、滾筒轉(zhuǎn)速以及烘干時間為輸入,茶葉含水率為輸出建立茶葉含水率動態(tài)預測模型,并與傳統(tǒng)的多元線性回歸模型進行對比分析。結(jié)果表明,針對茶葉烘干過程,智能算法與傳統(tǒng)線性回歸方法相比預測效果更好。建立的BP、Elman以及PSO-Elman模型測試集的決定系數(shù)2分別為0.9980、0.9985和0.9994,對不同烘干條件下的預測結(jié)果進行誤差分析,結(jié)果表明采用粒子群優(yōu)化的Elman神經(jīng)網(wǎng)絡建立的預測模型性能更好,對于茶葉烘干工序具有更好的應用價值。
[1] Stangl V, Dreger H, Stangl K, et al. Molecular targets of tea polyphenols in the cardiovascular system[J]. Cardiovascular Research, 2007, 73(2): 348-358.
[2] Butt M S, Sultan M T. Green tea: Nature’s defense against malignancies[J]. Critical Reviews in Food Science and Nutrition, 2009, 49(5): 463-473.
[3] 宋楚君,縱榜正,周森杰,等. 龍井茶加工中制葉水分變化及其對茶葉滋味品質(zhì)的影響[J]. 茶葉,2020,46(2):77-83.
Song Chujun, Zong Bangzheng, Zhou Senjie, et al. The change of leaf moisture in Longjing tea processing and its effect on the taste and quality of tea[J]. Tea, 2020, 46(2): 77-83. (in Chinese with English abstract)
[4] 李琛,艾仄宜,余志,等. 優(yōu)質(zhì)綠茶加工過程主要物理特性變化的研究[J]. 茶葉科學,2019,39(6):705-714.
Li Chen, Ai Zeyi, Yu Zhi, et al. Study on changes in main physical characteristics of high-quality green tea during processing[J]. Tea Science, 2019, 39(6): 705-714. (in Chinese with English abstract)
[5] 葉飛,龔自明,桂安輝,等. 自動化加工生產(chǎn)線改善機采綠茶理化品質(zhì)研究[J]. 農(nóng)業(yè)工程學報,2019,35(3):281-286.
Ye Fei, Gong Ziming, Gui Anhui, et al. Research on improving the physical and chemical quality of machine-picked green tea by automated processing production lines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 281-286. (in Chinese with English abstract)
[6] Zhao Z, Chen L, Chen G, et al. An approach for in-line control of moisture content during green tea processing[J]. IEEE Access, 2020, 8: 59701-59714.
[7] 王輝. 茶葉加工生產(chǎn)線集散控制系統(tǒng)[D]. 杭州:浙江工業(yè)大學,2017.
Wang Hui. Distributed Control System of Tea Processing Production Line[D]. Hangzhou: Zhejiang University of Technology, 2017. (in Chinese with English abstract)
[8] 王凡,趙春江,徐波,等. 便攜式茶鮮葉品質(zhì)光譜檢測裝置研制[J]. 農(nóng)業(yè)工程學報,2020,36(24):273-280.
Wang Fan, Zhao Chunjiang, Xu Bo, et al. Development of a portable detection device for the quality of fresh tea leaves using spectral technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 273-280. (in Chinese with English abstract)
[9] 高震宇,王安,劉勇,等. 基于卷積神經(jīng)網(wǎng)絡的鮮茶葉智能分選系統(tǒng)研究[J]. 農(nóng)業(yè)機械學報,2017,48(7):53-58.
Gao Zhenyu, Wang An, Liu Yong, et al. Research on intelligent sorting system of fresh tea based on convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 53-58. (in Chinese with English abstract)
[10] 張帥堂,王紫煙,鄒修國,等. 基于高光譜圖像和遺傳優(yōu)化神經(jīng)網(wǎng)絡的茶葉病斑識別[J]. 農(nóng)業(yè)工程學報,2017,33(22):200-207.
Zhang Shuaitang, Wang Ziyan, Zou Xiuguo, et al. Tea disease spot recognition based on hyperspectral image and genetically optimized neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 200-207. (in Chinese with English abstract)
[11] 王勝鵬,滕靖,鄭鵬程,等. 青磚茶壓制壓力優(yōu)化及GCG近紅外快速檢測模型建立[J]. 農(nóng)業(yè)工程學報,2020,36(8):271-277.
Wang Shengpeng, Teng Jing, Zheng Pengcheng, et al. Optimizing processing pressure of qingzhuan tea and development of GCG models for near infrared spectroscopy detection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 271-277. (in Chinese with English abstract)
[12] 王近近,袁海波,滑金杰,等. 足火工藝參數(shù)對工夫紅茶熱風干燥特性和品質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2020,36(10):287-296.
Wang Jinjin, Yuan Haibo, Hua Jinjie, et al. Effects of foot-fire process parameters on the hot-air drying characteristics and quality of Gongfu black tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 287-296. (in Chinese with English abstract)
[13] 李琳琳,陳俊亮,段續(xù),等. 基于LF-NMR及不同干燥方法的哈密瓜片含水率預測模型[J]. 農(nóng)業(yè)工程學報,2021,37(2):304-312.
Li Linlin, Chen Junliang, Duan Xu, et al. Moisture content prediction model of cantaloupe slices based on LF-NMR and different drying methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 304-312. (in Chinese with English abstract)
[14] 宋彥,謝漢壘,寧井銘,等. 基于機器視覺形狀特征參數(shù)的祁門紅茶等級識別[J]. 農(nóng)業(yè)工程學報,2018,34(23):279-286.
Song Yan, Xie Hanlei, Ning Jingming, et al. Qimen black tea grade recognition based on machine vision shape feature parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 279-286. (in Chinese with English abstract)
[15] 張付杰,辛立東,代建武,等. 獼猴桃片旋轉(zhuǎn)托盤式微波真空干燥特性分析[J]. 農(nóng)業(yè)機械學報,2020,51(S1):501-508.
Zhang Fujie, Xin Lidong, Dai Jianwu, et al. Rotating tray microwave vacuum drying characteristics of kiwifruit slices[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 501-508. (in Chinese with English abstract)
[16] 董春旺,朱宏凱,周小芬,等. 基于機器視覺和工藝參數(shù)的針芽形綠茶外形品質(zhì)評價[J]. 農(nóng)業(yè)機械學報,2017,48(9):38-45.
Dong Chunwang, Zhu Hongkai, Zhou Xiaofen, et al. Quality evaluation for appearance of needle green tea based on machine vision and process parameters[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 38-45. (in Chinese with English abstract)
[17] 陳壽松,占楊,鄭功宇,等. 茶葉含水率常用測定方法及比較分析[J]. 中國茶葉加工,2013(3):33-36.
Chen Shousong, Zhan Yang, Zheng Gongyu, et al. Commonly used methods and comparative analysis of tea moisture content[J]. China Tea Processing, 2013(3): 33-36. (in Chinese with English abstract)
[18] You K, Lee C, Chan K, et al. Monitoring moisture content for various kind of tea leaves in drying processes using RF reflectometer-sensor system[J]. Instruments, 2018, 2(3): 18.
[19] 吳偉斌,劉文超,李澤藝,等. 基于高光譜的茶葉含水量檢測模型建立與試驗研究[J]. 河南農(nóng)業(yè)大學學報,2018,52(5):818-824.
Wu Weibin, Liu Wenchao, Li Zeyi, et al. Study on detection model establishment and experiment of tea water content based on hyperspectral [J]. Journal of Henan Agricultural University, 2018, 52(5): 818-824. (in Chinese with English abstract)
[20] 楊成飛,和壽星,孟繁佳,等. 不同深度基質(zhì)含水率變化規(guī)律與預測模型研究[J]. 農(nóng)業(yè)機械學報,2020,51(S2):408-414.
Yang Chengfei, He Shouxing, Meng Fanjia, et al. Research on the variation law and prediction model of matrix moisture content at different depths[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 408-414. (in Chinese with English abstract)
[21] 王勝鵬,龔自明,鄭鵬程,等. 青磚茶品質(zhì)近紅外特征光譜篩選及預測模型建立[J]. 食品科學,2020,41(18):283-287.
Wang Shengpeng, Gong Ziming, Zheng Pengcheng, et al. Selection of characteristic near infrared spectra and establishment of prediction model for qingzhuan tea quality[J]. Food Science, 2020, 41(18): 283-287. (in Chinese with English abstract)
[22] Zheng Y, Zhang X, Wang X, et al. Predictive study of tuberculosis incidence by time series method and Elman neural network in Kashgar, China[J]. BMJ Open, 2021, 11(1): e041040.
[23] 冀榮華,李鑫,張舒蕾,等. 基于時延神經(jīng)網(wǎng)絡的多深度土壤含水率預測[J]. 農(nóng)業(yè)工程學報,2017,33(增刊1):132-136.
Ji Ronghua, Li Xin, Zhang Shulei, et al. Multi-depth soil moisture prediction based on time-delayed neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 132-136. (in Chinese with English abstract)
[24] Kalathingal M S H, Basak S, Mitra J. Artificial neural network modeling and genetic algorithm optimization of process parameters in fluidized bed drying of green tea leaves[J]. Journal of Food Process Engineering, 2020, 43(1), e13128.
[25] 陳嘯,王紅英,孔丹丹,等. 基于粒子群參數(shù)優(yōu)化和BP神經(jīng)網(wǎng)絡的顆粒飼料質(zhì)量預測模型[J]. 農(nóng)業(yè)工程學報,2016,32(14):306-314.
Chen Xiao, Wang Hongying, Kong Dandan, et al. Pellet feed quality prediction model based on particle swarm parameter optimization and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 306-314. (in Chinese with English abstract)
[26] Zhang Z, Shen Y, Zhang G, et al. Short-term prediction for opening price of stock market based on self-adapting variant PSO-Elman neural network[C]//2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). Beijing, China: IEEE, 2017: 225-228.
[27] 謝立揚,張晨光,劉立強,等. 烘干筒表面?zhèn)鳠徇^程與數(shù)值計算[J]. 中國公路學報,2016,29(3):151-158.
Xie Liyang, Zhang Chenguang, Liu Liqiang, et al. Heat transfer process and numerical calculation on the surface of drying cylinder[J]. China Journal of Highway and Transport, 2016, 29(3): 151-158. (in Chinese with English abstract)
[28] 滑金杰,王華杰,王近近,等. 用PLS-DA分析毛火方式對工夫紅茶品質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2020,36(8):260-270.
Hua Jinjie, Wang Huajie, Wang Jinjin, et al. Influences of first-drying methods on the quality of Congou black tea using partial least squares-discrimination analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 260-270. (in Chinese with English abstract)
[29] 王文中. 滾筒式茶葉熱風復干機的設計與試驗研究[D]. 泰安:山東農(nóng)業(yè)大學,2020.
Wang Wenzhong. Design and Experimental Research of Drum-type Tea Hot Air Re-drying Machine[D]. Tai’an: Shandong Agricultural University, 2020. (in Chinese with English abstract)
[30] 李兵,孫長應,李為寧,等. 基于DMC-PID串級控制的茶葉遠紅外烘干機設計與試驗[J]. 茶葉科學,2018,38(4):410-415.
Li Bang, Sun Changying, Li Weining, et al. Design and experiment of tea far infrared dryer based on DMC-PID cascade control[J]. Tea Science, 2018, 38(4): 410-415. (in Chinese with English abstract)
[31] Perea R G, Poyato E C, Montesinos P, et al. Irrigation demand forecasting using artificial neuro-genetic networks[J]. Water Resources Management, 2015, 29(15): 5551-5567.
Prediction of tea drying moisture content based on PSO Elman algorithm
Zhao Liqing, Duan Dongyao, Yin Yuanyuan, Zheng Yinghui, Xu Xin, Sun Ying, Xue Yiwei
(,,266109,)
Moisture content is critical in the process of tea hot air drying. Taking green tea as an example, an experiment was performed on the dynamic hot air drying of rolled tea, in order to monitor the dynamic change of moisture content of tea with drying time under different feeding amounts (800-1 200 g), drying temperatures (90-120 ℃) and drum speeds (20-30 r/min). Each significant factor was analyzed to explore the dynamic changes of the water content of tea under different drying conditions. The experimental results show that there were significant effects of temperature, rotational speed, and feeding rate on the drying of tea leaves. The influence was sorted in the descending order of temperature, feeding rate, and rotating speed. Among them, the temperature has posed the greatest influence on drying. In the feeding amount, it was appropriate to cover the drum wall with tea to form a perfect casting curtain. That was because too much feeding amount easily caused uneven heating of tea, and then appeared dry outside and wet inside, even focal point explosion. The decreasing rate of water content in tea leaves showed a trend of first increased and then decreased in the whole drying. As such, the water loss was less at the lower water content, and finally, the water change tended to be gentle. The water content of tea leaves was basically stable at 4%-5% at the end of drying, particularly for convenient transportation and preservation. A prediction experiment was carried out, where the water content of tea drying was taken as the output, while the structure parameters of the dryer, drying temperature, drum speed, drying initial water, and prediction time as the input. BP, Elman, and PARTICLE swarm optimization Elman neural network (PSO Elman) neural network were used to establish the dynamic prediction model of tea moisture content during drying. A comparison was also made on the traditional multiple linear regression fitting model. The results of verification and error analysis of the Linear fit, BP neural network, Elman neural network and PSO-Elman neural network models showed that their determination coefficients were 0.960 9, 0.998 0, 0.998 5, and 0.999 4, respectively. Compared with the traditional linear regression, the neural network was more accurately expressed the linear or nonlinear relationship in the complex system, showing better prediction for the tea drying. In three neural network models, the PSO-Elman model was more accurate than BP and Elman model, indicating better prediction on the change of water content during tea drying. The findings can provide a strong theoretical basis for the hot air drying of tea, therebyguiding tea processing and production for high efficiency and tea quality.
moisture content; drying; tea; dynamic change; neural network; prediction model
趙麗清,段東瑤,殷元元,等. 基于PSO-Elman算法的茶葉烘干含水率預測[J]. 農(nóng)業(yè)工程學報,2021,37(19):284-292.doi:10.11975/j.issn.1002-6819.2021.19.033 http://www.tcsae.org
Zhao Liqing, Duan Dongyao, Yin Yuanyuan, et al. Prediction of tea drying moisture content based on PSO Elman algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 284-292. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.19.033 http://www.tcsae.org
2021-05-29
2021-07-23
國家級自然科學基金項目(32071911);山東省重點研發(fā)計劃項目(2018GNC112012);山東省重大科技創(chuàng)新工程項目(2019TSLH0802);青島市科技惠民示范引導專項(21-1-4-ny-2-nsh)
趙麗清,博士,教授,研究方向為智能檢測傳感器技術(shù)。Email:zhlq017214@163.com
10.11975/j.issn.1002-6819.2021.19.033
S24
A
1002-6819(2021)-19-0284-09